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By means of Morse theory we prove the existence of a nontrivial solution to a su-
perlinear p-harmonic elliptic problem with Navier boundary conditions having
a linking structure around the origin. Moreover, in case of both resonance near
zero and nonresonance at +∞ the existence of two nontrivial solutions is shown.

1. Introduction and main results

Let p > 1 and Ω ⊂ R
n be a smooth bounded domain with n � 2p+ 1. We are

concerned with the existence of nontrivial solutions to the p-harmonic equation

∆
(|∆u|p−2∆u

)
= g(x,u) in Ω (1.1)

with Navier boundary conditions

u = ∆u = 0 on ∂Ω, (1.2)

where g : Ω×R → R is a Carathéodory function such that for some C > 0,

∣∣g(x, s)
∣∣ � C

(
1+ |s|q−1) (1.3)

for a.e. x ∈Ω and all s ∈ R, being 1 � q < p∗ and p∗ = np/(n−2p).
It is well known that the functional Φ : W2,p(Ω)∩W1,p

0 (Ω) → R

Φ(u) =
1
p

∫
Ω
|∆u|p dx−

∫
Ω
G(x,u)dx, (1.4)

with G(x, s) =
∫ s

0 g(x, t)dt, is of class C1 and

〈
Φ′(u),ϕ

〉
=
∫
Ω
|∆u|p−2∆u∆ϕdx−

∫
Ω
g(x,u)ϕdx (1.5)
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for each ϕ ∈ W2,p(Ω) ∩W
1,p
0 (Ω). Moreover, the critical points of Φ are weak

solutions for (1.1). Notice that for the eigenvalue problem

∆
(|∆u|p−2∆u

)
= λ|u|p−2u in Ω (1.6)

with boundary data (1.2), as for the p-Laplacian eigenvalue problem with Dirich-
let boundary data,

λn = inf
A∈Γn

sup
u∈A

∫
Ω
|∆u|p dx, n = 1,2, . . . (1.7)

is the sequence of eigenvalues, where

Γn =
{
A ⊆W2,p(Ω)∩W1,p

0 (Ω)\{0} : A = −A, γ(A) � n
}
, (1.8)

being γ(A) the Krasnoselski’s genus of the set A. This follows by the Ljusternik-
Schnirelman theory for C1-manifolds proved in [13] applied to the functional

J |�(u) =
∫
Ω
|∆u|p dx,

� =
{
u ∈W2,p(Ω)∩W1,p

0 (Ω) :
∫
Ω
|u|p dx = 1

}
,

(1.9)

since � is a C1-manifold with tangent space

Tu� =
{
w ∈W2,p(Ω)∩W1,p

0 (Ω) :
∫
Ω
|u|p−2uwdx = 0

}
. (1.10)

The next remark is the starting point of our paper.

Remark 1.1. It has been recently proved by Drábek and Ôtani [4] that (1.6) with
boundary data (1.2) has the least eigenvalue

λ1(p) = inf
{∫

Ω
|∆u|p dx : u ∈W2,p(Ω)∩W1,p

0 (Ω), ‖u‖pp = 1
}

(1.11)

which is simple, positive, and isolated in the sense that the solutions of (1.6) with
λ = λ1(p) form a one-dimensional linear space spanned by a positive eigenfunc-
tion φ1(p) associated with λ1(p) and there exists δ > 0 so that (λ1(p),λ1(p) +δ)
does not contain other eigenvalues. The situation is actually more involved with
Dirichlet boundary conditions

u =∇u = 0 on ∂Ω (1.12)

and, to our knowledge, it is not clear whether the first eigenspace has the previ-
ous good properties; the fact is that while Navier boundary conditions allow to
reduce the fourth-order problem into a system of two second-order problems,
Dirichlet boundary conditions do not. Some pathologies are indeed known, for
instance, the first eigenfunction of ∆2u = λu with boundary data (1.12) may
change sign [12].
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Remark 1.2. Let V = span{φ1} be the eigenspace associated with λ1, where

‖φ1‖2,p = 1. Taking a subspace W ⊂W2,p(Ω)∩W1,p
0 (Ω) complementing V , that

is, W2,p(Ω)∩W1,p
0 (Ω) = V ⊕W , there exists λ̂ > λ1 with∫

Ω
|∆u|p dx � λ̂

∫
Ω
|u|p dx (1.13)

for each u ∈W (in case p = 2, one may take λ̂ = λ2).

We may now assume the following conditions:

(�1) there exist R > 0 and λ̄ ∈]λ1, λ̂[ such that

|s| � R =⇒ λ1|s|p � pG(x, s) � λ̄|s|p, (1.14)

for a.e. x ∈Ω and each s ∈ R;
(�2) there exist ϑ > p and M > 0 such that

|s| � M =⇒ 0 < ϑG(x, s) � sg(x, s), (1.15)

for a.e. x ∈Ω and each s ∈ R.

Assumption (�1) corresponds to a resonance condition around the origin
while (�2) is the standard condition of Ambrosetti-Rabinowitz type.

Theorem 1.3. Assume that conditions (�1) and (�2) hold. Then problem (1.1)
with boundary conditions (1.2) admits a nontrivial solution inW2,p(Ω)∩W1,p

0 (Ω).

Now replace (�2) with a nonresonance condition at +∞.

Theorem 1.4. Assume that condition (�1) holds and that for a.e. x ∈Ω

lim
|s|→+∞

pG(x, s)
|s|p < λ1. (1.16)

Then problem (1.1) with boundary conditions (1.2) admits two nontrivial solutions
in W2,p(Ω)∩W1,p

0 (Ω).

We use variational methods to prove Theorems 1.3 and 1.4. Usually, one uses
a minimax type argument of mountain pass type to prove the existence of so-
lutions of equations with a variational structure. However, it seems difficult to
use minimax theorems in our situation. Thus we will adopt an approach based
on Morse theory. Notice that there were a few works using Morse theory to treat
p-Laplacian problems with Dirichlet boundary conditions (see [9] and the ref-
erences therein). Moreover, to the authors’ knowledge, (1.1) has a very poor
literature; the only papers in which a p-harmonic equation is mentioned are
[1, Section 8] and [4].

The existence of multiple solutions depends mainly on the behaviour of
G(x, s) near 0 and at +∞. Without the above resonant or nonresonant condi-
tions to obtain multiple solutions seems hard even in the semilinear case p = 2.



128 Quasilinear fourth-order resonant problems

Remark 1.5. Arguing as in [9], it is possible to prove Theorem 1.4 by replacing
assumption (1.16) with the following conditions:

lim
|s|→+∞

pG(x, s)
|s|p = λ1, lim

|s|→+∞
{
g(x, s)s− pG(x, s)

}
= +∞ (1.17)

for a.e. x ∈Ω (resonance condition at +∞).

Remark 1.6. The existence of solutions u ∈W
2,p
0 (Ω) of the quasilinear problem

∆
(|∆u|p−2∆u

)
= g(x,u) in Ω,

u =∇u = 0 on ∂Ω
(1.18)

under the previous assumptions (� j) is, to our knowledge, an open problem.

2. Proofs of Theorems 1.3 and 1.4

In this section, we give the proof of our main results. It is readily seen that

‖u‖2,p =
(∫

Ω
|∆u|p dx

)1/p

(2.1)

is an equivalent norm of the standard space norm of W2,p(Ω)∩W1,p
0 (Ω). For Φ

a continuously Fréchet differentiable map, let Φ′ denote its Fréchet derivative.

Lemma 2.1. The functional Φ satisfies the Palais-Smale condition.

Proof. Let (uh) ⊂ W2,p(Ω)∩W1,p
0 (Ω) be such that |Φ(uh)| � B, for some B > 0

and Φ′(uh) → 0 as h→ +∞. Let d = suph�0Φ(uh). Then we have

ϑd+
∥∥uh∥∥2,p � ϑΦ

(
uh
)−〈Φ′(uh),uh〉

=
(
ϑ

p
−1

)∥∥uh∥∥p
2,p−

∫
{|uh |�M}

[
ϑG

(
x,uh

)−g(x,uh)uh]dx
−
∫
{|uh |�M}

[
ϑG

(
x,uh

)−g(x,uh)uh]dx
�

(
ϑ

p
−1

)∥∥uh∥∥p
2,p−

∫
{|uh |�M}

[
ϑG

(
x,uh

)−g(x,uh)uh]dx
�

(
ϑ

p
−1

)∥∥uh∥∥p
2,p−D,

(2.2)

for some D ∈ R. Thus (uh) is bounded and, up to a subsequence, we may as-
sume that uh ⇀ u is, for some u, in W2,p(Ω)∩W1,p

0 (Ω). Since the embedding

W2,p(Ω)∩W1,p
0 (Ω) ↪→ Lq(Ω) is compact, then a standard argument shows that

uh → u strongly and the proof is complete. �

Now recall the notion of “Local Linking,” which was initially introduced by
Liu and Li [8] and has been used in a vast amount of literature (cf. [2, 5, 6, 11]).
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Definition 2.2. Let E be a real Banach space such that E = V ⊕W , where V and
W are closed subspaces of E. Let Φ : E→ R be a C1-functional. We say that Φ has
a local linking near the origin 0 (with respect to the decomposition E = V ⊕W),
if there exists � > 0 such that

u ∈ V : ‖u‖ � � =⇒Φ(u) � 0,

u ∈W : 0 < ‖u‖ � � =⇒Φ(u) > 0.
(2.3)

We now show that our functional Φ has a local linking near the origin with
respect to the space decomposition W2,p(Ω)∩W1,p

0 (Ω) = V ⊕W , according to
Remark 1.2.

Lemma 2.3. There exists � > 0 such that conditions (2.3) hold with respect to the

decomposition W2,p(Ω)∩W1,p
0 (Ω) = V ⊕W .

Proof. For u ∈ V , the condition ‖u‖2,p � � implies u(x) � R for a.e. x ∈ Ω if
� > 0 is small enough, being R > 0 as in assumption (�1). Thus for u ∈ V ,

Φ(u) =
1
p

∫
Ω
|∆u|p dx−

∫
Ω
G(x,u)dx

=
λ1

p

∫
Ω
|u|p dx−

∫
Ω
G(x,u)dx =

∫
{|u|�R}

[
λ1

p
|u|p−G(x,u)

]
dx � 0

(2.4)

provided that ‖u‖2,p � � and � is small.
To prove the second assertion, take u ∈W . In view of (1.3) and (1.13) we have

Φ(u) =
1
p

∫
Ω
|∆u|p dx−

∫
Ω
G(x,u)dx

=
1
p

∫
Ω

(|∆u|p− λ̄|u|p)dx
−
(∫

{|u|�R}
+
∫
{|u|�R}

)(
G(x,u)− λ̄

p
|u|p

)
dx

� 1
p

(
1− λ̄

λ̂

)
‖u‖p2,p−c

∫
Ω
|u|s dx � 1

p

(
1− λ̄

λ̂

)
‖u‖p2,p−C‖u‖s2,p,

(2.5)

where p < s � p∗ and c, C are positive constants. Since s > p, it follows that
Φ(u) > 0 for � > 0 sufficiently small. �

Assume that u is an isolated critical point of Φ such that Φ(u) = c. We define
the critical group of Φ at u by setting for each q ∈ Z

Cq(Φ,u) =Hq
(
Φc,Φc\{u}

)
, (2.6)

being Hq(X,Y) the qth homology group of the topological pair (X,Y) over the
ring Z and Φc the c-sublevel of Φ. For the detail of Morse theory and critical
groups, we refer the reader to [3].
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Since dimV = 1 < +∞, by combining Lemma 2.3 and [7, Theorem 2.1], we
obtain the following result.

Lemma 2.4. The point 0 is a critical point of Φ and C1(Φ,0) 
= {0}.

We now investigate the behavior of Φ near infinity.

Lemma 2.5. There exists a constant A > 0 such that

a < −A =⇒Φa � S∞, (2.7)

where S∞ = {u ∈W2,p(Ω)∩W1,p
0 (Ω) : ‖u‖2,p = 1}.

Proof. By integrating inequality (1.15), we obtain a constant C1 > 0 with

|s| � M =⇒ G(x, s) � C1|s|ϑ (2.8)

a.e. in Ω and for each s ∈ R. Thus, for u ∈ S∞, we have Φ(tu) →−∞, as t goes to
+∞. Set

A =
(

1+
1
p

)
M�n(Ω) max

Ω̄×[−M,M]

∣∣g(x, s)
∣∣+1, (2.9)

being �n the Lebesgue measure. As in the proof of [10, Lemma 2.4] we obtain

∫
Ω
G(x,u)dx− 1

p

∫
Ω
g(x,u)udx

�
(

1
ϑ
− 1
p

)∫
{|u|�M}

g(x,u)udx+A−1.

(2.10)

For a < −A and

Φ(tu) =
|t|p
p

−
∫
Ω
G(x, tu)dx � a

(
u ∈ S∞

)
, (2.11)

in view of (2.8) and (2.10), arguing as in the proof of [10, Lemma 2.4],

d

dt
Φ(tu) < 0. (2.12)

By the implicit function theorem, there is a unique T ∈ C(S∞,R) such that

∀u ∈ S∞, Φ
(
T(u)u

)
= a. (2.13)

For u 
= 0, set T̃(u)=(1/‖u‖2,p)T(u/‖u‖2,p). Then T̃ ∈C(W2,p(Ω)∩W1,p
0 (Ω)\{0},

R) and

∀u ∈W2,p(Ω)∩W1,p
0 (Ω)\{0}, Φ

(
T̃(u)u

)
= a. (2.14)
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We define now a functional T̂ : W2,p(Ω)∩W1,p
0 (Ω)\{0} → R by setting

T̂(u) =

{
T̃(u) if Φ(u) � a,

1 if Φ(u) � a.
(2.15)

Since Φ(u) = a implies T̃(u) = 1, we conclude that

T̂ ∈ C
(
W2,p(Ω)∩W1,p

0 (Ω)\{0},R)
. (2.16)

Finally, let η : [0,1]×W2,p(Ω)∩W1,p
0 (Ω)\{0} →W2,p(Ω)∩W1,p

0 (Ω)\{0},

η(s,u) = (1− s)u+ sT̂(u)u. (2.17)

It results that η is a strong deformation retract from W2,p(Ω)∩W1,p
0 (Ω)\{0} to

Φa. Thus Φa �W2,p(Ω)∩W1,p
0 (Ω)\{0} � S∞. �

Remark 2.6. A result similar to Lemma 2.5 has been proved for the Laplacian −∆
in [3, 14], under the additional conditions

g ∈ C1(Ω×R,R), gt(x,0) =
∂g(x, t)

∂t

∣∣∣∣
t=0

= 0. (2.18)

We recall the following topological result due to Perera [11].

Lemma 2.7. Let Y ⊂ B ⊂ A ⊂ X be topological spaces and q ∈ Z. If

Hq(A,B) 
= {0}, Hq(X,Y) = {0}, (2.19)

then it results that

Hq+1(X,A) 
= {0} or Hq−1(B,Y) 
= {0}. (2.20)

Proof of Theorem 1.3. By Lemma 2.1,Φ satisfies the Palais-Smale condition. Note
that Φ(0) = 0, by [3, Chapter I, Theorem 4.2], there exists ε > 0 with

H1
(
Φε,Φ−ε

)
= C1(Φ,0) 
= {0}. (2.21)

If A is as in Lemma 2.5, for a < −A we have Φa � S∞, which yields

H1
(
W2,p(Ω)∩W1,p

0 (Ω),Φa
)
=H1

(
W2,p(Ω)∩W1,p

0 (Ω),S∞
)
= {0}. (2.22)

Therefore, being Φa ⊂Φ−ε ⊂Φε, Lemma 2.7 yields

H2
(
W2,p(Ω)∩W1,p

0 (Ω),Φε
) 
= {0} or H0

(
Φ−ε,Φa

) 
= {0}. (2.23)

It follows that Φ has a critical point u for which

Φ(u) > ε or −ε > Φ(u) > a. (2.24)

Therefore, u 
= 0 and (1.1), (1.2) possess a nontrivial solution. �
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Recall from [9] the following three-critical point theorem.

Lemma 2.8. Let X be a real Banach space and let Φ ∈ C1(X,R) be bounded from
below and satisfying the Palais-Smale condition. Assume that Φ has a critical point
u which is homologically nontrivial, that is, Cj(Φ,u) 
= {0} for some j, and it is not
a minimizer for Φ. Then Φ admits at least three critical points.

Proof of Theorem 1.4. By Lemma 2.8, taking into account Lemma 2.4, it suffices
to show that Φ is bounded from below. Indeed, by (1.16) there exist ε > 0 small
and C > 0 such that

G(x, s) � λ1−ε
p

|s|p +C (2.25)

for a.e. x ∈Ω and each s ∈ R. This, by (1.11), immediately yields

Φ(u) � 1
p
‖u‖p2,p−

1
p

(
λ1−ε

)‖u‖pp−C�n(Ω)

� 1
p

(
1− λ1−ε

λ1

)
‖u‖p2,p−C�n(Ω) −→ +∞

(2.26)

as ‖u‖2,p → +∞. Then Φ is coercive and satisfies the Palais-Smale condition. In
particular Lemma 2.8 provides the existence of at least two nontrivial critical
points of Φ. �
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Musei 41, 25121 Brescia, Italy

E-mail address: squassin@dmf.unicatt.it

mailto:liusb@amss.ac.cn
mailto:squassin@dmf.unicatt.it


Journal of Applied Mathematics and Decision Sciences

Special Issue on

Intelligent Computational Methods for
Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becom-
ing increasingly important in today’s economic and financial
world, especially in areas such as portfolio management, as-
set valuation and prediction, fraud detection, and credit risk
management. For example, in a credit risk context, the re-
cently approved Basel II guidelines advise financial institu-
tions to build comprehensible credit risk models in order
to optimize their capital allocation policy. Computational
methods are being intensively studied and applied to im-
prove the quality of the financial decisions that need to be
made. Until now, computational methods and models are
central to the analysis of economic and financial decisions.

However, more and more researchers have found that the
financial environment is not ruled by mathematical distribu-
tions or statistical models. In such situations, some attempts
have also been made to develop financial engineering mod-
els using intelligent computing approaches. For example, an
artificial neural network (ANN) is a nonparametric estima-
tion technique which does not make any distributional as-
sumptions regarding the underlying asset. Instead, ANN ap-
proach develops a model using sets of unknown parameters
and lets the optimization routine seek the best fitting pa-
rameters to obtain the desired results. The main aim of this
special issue is not to merely illustrate the superior perfor-
mance of a new intelligent computational method, but also
to demonstrate how it can be used effectively in a financial
engineering environment to improve and facilitate financial
decision making. In this sense, the submissions should es-
pecially address how the results of estimated computational
models (e.g., ANN, support vector machines, evolutionary
algorithm, and fuzzy models) can be used to develop intelli-
gent, easy-to-use, and/or comprehensible computational sys-
tems (e.g., decision support systems, agent-based system, and
web-based systems)

This special issue will include (but not be limited to) the
following topics:

• Computational methods: artificial intelligence, neu-
ral networks, evolutionary algorithms, fuzzy inference,
hybrid learning, ensemble learning, cooperative learn-
ing, multiagent learning

• Application fields: asset valuation and prediction, as-
set allocation and portfolio selection, bankruptcy pre-
diction, fraud detection, credit risk management

• Implementation aspects: decision support systems,
expert systems, information systems, intelligent
agents, web service, monitoring, deployment, imple-
mentation

Authors should follow the Journal of Applied Mathemat-
ics and Decision Sciences manuscript format described at
the journal site http://www.hindawi.com/journals/jamds/.
Prospective authors should submit an electronic copy of their
complete manuscript through the journal Manuscript Track-
ing System at http://mts.hindawi.com/, according to the fol-
lowing timetable:

Manuscript Due December 1, 2008

First Round of Reviews March 1, 2009

Publication Date June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, China;
Department of Management Sciences, City University of
Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong;
yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems
Science, Chinese Academy of Sciences, Beijing 100190,
China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City
University of Hong Kong, Tat Chee Avenue, Kowloon,
Hong Kong; mskklai@cityu.edu.hk

Hindawi Publishing Corporation
http://www.hindawi.com

http://www.hindawi.com/journals/jamds/
http://mts.hindawi.com/

	1Call for Papers
	Guest Editors

