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For a given closed and translation invariant subspace Y of the bounded and
uniformly continuous functions, we will give criteria for the existence of solu-
tions u ∈ Y to the equation u′(t) + A(u(t)) + ωu(t) � f (t), t ∈ R, or of solu-
tions u asymptotically close to Y for the inhomogeneous differential equation
u′(t) +A(u(t)) +ωu(t)� f (t), t > 0, u(0)= u0, in general Banach spaces, where
A denotes a possibly nonlinear accretive generator of a semigroup. Particular ex-
amples for the space Y are spaces of functions with various almost periodicity
properties and more general types of asymptotic behavior.

1. Introduction

For the case of linear Cauchy problems, results on the asymptotic behavior of
the solutions can be obtained by applying the representation formula

u(t)=
∫ t

−∞
exp

(−ω(t− r)
)
S(t− r) f (r)dr, (1.1)

where {S(t)}t≥0 denotes the corresponding C0-contraction semigroup. More-
over, a very general approach using a representation formula is given by Prüss [8]
for linear Volterra-integrodifferential equations. In the nonlinear case, such for-
mulas do not exist.

Recalling [6, 9], we learn that, for the nonlinear inhomogeneous Cauchy
problem, almost periodic, asymptotically almost periodic, Eberlein weakly al-
most periodic, or C0 right-hand sides will lead mainly under compactness con-
ditions on the resolvent of A and uniform convexity of the dual space to solu-
tions of the same type.

In this paper, we discuss the problem in the following more general form.
Given a closed and translation-invariant subspace, we investigate under which
conditions on the nonlinearity A a solution of the same type exists. The starting
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points of [6, 9] are the stability inequalities of the underlying differential equa-
tions. This limits the result to special assumptions on continuity properties of
the norm and the range of the solution u and the right-hand side f . In this pa-
per, the solution is constructed by involving an adequate existence theory to the
equation

u′(t) +A
(
u(t)

)
+ωu(t)� f (t), t ∈R, (1.2)

in a real Banach space X , with ω positive and A m-accretive in X .
The following are the main results of this paper. Let Y be a closed and

translation-invariant linear subspace of BUC(R,X) of bounded and uniformly
continuous functions from R into X . Assume that the resolvent Jλ = (I + λA)−1

of A leaves Y invariant, that is, if h∈ Y , then the function {s �→ Jλh(s)} is in Y ,
for all λ > 0. Then, we have the following:

(a) if f ∈ Y , then the integral solution u to (1.2) (see Definition 5.1) is an
element of Y as well,

(b) limt→∞‖v(t)−u(t)‖=0 for the integral solution of the initial value prob-
lem

v′(t) +A
(
v(t)

)
+ωv(t)� f (t), t ≥ 0, v(0)= v0 (1.3)

for all v0 ∈D(A) (Theorem 5.2).

We note in passing that these results heavily depend on the assumption that
ω > 0. For ω = 0, there are various counterexamples to the above inheritance
property, see [5, Example 4.21] or [6, Example 5.2].

The main results will be applied to the particular cases Y = AP(R,X), the
space of almost periodic functions and Y =W(R,X), the space of Eberlein
weakly almost periodic functions, as well as to functions having a limit at in-
finity.

The main technique of the proof consists in showing that, for the case of
ω > 0, the approximate solutions to (1.2), as considered by [2], converge to the
integral solution of (1.2), not just locally but uniformly on all of R (Section 5).
The necessary technical prerequisites are the subject of Sections 2, 3, and 4.

We finally note that, in the case of A linear, the corresponding results on the
asymptotic behaviour of the solutions to (1.2) can be derived even for the case
ω = 0 if, instead, we invoke conditions on the relation of the spectra of A and f
(cf. [8]). Thus, one of the points of our results here is that, in the nonlinear
case—with no “spectrum” ofA available—such spectral conditions may be com-
pensated by adding the positive multiple ωI to A in (1.2). For the existence of
bounded solutions for history-dependent problems, we refer to Kartsatos [4].
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Notation. (1) The bracket [·,·]+ : X × X → R is defined as the right-hand
Gâteaux-derivative of the norm

[x, y]+ := inf
λ>0

‖x+ λy‖−‖x‖
λ

. (1.4)

(2) We recall that A⊂ X ×X is accretive if and only if

[
x− x̂, y− ŷ

]
+ ≥ 0 ∀(x, y),

(
x̂, ŷ

)∈A. (1.5)

An accretive operator is called m-accretive if R(I + λA)= X for all λ > 0.
(3) Throughout this paper, Jλ := (I + λA)−1 denotes the resolvent of A.

2. Approximants

Similar to the proof of existence given by [2], we consider the Yosida approxima-
tion of the linear part of the equation. Looking for solutions on the whole line,
consider the following for λ > 0:

1
λ

(
u(t)− 1

λ

∫∞
0

exp
(
− s

λ

)
u(t− s)ds

)
+A

(
u(t)

)
+ωu(t)� f (t), t ∈R. (2.1)

For the approximations, we have the following proposition.

Proposition 2.1. Let Y be a closed translation-invariant subspace of BUC(R,X).
If, for given h∈ Y , the function {s �→ Jλ(h(s))} is in Y , then (2.1) admits a solution
u∈ Y . Moreover, for given right-hand sides f ,g ∈ BUC(R,X), and corresponding
solutions u and v,

∥∥u(t)− v(t)
∥∥≤ λ

1 + λω

∥∥ f (t)− g(t)
∥∥

+
(

1
1 + λω

)
2
∫∞

0
exp

(
− ωτ

1 + λω

)∥∥ f (t− τ)−g(t− τ)
∥∥dτ, (2.2)

and consequently,
∥∥u(t)−u(t+h)

∥∥
≤ λ

1 + λω

∥∥ f (t)− f (t+h)
∥∥

+
(

1
1 + λω

)2∫∞
0

exp
(
− ωτ

1 + λω

)∥∥ f (t− τ)− f (t+h− τ)
∥∥dτ.

(2.3)

Proof. Given λ > 0, the solution to (2.1) will be found by applying the Banach
fixed-point principle whereby the mapping

F(u)(t) := Jλ/(1+λω)

(
1

1 + λω

(
λ f (t) +

∫∞
0

1
λ

exp
(
− s

λ

)
u(t− s)ds

))
(2.4)

is obtained by rewriting (2.1).
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Comparing the solutions u and v for the right-hand sides f and g, we get

∥∥u(t)− v(t)
∥∥=

∥∥∥∥Jλ/(1+λω)

(
1

1 + λω

(
λ f (t) +

∫∞
0

1
λ

exp
(
− s

λ

)
u(t− s)ds

))

− Jλ/(1+λω)

(
1

1 + λω

(
λg(t) +

∫∞
0

1
λ

exp
(
− s

λ

)
v(t− s)ds

))∥∥∥∥
≤ λ

1 + λω

∥∥ f (t)− g(t)
∥∥

+
1

1 + λω

∥∥∥∥
∫∞

0

1
λ

exp
(
− s

λ

)(
u(t− s)− v(t− s)

)
ds
∥∥∥∥

≤ λ

1 + λω

∥∥ f (t)− g(t)
∥∥

+
1

1 + λω

∫∞
0

1
λ

exp
(
− s

λ

)∥∥u(t− s)− v(t− s)
∥∥ds.

(2.5)

The solution to the integral equation

u(t)= f (t) +α
∫∞

0
exp(−βτ)u(t− τ)dτ, (2.6)

for 0 < α < β, is given by

u(t)= (R f )(t) := f (t) +α
∫∞

0
exp

(− (β−α)τ
)
f (t− τ)dτ. (2.7)

Noting that the resolvent R is positive, the above inequality yields

∥∥u(t)− v(t)
∥∥≤ λ

1 + λω

∥∥ f (t)− g(t)
∥∥

+
(

1
1 + λω

)2∫∞
0

exp
(
− ωs

1 + λω

)∥∥ f (t− s)− g(t− s)
∥∥ds.

(2.8)

�

From Gripenberg [2, Theorem 1], we know that, for a given initial value u0 ∈
D(A), the solutions {uλ} of

1
λ

(
uλ(t)−u0−

∫ t

0

1
λ

exp
(
− r

λ

)(
uλ(t− r)−u0

)
dr
)

+A
(
uλ(t)

)
+ωuλ(t)� f (t), t > 0

(2.9)

will converge uniformly on compact sets to the so-called generalized solution of
(1.3). For the connection between the solution on the whole axis (1.2) and the
Cauchy problem (1.3), we provide two lemmas.
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Lemma 2.2. Let f ,g ∈ BUC(R+,X), and let uλ, vλ be the corresponding solutions
to (2.9) with the initial values u0

λ, v0
λ . Then,

∥∥uλ(t)− vλ(t)
∥∥≤ λ

1 + λω

∥∥ f (t)− g(t)
∥∥

+
1

1 + λω
exp

(
− ωt

1 + λω

)∥∥u0
λ− v0

λ

∥∥
+
(

1
1 + λω

)2∫ t

0
exp

(
− ωr

1 + λω

)∥∥ f (t− r)− g(t− r)
∥∥dr.

(2.10)

Proof. From (2.9), we, after rearranging, obtain

uλ(t)= Jλ/(1+λω)

(
1

1 + λω

(
λ f (t) + exp

(− λ−1t
)
u0
λ

+
∫ t

0

1
λ

exp
(
− s

λ

)
uλ(t− s)ds

))
.

(2.11)

Hence,

∥∥uλ(t)− vλ(t)
∥∥≤ λ

1 + λω

∥∥ f (t)− g(t)
∥∥

+
1

1 + λω
exp

(− λ−1t
)∥∥u0

λ− v0
λ

∥∥
+

1
1 + λω

∫ t

0

1
λ

exp
(
− s

λ

)∥∥uλ(t− s)− vλ(t− s)
∥∥ds.

(2.12)

As in the previous proof, this time, using the generalized Gronwall lemma
[3, page 257], we get

∥∥uλ(t)− vλ(t)
∥∥≤ λ

1 + λω

∥∥ f (t)− g(t)
∥∥+

1
1 + λω

exp
(− λ−1t

)∥∥u0
λ− v0

λ

∥∥
+

1
(1 + λω)2

∫ t

0
exp

(
− ω(t− r)

1 + λω

)∥∥ f (r)− g(r)
∥∥dr

+
1

λ(1 + λω)2

∫ t

0
exp

(
− ω(t− r)

1 + λω

)
exp

(− λ−1r
)
dr
∥∥u0

λ− v0
λ

∥∥
= λ

1 + λω

∥∥ f (t)− g(t)
∥∥

+
1

1 + λω
exp

(
− ωt

1 + λω

)∥∥u0
λ− v0

λ

∥∥

+
1

(1 + λω)2

∫ t

0
exp

(
− ω(t− r)

1 + λω

)∥∥ f (r)− g(r)
∥∥dr.

(2.13)

�
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Lemma 2.3. Let f ∈ BUC(R,X), v0 ∈ D(A), and let uλ be the solution of (2.1),
and vλ be the solution of (2.9) with the initial value v0. Then, for t ≥ 0,

∥∥uλ(t)− vλ(t)
∥∥≤ 1

1 + λω
exp

(
− ωt

1 + λω

)∥∥uλ(0)− v0
∥∥

+
ω

1 + λω

∫ 0

−∞
exp

(− λ−1(t− r)
)∥∥uλ(r)−uλ(0)

∥∥dr
+

1
1 + λω

exp
(
− ωt

1 + λω

)∫ 0

−∞
1
λ

exp
(
λ−1r

)∥∥uλ(r)−uλ(0)
∥∥dr.

(2.14)

Proof. To give the connection between the solutions of (2.1) and (2.9), we rewrite
(2.1) to obtain

1
λ

(
uλ(t)−uλ(0)− 1

λ

∫ t

0
exp

(
− t− r

λ

)(
uλ(r)−uλ(0)

)
dr
)

+A
(
uλ(t)

)
+ωuλ(t)

� f (t) +
1
λ2

∫ 0

−∞
exp

(
− t− r

λ

)(
uλ(r)−uλ(0)

)
dr.

(2.15)

Thus, by Lemma 2.2, we find

∥∥uλ(t)− vλ(t)
∥∥≤ 1

λ(1 + λω)

∫ 0

−∞
exp

(− λ−1(t− r)
)∥∥uλ(r)−uλ(0)

∥∥dr
+

1
1 + λω

exp
(
− ωt

1 + λω

)∥∥uλ(0)− v0
∥∥

+
1

λ2(1 + λω)2

∫ t

0
exp

(
− ω(t− r)

1 + λω

)

×
∫ 0

−∞
exp

(−λ−1(r− s)
)∥∥uλ(s)−uλ(0)

∥∥dsdr
= ω

1 + λω

∫ 0

−∞
exp

(− λ−1(t− r)
)∥∥uλ(r)−uλ(0)

∥∥dr
+

1
1 + λω

exp
(
− ωt

1 + λω

)∥∥uλ(0)− v0
∥∥

+
1

1 + λω
exp

(
− ωt

1 + λω

)∫ 0

−∞
1
λ

exp
(
λ−1r

)∥∥uλ(r)−uλ(0)
∥∥dr.

(2.16)
�

3. Integral solution

In this section, we show that the generalized solution provided by Gripenberg [2]
and the integral solution of (1.3) coincide. For the sake of completeness, we recall
the definition of the integral solution.
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Definition 3.1. Let x ∈ X , let f be a Bochner integrable function on [0,T], and
let ω be a real number. We call u : [0,T]→ X an integral solution of type ω of
the Cauchy problem (1.3) if

(1) u(0)= x;
(2) u is continuous on [0,T];
(3) for every 0 < s < t < T and (x, y)∈ A+ωI , we have

∥∥u(t)− x
∥∥≤ exp

(−ω(t− s)
)∥∥u(s)− x

∥∥
+
∫ t

s
exp

(−ω(t− r)
)[
u(r)− x, f (r)− y

]
+dr.

(3.1)

The next lemma will be the first step for showing that the generalized solution
and the integral solution coincide.

Lemma 3.2. Let f ∈ BUC(R+,X) and let uλ be the solution of (2.9) with the initial
value u0, then

∥∥uλ(t)− x
∥∥≤ λ

1 + λω

[
uλ(t)− x, f (t)− y

]
+

+
1

1 + λω
exp

(
− ωt

1 + λω

)∥∥u0− x
∥∥

+
1

(1 + λω)2

∫ t

0
exp

(
− ωτ

1 + λω

)[
uλ(t− τ)− x, f (t− τ)− y

]
+dτ,

(3.2)

for all (x, y)∈A+ωI .

Proof. For y ∈Ax+ωx, we, after rearranging, obtain

x+
λ

1 + λω
Ax � 1

1 + λω

(
λy + exp

(
− t

λ

)
x+

1
λ

∫ t

0
exp

(
− r

λ

)
xdr

)
. (3.3)

Rearranging (2.9) gives

uλ(t) +
λ

1 + λω
A
(
uλ(t)

)� 1
1 + λω

(
λ f (t) + exp

(
− t

λ

)
u0

+
1
λ

∫ t

0
exp

(
− r

λ

)
uλ(t− r)dr

)
.

(3.4)

As A is accretive, we obtain

∥∥uλ(t)− x
∥∥≤ 1

1 + λω

(
λ
[
uλ(t)− x, f (t)− y

]
+ + exp

(
− t

λ

)∥∥u0− x
∥∥

+
1
λ

∫ t

0
exp

(
− r

λ

)∥∥uλ(t− r)− x
∥∥dr).

(3.5)
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The generalized Gronwall lemma leads to

∥∥uλ(t)− x
∥∥≤ 1

1 + λω

(
λ
[
uλ(t)− x, f (t)− y

]
+ + exp

(
− t

λ

)∥∥u0− x
∥∥

+
1

1+λω

∫ t

0
exp

(
− ωr

1+λω

)[
uλ(t− r)−x, f (t− r)− y

]
+dr

+
1

1+λω
1
λ

∫ t

0
exp

(
− ωr

1 + λω

)
exp

(
− t− r

λ

)
dr
∥∥u0− x

∥∥)

≤ 1
1 + λω

(
λ
[
uλ(t)− x, f (t)− y

]
+

+
1

1 + λω

∫ t

0
exp

(
− ωr

1 + λω

)[
uλ(t− r)−x, f (t−r)−y

]
+dr

+ exp
(
− ωt

1 + λω

)∥∥u0− x
∥∥).

(3.6)
�

Proposition 3.3. Let u be the generalized solution of (1.3), with the right-hand
side f and the initial value u0, let uλ be the solution of (2.9), for h > 0, let fh(t) :=
f (t+h), v0 := u(h), and let vλ be the solution of

1
λ

(
vλ(t)− v0−

∫ t

0

1
λ

exp
(
− r

λ

)(
vλ(t− r)− v0

)
dr
)

+A
(
vλ(t)

)
+ωvλ(t)� fh(t), t > 0,

(3.7)

that is, vλ is the solution of (2.9) with the right-hand side fh, and the initial value v0.
Then,

(1) limλ→0‖vλ(t)−uλ(t+h)‖ = 0 uniformly on compact sets, that is,

lim
λ→0

vλ(t)= u(t+h); (3.8)

(2) moreover,∥∥u(t+h)− x
∥∥≤ exp(−ωt)∥∥u(h)− x

∥∥
+
∫ t+h

h
exp

(−ω(t+h− r)
)[
u(r)− x, f (r)− y

]
+dr

(3.9)

for all (x, y)∈A+ωI , u is consequently the integral solution of (1.3).

Proof. Rearranging (2.9) and (3.7) gives

uλ(t+h) +
λ

1 + λω
A
(
uλ(t+h)

)

� 1
1 + λω

(
λ f (t+h) + exp

(
− t+h

λ

)
u0

+
1
λ

∫ t+h

0
exp

(
− r

λ

)
uλ(t+h− r)dr

)
,

(3.10)
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vλ(t) +
λ

1 + λω
A
(
vλ(t)

)

� 1
1 + λω

(
λ f (t+h) + exp

(
− t

λ

)
u(h) +

1
λ

∫ t

0
exp

(
− r

λ

)
vλ(t− r)dr

)
.

(3.11)

By accretiveness of A, we obtain

∥∥uλ(t+h)− vλ(t)
∥∥≤ 1

1 + λω

([
uλ(t+h)− vλ(t),exp

(
− t+h

λ

)
u0

]
+

+
[
uλ(t+h)− vλ(t),

1
λ

∫ t+h

t
exp

(
− r

λ

)
uλ(t+h− r)dr

− exp
(
− t

λ

)
u(h)

]
+

+
1
λ

∫ t

0
exp

(
− r

λ

)∥∥uλ(t+h− r)− vλ(t− r)
∥∥dr)

≤ 1
1 + λω

(
exp

(
− t+h

λ

)(∥∥u0
∥∥+

∥∥u(h)
∥∥)

+
1
λ

∫ t+h

t
exp

(
− r

λ

)∥∥uλ(t+h− r)−u(h)
∥∥dr

+
1
λ

∫ t

0
exp

(
− r

λ

)∥∥uλ(t+h− r)− vλ(t− r)
∥∥dr).
(3.12)

For given ε > 0, choose, by the local uniform convergence of the uλ and the
continuity of u, 0 < δ < h and 0 < λ0 such that for all 0 < λ < λ0,

sup
0<s<δ

∥∥uλ(h− s)−u(h− s)
∥∥+ sup

0<s<δ

∥∥u(h− s)−u(h)
∥∥ < ε

4
(3.13)

and, by the local boundedness of uλ and u,

exp
(
− δ

λ

)(
sup

0≤s≤h

∥∥uλ(s)
∥∥+

∥∥u0
∥∥+ 2

∥∥u(h)
∥∥) <

ε
4
. (3.14)
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This choice gives

1
λ

∫ t+h

t
exp

(
− s

λ

)∥∥uλ(t+h− s)−u(h)
∥∥ds

= 1
λ

∫ h

0
exp

(
− s+ t

λ

)∥∥uλ(h− s)−u(h)
∥∥ds

= 1
λ

∫ δ

0
exp

(
− s+ t

λ

)∥∥uλ(h− s)−u(h)
∥∥ds

+
1
λ

∫ h

δ
exp

(
− s+ t

λ

)∥∥uλ(h− s)−u(h)
∥∥ds

≤ exp
(
− t

λ

)(
sup

0<s<δ

∥∥uλ(h− s)−u(h)
∥∥

+ exp
(
− δ

λ

)(
sup

0≤s≤h

∥∥uλ(s)
∥∥+

∥∥u(h)
∥∥))

≤ exp
(
− t

λ

)(
ε
4

+ exp
(
− δ

λ

)(
sup

0≤s≤h

∥∥uλ(s)
∥∥+

∥∥u(h)
∥∥)).

(3.15)

Thus,

∥∥uλ(t+h)− vλ(t)
∥∥

≤ 1
1 + λω

(
exp

(
− t

λ

)(
ε
4

+ exp
(
− δ

λ

)

×
(∥∥u0

∥∥+ 2
∥∥u(h)

∥∥+ sup
0≤s≤h

∥∥uλ(s)
∥∥))

× 1
λ

∫ t

0
exp

(
− r

λ

)∥∥uλ(t+h− r)− vλ(t− r)
∥∥dr

)
.

(3.16)

Now, an application of the generalized Gronwall lemma gives

∥∥uλ(t+h)− vλ(t)
∥∥

≤ 1
1 + λω

(
exp

(
− t

λ

)(
ε
2

)
+

1
λ(1 + λω)

∫ t

0
exp

(
− ω(t− r)

1 + λω

)
exp

(
− r

λ

)
dr
)
ε
2

≤ ε.
(3.17)

Part (2) of Proposition 3.3 is a consequence of part (1) and Lemma 5. �

Uniform convergence on R and R+, respectively, of the Yosida approximants
uλ defined by (1.2) and (2.9) will be provided in Theorem 5.2 and Corollary 5.4.
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4. Inequalities and lemmas

Following the proof of Gripenberg by applying positive resolvents in a Banach
lattice, we have to compute (I −Tλ,µ)−1 for

Tλ,µ f (t, s) := µ

λ+µ+ λµω

1
λ

∫∞
0

exp
(
− 1
λ
τ
)
f (t− τ,s)dτ

+
λ

λ+µ+ λµω

1
µ

∫∞
0

exp
(
− 1
µ
τ
)
f (t, s− τ)dτ

(4.1)

on BUC(R×R). For this aim, the modified Bessel functions I0 and I1 are needed

J(x, y) := I0

(
2
√
αγxy

)
=

∞∑
k=0

αkγkxk yk

(k!)2
= 2

π

∫ 1

0

1√
1− t2

cosh
(

2t
√
αγxy

)
dt,

I0(0)= 1, ∂xI0

(
2
√
αγx

)∣∣∣
x=0

= 0,

∂xI0

(
2
√
αγxy

)
=
√
αγy

x
I1

(
2
√
αγxy

)
,

∂x∂yI0

(
2
√
αγxy

)
= αγI0

(
2
√
αγxy

)
.

(4.2)

The equations in Remark 4.1 are obtained by viewing the application of the
reslovent to the function {t �→ 1} as a Laplace transform. Moreover, it will be
shown which parts of the kernel for the resolvent Tλ,µ are neglectable when
λ,µ→ 0.

Remark 4.1. The following identities [10, pages 208–209] will give a first insight
into the behavior of the kernel if (λ,µ)→ 0:

λ

λ+µ+ λµω

∫∞
0

∫∞
0

(
∂1J
)
(x, y)exp

(
− (1 + λω)y + (1 +µω)x

λ+µ+ λµω

)
dydx

= λ(λ+µ+ λµω)
(1 +µω)ω

,

µ

λ+µ+ λµω

∫∞
0

∫∞
0

(
∂2J
)
(x, y)exp

(
− (1 + λω)y + (1 +µω)x

λ+µ+ λµω

)
dydx

= µ(λ+µ+ λµω)
(1 + λω)ω

,

2
(λ+µ+ λµω)2

∫∞
0

∫∞
0
J(x, y)exp

(
− (1 + λω)y + (1 +µω)x

λ+µ+ λµω

)
dydx

= 2
ω(λ+µ+ λµω)

.

(4.3)
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The next lemma provides a representation for the positive resolvent of the
operator Tλ,µ.

Lemma 4.2. For the operator Tλ,µ defined above,

(1) ‖Tλ,µ‖ ≤ (λ+µ)/(λ+µ+ λµω) < 1, consequently,

∥∥∥(I −Tλ,µ
)−1

∥∥∥≤ λ+µ+ λµω

λµω
, (4.4)

and (I −Tλ,µ)−1 is positive;
(2) letting

α= µ

λ+µ+ λµω

1
λ
, γ = λ

λ+µ+ λµω

1
µ
, (4.5)

the resolvent is given by

(
I −Tλ,µ

)−1
u(t, s)

= u(t, s) + γ
∫∞

0
exp

(
− (1 + λω)y
λ+µ+ λµω

)
u(t, s− y)dy

+α
∫∞

0
exp

(
− (1 +µω)x
λ+µ+ λµω

)
u(t− x,s)dx

+ γ
∫∞

0

∫∞
0
∂xI0

(
2
√
αγxy

)
exp

(
− (1 + λω)y + (1 +µω)x

λ+µ+ λµω

)

×u(t− x,s− y)dydx

+α
∫∞

0

∫∞
0
∂yI0

(
2
√
αγxy

)
exp

(
− (1 + λω)y + (1 +µω)x

λ+µ+ λµω

)

×u(t− x,s− y)dydx

+ 2αγ
∫∞

0

∫∞
0
I0

(
2
√
αγxy

)
exp

(
− (1 + λω)y + (1 +µω)x

λ+µ+ λµω

)

×u(t− x,s− y)dydx.

(4.6)

Proof. Defining

β := 1
λ
, δ := 1

µ
, (4.7)
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we have to find a bounded solution of the integral equation

y(t, s)−α
∫ t

−∞
exp

(−β(t− τ)
)
y(τ,s)dτ

− γ
∫ s

−∞
exp

(− δ(s− σ)
)
y(t,σ)dσ = f (t, s).

(4.8)

For f ∈ C2
b(R×R), we define

g(t, s) := exp(−αt− γs)∂t∂s
(

exp(βt+ δs) f (t, s)
)
. (4.9)

The solution b(t, s) to the wave equation

∂1∂2b(t, s)−αγb(t, s)= exp(−αt− γs)∂1∂2
(

exp(βt+ δs) f (t, s)
)=: g(t, s),

(4.10)

such that, for a constant C > 0,

∣∣b(t, s)
∣∣≤ C exp

(
(β−α)t+ (δ− γ)s

)
(4.11)

holds, is given by [10, pages 68–69]

b(t, s)=
∫ t

−∞

∫ s

−∞
I0

(
2
√
αγ(t− x)(s− y)

)
g(x, y)dxdy

=
∫∞

0

∫∞
0
I0

(
2
√
αγxy

)
exp

(−α(t− x)− γ(s− y)
)
∂1∂2

× (exp
(
β(t− x) + δ(s− y)

)
f (t− x,s− y)

)
dxdy.

(4.12)

To enlarge the domain of the solution operator, we will rewrite the represen-
tation formula by partial integration. For this purpose, let

B f (t, s) :=
∫∞

0

∫∞
0
J(x, y)exp

(−α(t− x)− γ(s− y)
)
f (t− x,s− y)dxdy,

Bi f (t, s) :=
∫∞

0

∫∞
0
∂iJ(x, y)exp

(−α(t− x)− γ(s− y)
)
f (t− x,s− y)dxdy.

(4.13)
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The following identities hold for the integral operators B and Bi:

B
(
∂1 f

)
(t, s)

=
∫∞

0

∫∞
0
J(x, y)exp

(−α(t− x)− γ(s− y)
)
(−∂x) f (t− x,s− y)dxdy

=−
∫∞

0
J(x, y)exp

(−α(t− x)− γ(s− y)
)
f (t− x,s− y)dy

∣∣∞
0

+B1 f (t, s) +αB f (t, s)

= exp(−αt)
∫∞

0
exp

(− γ(s− y)
)
f (t, s− y)dy

+B1 f (t, s) +αB f (t, s),

B
(
∂2 f

)
(t, s)

=
∫∞

0

∫∞
0
J(x, y)exp

(−α(t− x)− γ(s− y)
)(− ∂y

)
f (t− x,s− y)dxdy

=−
∫∞

0
J(x, y)exp

(−α(t− x)− γ(s− y)
)
f (t− x,s− y)dx

∣∣∞
0

+B2 f (t, s) + γB f (t, s)

= exp(−γs)
∫∞

0
exp

(−α(t− x)
)
f (t− x,s)dx

+B2 f (t, s) + γB f (t, s),

B1
(
∂2 f

)
(t, s)

=
∫∞

0

∫∞
0

(
∂1J
)
(x, y)exp

(−α(t− x)− γ(s− y)
)

× (− ∂y
)
f (t− x,s− y)dxdy

=−
∫∞

0

(
∂1J
)
(x, y)exp

(−α(t− x)− γ(s− y)
)
f (t− x,s− y)dx

∣∣∞
0

+αγB f (t, s) + γB1 f (t, s)

= +αγB f (t, s) + γB1 f (t, s),

B
(
∂1∂2

(
exp

(
β(·)1 + δ(·)2

)
f
))

(t, s)

= exp
(
(β−α)t

)∫∞
0

exp
(− γ(s− y)

)(− ∂y
)

× (exp
(
δ(s− y)

)
f (t, s− y)

)
dy

+B1
(
∂2
(

exp
(
β(·)1 + δ(·)2

)
f
))

(t, s)

+αB
(
∂2
(

exp
(
β(·)1 + δ(·)2

)
f
))

(t, s)
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= exp
(
(β−α)t

)∫∞
0

exp
(− γ(s− y)

)(− ∂y
)(

exp
(
δ(s− y)

)
f (t, s− y)

)
dy

+αγB
(

exp
(
β(·)1 + δ(·)2

)
f
)
(t, s) + γB1

(
exp

(
β(·)1 + δ(·)2

)
f
)
(t, s)

+αexp
(
(δ− γ)s

)∫∞
0

exp
(
(β−α)(t− x)

)
f (t− x,s)dx

+αB2
(

exp
(
β(·)1 + δ(·)2

)
f
)
(t, s) +αγB

(
exp

(
β(·)1 + δ(·)2

)
f
)
(t, s)

= exp
(
(β−α)t+ (δ− γ)s

)
f (t, s)

+ γexp
(
(β−α)t

)∫∞
0

exp
(
(δ− γ)(s− y)

)
f (t, s− y)dy

+αγB
(

exp
(
β(·)1 + δ(·)2

)
f
)
(t, s) + γB1

(
exp

(
β(·)1 + δ(·)2

)
f
)
(t, s)

+αexp
(
(δ− γ)s

)∫∞
0

exp
(
(β−α)(t− x)

)
f (t− x,s)dx

+αB2
(

exp
(
β(·)1 + δ(·)2

)
f
)
(t, s) +αγB

(
exp

(
β(·)1 + δ(·)2

)
f
)
(t, s)

= exp
(
(β−α)t+ (δ− γ)s

)
f (t, s)

+ γexp
(
(β−α)t

)∫∞
0

exp
(
(δ− γ)(s− y)

)
f (t, s− y)dy

+αexp
(
(δ− γ)s

)∫∞
0

exp
(
(β−α)(t− x)

)
f (t− x,s)dx

+ γB1
(

exp
(
β(·)1 + δ(·)2

)
f
)
(t, s)

+αB2
(

exp
(
β(·)1 + δ(·)2

)
f
)
(t, s)

+ 2αγB
(

exp
(
β(·)1 + δ(·)2

)
f
)
(t, s). (4.14)

The substitution a(t, s)= exp(αt+ γs)b(t, s) will provide a solution to the dif-
ferential equation

∂1∂2a(t, s)−α∂2a(t, s)− γ∂1a(t, s)= ∂1∂2
(

exp(βt+ δs) f (t, s)
)
, (4.15)

and, for a constant C > 0 and i= 1,2,

∣∣(∂ia)(t, s)
∣∣,∣∣a(t, s)

∣∣≤ C exp(βt+ δs). (4.16)

Integration of the differential equation will lead to the integral equation

a(t, s)−α
∫ t

−∞
a(τ,s)dτ − γ

∫ s

−∞
a(t,σ)dσ = exp(βt+ δs) f (t, s). (4.17)

Fitting the equations together, we obtain for

y(t, s) := exp(−βt− δs)a(t, s)= exp
(
(α−β)t+ (γ− δ)s

)
b(t, s) (4.18)
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that

y(t, s)= (I −Tλ,µ
)−1

f (t, s)= f (t, s)

+ γ
∫∞

0
exp

(
(γ− δ)y

)
f (t, s− y)dy

+α
∫∞

0
exp

(
(α− δ)x

)
f (t− x,s)dx

+ γ
∫∞

0

∫∞
0

(
∂1J
)
(x, y)exp

(
(α−β)x+ (γ− δ)y

)
f (t− x,s− y)dydx

+α
∫∞

0

∫∞
0

(
∂2J
)
(x, y)exp

(
(α−β)x+ (γ− δ)y

)
f (t− x,s− y)dydx

+ 2αγ
∫∞

0

∫∞
0
J(x, y)exp

(
(α−β)x+ (γ− δ)y

)
f (t− x,s− y)dydx

(4.19)

and thus the desired resolvent. �

For the next lemma due to Crandall and Evans, we fit the positive ω into their
original proof.

Lemma 4.3 [1]. Let x1,x2, y1, y2, f , g ∈ X , δ,γ,ω > 0, A accretive, and

x1− x2

γ
+Ax1 +ωx1 � f ,

y1− y2

δ
+Ay1 +ωy1 � g. (4.20)

Then,

∥∥x1− y1
∥∥≤ γδ

γ+ δ + γδω

([
x1− y1, f − g

]
+ + γ−1

∥∥x2− y1
∥∥+ δ−1

∥∥x1− y2
∥∥).
(4.21)

Proof. By accretiveness of A,

ω
∥∥x1− y1

∥∥≤ [x1− y1,
(
f +

x2− x1

γ

)
−
(
g +

y2− y1

δ

)]
+

≤ [x1− y1, f − g
]

+ γ−1[x1− y1,x2− y1
]

+ + δ−1[x1− y1, y1− y2
]

+

≤ [x1− y1, f − g
]

+ + γ−1(∥∥x2− y1
∥∥−∥∥x1− y1

∥∥)
+ δ−1(∥∥x1− y2

∥∥−∥∥x1− y1
∥∥).

(4.22)

Rearranging concludes the proof. �
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5. Main results

For the solution on the whole real line, we introduce the following notion.

Definition 5.1. Let f ∈ L∞(R,X) and let ω be a real number. A function u ∈
BUC(R,X) is called an integral solution of type ω of (1.2) if, for all h∈R, u(h)∈
D(A) and

v(t) := u(t+h) (5.1)

is an integral solution of type ω to

v′(t) +Av(t) +ωv(t)� f (t+h), t > 0,

v(0)= u(h).
(5.2)

The next theorem will be the key to all our results.

Theorem 5.2. Let Y be a closed translation-invariant subspace of BUC(R,X), and
let f ∈ Y . If, for given h ∈ Y and λ > 0, the function {s �→ Jλ(h(s))} is in Y , then
(1.2) admits an integral solution u of type ω on R. Furthermore, the solution u
belongs to Y . For every integral solution v of (1.3),∥∥v(t)−u(t)

∥∥≤ exp(−ωt)∥∥u(0)− v0
∥∥, t ≥ 0. (5.3)

For given right-hand sides f ,g ∈ BUC(R,X) and the corresponding integral solu-
tions u,v of (1.2),

∥∥u(t)− v(t)
∥∥≤

∫∞
0

exp(−ωτ)
∥∥ f (t− τ)− g(t− τ)

∥∥dτ (5.4)

for all t ∈R.

Proof. In the first part, we show the uniform convergence on R of the approx-
imants uλ to a function u ∈ Y . In the second part, we prove that u fulfills the
definition of an integral solution on R.

For given λ > 0, we have

1
λ

(
uλ(t)−

∫∞
0

1
λ

exp
(
− s

λ

)
uλ(t− s)ds

)
+ωuλ(t) +A

(
uλ(t)

)� f (t). (5.5)

Thus, for pairs (uλ(t),λ) and (uµ(s),µ), an application of the inequality given by
Lemma 4.3 implies

∥∥uλ(t)−uµ(s)
∥∥≤ 1

λ+µ+ λµω

{
λµ
[
uλ(t)−uµ(s), f (t)− f (s)

]
+

+
µ

λ

∫∞
0

exp
(−τ

λ

)∥∥uλ(t− τ)−uµ(s)
∥∥dτ

+
λ

µ

∫∞
0

exp
(−τ

µ

)∥∥uλ(t)−uµ(s− τ)
∥∥dτ}.

(5.6)
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Using the resolvent computed in Lemma 4.2 and Remark 4.1, it remains to
consider the last part of the kernel. Moreover, to prove uniform convergence,
only the case t = s has to be considered.

We define β := λ + µ + λµω, let δ > 0, and let ε f > 0 be the corresponding
modulus of uniform continuity for f , and apply Lemma 4.2(1) to obtain

2µλ
β3

∫∞
0

∫∞
0
I0

(
2

√
xy

β2

)

× exp

(
− (1 + λω)y + (1 +µω)x

β

)∥∥ f (t− x)− f (t− y)
∥∥dydx

≤ 1
ω

sup
|x−y|<δ

∥∥ f (x)− f (y)
∥∥

+
2µλ
β3

∫
x,y≥0,|x−y|>δ

I0

(
2

√
xy

β2

)

× exp

(
− (1 + λω)y + (1 +µω)x

β

)∥∥ f (t− x)− f (t− y)
∥∥d(y,x)

≤ 1
ω
ε f +

4‖ f ‖∞µλ
β3

∫
x,y≥0,|x−y|>δ

I0

(
2

√
xy

β2

)

× exp

(
− (1 + λω)y + (1 +µω)x

β

)
d(y,x).

(5.7)

Consequently, it remains to discuss the integral on a closed set complementary to
a strip containing the diagonal. Therefore, we will use the integral representation
of the Bessel function (cf. [7, page 159])

I0

(
2

√
xy

β2

)
= 2

π

∫ 1

0

1√
1− t2

cosh

(
2t

√
xy

β2

)
dt. (5.8)

The estimation has to be done on

{
(x, y) : x ≥ δ, 0≤ y ≤ x− δ

}∪ {(x, y) : x ≥ 0, x+ δ ≤ y
}
. (5.9)

As the domain is symmetric with respect to the diagonal whereby the symmetry
will interchange the roles (x, y) and (λ,µ), it remains to consider the integral on
half of the domain. For this aim, we substitute

r = x

β
, s= y

β
. (5.10)
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Fitting these together, we obtain

λµ

β3

∫∞
0

∫∞
x+δ

I0

(
2

√
xy

β2

)
exp

(
− (1 + λω)y + (1 +µω)x

β

)
d(y,x)

= λµ

β

∫∞
0

∫∞
δ/β+r

I0
(
2
√
rs
)

exp
(− (1 + λω)s− (1 +µω)r

)
dsdr

≤ 2λµ
β

∫∞
0

∫∞
δ/β+r

exp
(
2
√
rs
)

exp
(− (1 + λω)s− (1 +µω)r

)
dsdr

≤ 2λµ
β

∫ β−3/2

0

∫∞
δ/β+r

exp
(
− (√s−√r)2

)
exp

(−ω(λr +µs)
)
dsdr

+
2λµ
β

∫∞
β−3/2

∫∞
δ/β+r

exp
(−ω(λr +µs)

)
dsdr.

(5.11)

For 0≤ r ≤ β−3/2 and δ
√
β ≤ 3, the inequality

√
s−√r ≥

√
δ

β
+ r−√r ≥ δ√

β

1√
δ +βr +

√
βr

≥ δ
4
√
β

1√(√
βδ + 1

)
+ 1

≥ δ

3 4
√
β

(5.12)

leads to

exp
(
− (√s−√r)2

)
≤ exp


− δ2

9
√
β


 , (5.13)

which gives

λµ

β

∫ β−3/2

0

∫∞
δ/β+r

exp
(
− (√s−√r)2

)
exp

(−ω(λr +µs)
)
dsdr

≤ λµ

β
exp


− δ2

9
√
β


∫ β−3/2

0

∫∞
δ/β+r

exp
(−ω(λr +µs)

)
dsdr

= λ

βω
exp


− δ2

9
√
β


∫ β−3/2

0
exp

(
− ωµδ

β
−ω(λ+µ)r

)
dr

≤ 1
ω2

λ

λ+µ

1
β

exp


− δ2

9
√
β


exp

(
− ωµδ

β

)
.

(5.14)

Thus, the first integral will converge to zero.
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For the remaining term, we have

λµ

β

∫∞
β−3/2

∫∞
δ/β+r

exp
(
− (√s−√r)2

)
exp

(−ω(λr +µs)
)
dsdr

≤ λµ

β

∫∞
β−3/2

∫∞
δ/β+r

exp
(−ω(λr +µs)

)
dsdr

= 1
ω2

λ

λ+µ
exp

(
− ωµδ

β

)
1
β

exp


−ωλ+µ

β

1√
β


 .

(5.15)

This proves the uniform convergence of the approximants.
Thus, it remains to prove that u fulfills Definition 5.1. Let h∈ R and v(t) :=

u(t +h). As uλ(h)∈D(A) for all λ > 0, limλ→0uλ(h)∈D(A). The translation in-
variance of (2.1) gives that vλ(t) is the solution of (2.1) with the right-hand side
fh := f (t+h).

Let w = limλ→0wλ uniformly on compact sets of R+, where wλ is the solution
to

1
λ

(
wλ(t)−w0−

∫ t

0

1
λ

exp
(
− r

λ

)(
wλ(t− r)−w0

)
dr

)

+A
(
wλ(t)

)
+ωwλ(t)� fh(t), t > 0,

w0 = u(h).

(5.16)

From Lemma 2.3, we obtain

∥∥vλ(t)−wλ(t)
∥∥

≤ 1
1 + λω

exp

(
− ωt

1 + λω

)∥∥vλ(0)−w0
∥∥

+
ω

1 + λω

∫ 0

−∞
exp

(− λ−1(t− r)
)∥∥vλ(r)− vλ(0)

∥∥dr
+

1
1 + λω

exp
(
− ωt

1 + λω

)∫ 0

−∞
1
λ

exp
(
λ−1r

)∥∥vλ(r)− vλ(0)
∥∥dr.

(5.17)

Since w0 = u(h) = v(0) = limλ→0 vλ(h), the first term tends to zero. For the sec-
ond term, the Hölder inequality applies. Thus, it remains to consider the third
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term. Let ε > 0 and δ := δ(ε) the modulus of continuity for v, then

∫ 0

−∞
1
λ

exp
(
λ−1r

)∥∥vλ(r)− vλ(0)
∥∥dr

=
∫ −δ
−∞

1
λ

exp
(
λ−1r

)∥∥vλ(r)− vλ(0)
∥∥dr

+
∫ 0

−δ
1
λ

exp
(
λ−1r

)∥∥vλ(r)− vλ(0)
∥∥dr

≤ 2exp
(
− δ

λ

)∥∥vλ∥∥∞ + sup
0≤r≤δ

∥∥vλ(r)− vλ(0)
∥∥.

(5.18)

Which proves that v =w is the integral solution.
Applying Proposition 2.1 with h=−t, we obtain

∥∥uλ(t)−uλ(0)
∥∥≤ λ

1 + λω

∥∥ f (t)− f (0)
∥∥

+
1

(1 + λω)2

∫∞
0

exp
(
− ωr

1 + λω

)∥∥ f (t− r)− f (−r)
∥∥dr.

(5.19)

Lemma 2.3 leads to

∥∥uλ(t)− vλ(t)
∥∥≤ 1

1 + λω
exp

(
− ωt

1 + λω

)∥∥uλ(0)− v0
∥∥

+
λω

(1 + λω)2

∫ 0

−∞
exp

(− λ−1(t− r)
)∥∥ f (r)− f (0)

∥∥dr
+

λ

(1 + λω)2
exp

(
− ωt

1 + λω

)∫ 0

−∞
1
λ

exp
(
λ−1s

)∥∥ f (s)− f (0)
∥∥ds

+
λω

(1 + λω)3

∫ 0

−∞
1
λ

exp
(− λ−1(t− r)

)

×
∫∞

0
exp

(
− ωr

1 + λω

)∥∥ f (r− s)− f (−r)
∥∥dsdr

+
1

(1 + λω)3
exp

(
− ωt

1 + λω

)

×
∫∞

0
exp

(
− ωr

1 + λω

)∫ 0

−∞
1
λ

exp
(
λ−1s

)∥∥ f (s− r)− f (−r)
∥∥dsdr.
(5.20)
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Except for the last integral, an application of the Hölder inequality applies. Thus,
it remains to consider

∫ 0

−∞
1
λ

exp
(
λ−1s

)∥∥ f (s− r)− f (−r)
∥∥ds

≤ sup
r∈R

sup
0≤s≤δ

∥∥ f (s− r)− f (−r)
∥∥

+
∫ −δ
−∞

1
λ

exp
(
λ−1s

)∥∥ f (s− r)− f (−r)
∥∥ds,

(5.21)

which gives, for fixed t > 0 in the limit λ→ 0,

∥∥u(t)− v(t)
∥∥≤ exp(−ωt)∥∥u(0)− v0

∥∥. (5.22)

From the uniform convergence of the approximants, inequality (5.4) becomes
a consequence of Lebesgue’s dominated convergence theorem and Proposition
2.1. �

Corollary 5.3. Let f ∈ BUC(R,X), then the integral solution of (1.2) is unique.

Proof. Let u be an integral solution of (1.2), and û the solution of (1.2) found
by the approximation through (2.1). As A is assumed to be m-accretive, v(t) :=
u(t+h) is a mild solution of type ω to

v′(t) +A
(
v(t)

)
+ωv(t)� f (t+h), t ∈R

+,

v(0)= u(h),
(5.23)

and v̂(t) := û(t+h) is a mild solution of type ω to

v̂′(t) +A
(
v̂(t)

)
+ωv̂(t)� f (t+h), t ∈R

+,

v̂(0)= û(h).
(5.24)

Consequently,

∥∥u(s)− û(s)
∥∥= ∥∥v(s−h)− v̂(s−h)

∥∥
≤ exp

(−ω(s−h)
)∥∥v(0)− v̂(0)

∥∥
≤ exp

(−ω(s−h)
)∥∥u(h)− û(h)

∥∥
−→ 0,

(5.25)

as h→−∞. �

Corollary 5.4. Let f ∈ BUC(R+,X), u0 ∈ X , and let {uλ}λ>0 be the solution to
(2.9), and u the integral solution to (1.3). Then,

uλ −→ u uniformly on [0,∞). (5.26)
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6. Applications

Applying the norm continuity of the resolvent, we obtain Corollary 6.1 as a first
consequence.

Corollary 6.1. (1) Let the range of the right-hand side f be relatively compact.
Then, the range of the integral solution of the initial value problem (1.3) is relatively
compact.

(2) If f∞ := limt→∞ f (t), or f−∞ := limt→−∞ f (t) exist, the same limits exist for
the solution of (1.2) and are equal to (A+ω)−1( f∞), or (A+ω)−1( f−∞).

We give an extension of a result of Seifert [9], who proves the existence of an
almost periodic integral solution for an almost periodic right-hand side.

Theorem 6.2 [9]. Let f ∈AP(R,X). Then, there exists an almost periodic integral
solution of (1.2).

In [6], Eberlein weakly almost periodic functions, that is, f ∈ BUC(R+,X)
such that

O( f ) := { ft := {r �−→ f (t+ r)
}

: t ∈R
+} (6.1)

is weakly relatively compact in BUC(R+,X), are considered. For these right-hand
sides the, Eberlein weak almost periodicity of integral solutions is extended from
the uniform convexity of the dual to the demicontinuity of A.

Corollary 6.3. Let f be Eberlein weakly almost periodic, and let either A be
demicontinuous and Jλ compact, or f (R+) be relatively compact. Then, the solution
of the initial value problem (1.3) is Eberlein weakly almost periodic.

Proof. For proving the Eberlein weak almost periodicity of {t �→ Jλ( f (t))}, we
apply [5, Theorem 2.3 and Corollary 2.5]; hence, it remains to prove weak-norm
continuity of Jλ on the closure of the range of f , in the case where A is demicon-
tinuous and Jλ is compact. As f (R+) is weakly relatively compact in a separable
subspace, it is enough to prove weak-norm sequential continuity. For a given
{xn}n∈N ⊂ X , xn → x weakly, the compactness of Jλ provides an element u ∈ X ,
and for a subsequence {xnl}l∈N of {xn}n∈N, a subsequence of {xnlk }k∈N such that

uk := Jλ
(
xnlk

)
−→ u, (6.2)

that is, xnlk ∈ uk + λA(uk), and the demicontinuity leads to Jλ(x) = u. Conse-
quently, u is the unique limit, and the proof is complete. �

We note in passing that every f ∈W(R,X), and thus every f ∈ AP(R,X) as
well is uniformly ergodic, that is, there exists x f ∈ X such that

lim
T→∞

sup
h≥0

∥∥∥∥∥ 1
T

∫ T+h

h
f (τ)dτ − x f

∥∥∥∥∥= 0. (6.3)
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Obviously, our main result Theorem 5.2 can as well be applied to the space Y
of all uniformly ergodic functions from R into X . However, for the case of A
nonlinear, it seems hard to find conditions on A or its resolvent Jλ such that Jλ
leaves this space invariant.

The solution provided in Theorem 5.2 may be used to obtain an extension
result. On Y , the derivative is m-accretive, and a condition is given when an
extension of the operator

d

dt
+A(·) (6.4)

on Y is m-accretive. Let

DY (B) := {u∈ Y : ∃ f ∈ Y s.t. u is a integral solution

on R to u′(t) +A
(
u(t)

)� f (t)
}
.

(6.5)

For u∈DY (B), define

Bu := { f ∈ Y : u is a integral solution

on R to u′(t) +A
(
u(t)

)� f (t), ∀t ∈R
}
.

(6.6)

Corollary 6.4. Let Y be a closed translation-invariant linear subspace of
BUC(R,X). Then the operator B ⊂ Y ×Y defined by (6.5) and (6.6) is m-accretive
if, for all f ∈ Y , and λ > 0, the function {t �→ JAλ ( f (t))} is in Y .

Proof. We start with proving R(I + λB)= Y . That is, for given f ∈ Y , we have to
look for a mild solution to

u′(t) +A
(
u(t)

)
+

1
λ
u(t)� 1

λ
f (t). (6.7)

By Theorem 5.2, we find a unique mild solution u∈ Y , consequently, u∈DY (B).
Therefore, it remains to prove the accretiveness of the operator B. For this

aim, we prove that JBλ is a contraction. As the resolvent is given by the solution
found in Theorem 5.2, we have

∥∥∥JBλ ( f )(t)− JBλ (g)(t)
∥∥∥

≤ 1
λ

∫∞
0

exp
(
− s

λ

)∥∥ f (t− s)− g(t− s)
∥∥ds

≤ ‖ f − g‖∞,

(6.8)

which concludes the proof. �
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