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We consider a general class of ordinary differential systems which describes
input-output relations of hysteresis types, for instance, play or stop operators.
The system consists of two first-order nonlinear ODEs and one of them includes
a subdifferential operator depending on the unknowns. Our main objective of
this paper is to give an existence-uniqueness result for the system as well as to
give various numerical simulations of input-output relations which the system
describes as typical cases.

1. Introduction

Consider a nonlinear system of ODEs of the following form:

ay (u(t), w(t))u' (t) +az (u(t), w(t))w' (t)

=g(u(®)w(t), 0<t<T, (1.1)
by (u(t), w(t))u' () + by (u(t), w(t))w'(t) + 0Ly (w(t)) .
S h(u(t),w(t)), 0<t<T, (1.2)
subject to the initial conditions
w0y = o wl0)=wo (13)

where 0 < T < +c0 and a;(+, ), bi(+,-), i = 1,2, g(-,-), h(-, ) are functions on
IR? satisfying some conditions (see Section 2), and for each u € R, 9I,(-) is the
subdifferential of the indicator function I,,(-) of the interval [ fi (1), f*(1)] in R;
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564  Systems with hysteresis effect

namely
%) forw > f*(u) or w< fy(u),
[0,+00) forw = f*(u) > fi(u),
dl,(w) =4 {0} for fi(u) <w< f*(u), (1.4)

(—00,0] forw = fu(u) < f*(u),
(—oo,+00) forw= fu(w) = f*(u),

f«(+) and f*(-) being nondecreasing functions such that fi < f* on R (see
Section 2 for precise conditions).

Equation (1.2) describes a lot of input-output relations ¥ — w which are
physically relevant. For instance, when b; = 0 (resp., —1), b, = 1, and h = 0, the
relation assigning to a function u(t) the solution w(t) of (1.2) is called a play
(resp., stop) operator (cf. [5, 6, 7]). These operators are typical examples of hys-
teresis input-output relations, and are used to describe irreversible phenomena
such as solid-liquid phase transition with supercooling effect and martensite-
austenite phase transition in shape memory alloys (cf. [2, 8]).

In a particular case whena; =1,a,=1,b; =0,b,=1,¢g=0,and h =0, the
system (1.1), (1.2) was studied in detail by Visintin [7] in a very general frame-
work; the idea for uniqueness proof is based on the so-called L'-theory of non-
linear semigroups (cf. [1, 4]), and the same idea was applied to the uniqueness
proof of the Cauchy problem for (1.1), (1.2) with nonzero right-hand sides and
diffusion effects in [3].

Our main objective of this paper is to give an existence-uniqueness result of
the Cauchy problem for system (1.1), (1.2) under some restrictions on coeffi-
cients a;, b;, i = 1,2, general enough. One of the main points in our proof is to
eliminate the term u’ from (1.2) to get

w' () + 0L (w(t)) 2 h(u(t),w(t)), 0<t<T, (1.5)

with a function & satisfying the same property as h, and then consider the cou-
pling of (1.1) and (1.5). Another objective of this paper is to show by some nu-
merical simulations that our nonlinear system covers many of physically relevant
relations u — w arising in the mathematical descriptions of phase transition phe-
nomena. In fact, a suitable choice of the set of coefficients a;, b; and forcing terms
&> h, can create the clockwise or anti-clockwise trend of the orbit (u(t), w(t)) as
t increases.

2. Theoretical results

In this section, we mention the precise assumptions on the functions a;, b;, i =
1,2, g, h, and theoretical results on the existence and uniqueness of a solution of
(1.1), (1.2), and (1.3).
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Let fi and f* be functions on R such that

fx, f* are nondecreasing and Lipschitz continuous on R,

o ;o dfs L dfT . . .
the derivatives f, := Iu’ f* = Ty e Lipschitz continuous on R, 1)
fe<f* onR,
fe=f* on(—o00,—ko|U [ko,+0e0) for a positive number ky,
and put
F = {(uw) €R? fi(u) <w< f*(u)}. (2.2)
For these functions f, f*, we consider the indicator function
0 f =w=< f*(u),
L(w) = { or i) =w = S0 (23)
400 otherwise,

associated with the interval [ fi (u), f* ()] for every u € R, and denote its subd-
ifferential by 0I,,(-) given by (1.4). Next, let a;, b;, i = 1,2, g, h be functions on &
such that

ai, b, i=1,2, are Lipschitz continuous on &,
ar=¢c on%, by=cy on%, (2.4)
a1by —axby = ¢y on F for a positive constant ¢,

g, hare Lipschitz continuous on %. (2.5)

Now we give the definition of a solution of (1.1), (1.2).

Definition 2.1. A pair of (scalar) functions {u, w} is called a solution of system
(1.1), (1.2), if u,w € W'2(0, T) and they satisfy (1.1) and (1.2) a.e. on [0, T];
hence

(u(t),w(t)) €F Vtel[o,T]. (2.6)

Definition 2.2. A pair of functions {u, w} is called a solution of (1.1), (1.2), and
(1.3), if it is a solution of (1.1), (1.2) and the initial conditions #(0) = ugy, w(0) =
wy are satisfied.

The existence of a solution is proved under an additional condition.
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THEOREM 2.3. Suppose that (2.1), (2.2), (2.3), (2.4), and (2.5) hold, and moreover
suppose that there is a positive constant &y such that

ar (u, () +az (u, fic () fi(u) = 8o,

2.
ar(u, f*(w) +ax(u, f¥(u) f* (u) =8 foranyueR. @7)

Then

(1) for any initial data ug, wo satisfying (uo, wo) € F, there exists at least one
solution {u,w} of system (1.1), (1.2), and (1.3);

(2) there is a positive constant Ko, depending only on the quantities in assump-
tions (2.1), (2.2), (2.3), (2.4), (2.5), (2.6), and (2.7), such that

lu(t)| + |w(t)| <D 1+ u|) Vtel[o,T),

2.8
v/ ()] +|w'(t)] < eKO(”T)(l + |u0|3) fora.e. t€[0,T], (28

for any solution {u,w} of (1.1), (1.2), and (1.3) with initial data uo, wy.

Our second result is concerned with the uniqueness of a solution of (1.1),
(1.2),and (1.3).

THEOREM 2.4. Suppose that (2.1), (2.2), (2.3), (2.4), and (2.5) hold as well as
a>cy onF, (2.9)

where ¢ is the same positive constant as in (2.4). Then system (1.1), (1.2), and
(1.3) admits at most one solution. More precisely, there is a positive constant M,
depending only on the quantities in assumptions (2.1), (2.2), (2.3), (2.4), (2.5),
and (2.9), and the length T of the time interval, such that

|ur () —ua () | + [ wi(£) —wa (1) |

(2.10)
< Mool (| gy — gy |+ [ wor —woa|) V€ [0,T],

for any two solutions {u;, w;} of (1.1), (1.2) with initial values ug;, woi, i = 1,2.

Remark 2.5. We see from the proof of Theorem 2.4 given in Section 4 that the
constant My is of the form eX11*T) for a positive constant depending only on the
quantities in assumptions (2.1), (2.2), (2.3), (2.4), (2.5), and (2.9).

Remark 2.6. As is easily understood, for the construction of a local in time solu-
tion of (1.1), (1.2), and (1.3) it is enough to assume that the functions a;, b;, g,
h, fs«, f* arelocally Lipschitz continuous and the inequalities in (2.4) and (2.7)
are satisfied as well in a neighborhood of the initial point (1, wy).

As is easily checked, without loss of generality, we may assume that the func-
tions a;, b;, i = 1,2, g, and h are globally Lipschitz continuous on R? and all the
inequalities in (2.4) hold on R2. In fact, it is enough to extend them outside %,
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for instance, in the following manner:

ai(u,w) = a;(u, f*(w)), bi(u,w) =b;(u, f*(u)), forw> f*(u)
ai(u,w) = a;(u, f«(u)), bi(u,w) =bi(u, fi(u)), forw< fi(u) (2.11)
guw) =g f*(w), h(ww)=h(uf*w), forw>f*(u) '
guw)=g(u fi(w), huw)=nh(u fi(u), forw< fi(u)

In the rest of this paper, we always assume such extended conditions for func-
tions a;, b, i = 1,2, g, and h.
The key for the proofs of our theorems is found in the following lemma.

LemMma 2.7. Under conditions (2.1), (2.2), (2.3), (2.4), and (2.5), system (1.1),
(1.2) is equivalent to the coupling of (1.1) and the following inclusion:

w' () + 0L (w(t)) 2 h(u(t),w(t)) forae. te [0,T), (2.12)

where

ar (u, w)h(u, w) — by (u, w)g(u, w)
ar(u, w)by (u, w) — as(u, w)by (u, w)”

h(u,w) := (2.13)

Proof. In order to eliminate the term «’ from (1.2), compute ((1.2) X a; — (1.1) X
b1)/(a1by — axb;). Then we have
’ ay

w+————0l,(w)>h ae.onl0,T], (2.14)
a1b2 *azbl

where 7 is the same as given by (2.13). Here we note the invariance of oI, (w)
under multiplication by positive numbers, namely JI,(w) = koI, (w) for every
positive k. In fact, this property is immediately seen from (1.4). Therefore, by
(2.4), we have (ai/(a1b, — ab1))0l,(w) = dI,(w). Hence (2.12) is obtained. [

This lemma shows that it is enough to prove Theorems 2.3 and 2.4 to the
system {(1.1),(2.12)} instead of {(1.1),(1.2)}.

3. A priori bounds of solutions

In this section, we give a priori bounds of the form (2.8) for solutions under
the same assumptions as Theorem 2.3. For the sake of simplicity of notation we
denote by Ly, chosen so that Ly > 1, a common Lipschitz constant of functions
ai, bi,i=1,2, g, h on R?; note the extended condition (2.11).

Let {u,w} be any solution of (1.1), (1.2) with given initial data uo, wo; of
course, the relation fi (1) < wo < f*(uy) is satisfied. Then we prove the fol-
lowing lemma.
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LEMMA 3.1. Put Ny := ko + |ug |, where kg is the same number as in (2.1). Then,

Ny 8= No f (= No)) | exp(zL%T>

213 8
0o )| (213 >y
0> 0 <Lo
<u(t) <No+ 212 exp( 5 T)
forallt e [0,T].
Proof. We multiply (1.1) by (u — Np)* to get
ar (u—No) +ayw (u—No)" =g(u—No)". (3.2)

Since w = f*(u) for u = Ny by (2.1), it follows from the above equality that

%(a1+azf*'(u))%|(u—N0)+|2=g(u—N0)+. (3.3)

Also, we note that

g(u—No)" = (g(u, f*(u) — g(No, f*(No))) (1~ Np) "
+g(No, £*(Np)) (= No)* (3.4)
<23 | (u—No)"|* + [ g(No, £* (No)) | (u—Np)".

By (3.3) and (3.4) with assumption (2.7) we have

2

d + +
GNDT = Z Ny N S () (35)

and the second inequality of (3.1) is obtained. The first inequality is similarly
obtained, too. O

CoROLLARY 3.2. There is a positive constant Kél), depending only on the quantities
in (2.1), (2.2), (2.3), (2.4), (2.5), (2.6), and (2.7), such that

lu) | + | w(t)| < D (14 |u|), 0<Vt<T (3.6)

Proof. We note that |w| is bounded by a linear function of |u| and hence so
are |g(No, f*(No))| and |g(—No, f« (—No))I. Therefore, from (3.1) together with
this fact we immediately derive (3.6) for a certain positive constant Kél). O
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LEmMA 3.3. There is a positive constant Kéz), depending only on the quantities in
(2.1), (2.2), (2.3), (2.4), (2.5), (2.6), and (2.7), such that

lu' ()] +|w'(t)] < eKé2)(1+T)(1 + |u0|3) fora.e. t € [0, T]. (3.7)

Proof. We have a; |u'|?> +a;w'u’ = gu’ by multiplying (1.1) by u’. Here, since u,
w satisfy (2.12), we observe that

h a.e.on {t; fu(u) <w< f*(u)},
w =1 fiwu  aeon{tw= fi(u)} (3.8)
¥ (wu  ae on{tw=f*(u)}

so that

lgllu'| = ar|u'|* +aaw'u’

arlu'|? + ayhu' ae.on {f; fi(u) <w< f*(u)},
=4 (a+arfi(w)lu'?> aeon{tw=fi(u}
(ar+arf* (W)l > aeon{tw=f*u)}.

(3.9)

Accordingly, using our assumptions (2.4) and (2.7), we see from the above equal-
ity that

62—2(|a2f1|2+ Igl?) ae.on{ffi(u)<w< f*(u)},
W2<q” (3.10)

lgl? . .
5 a.e.on {t;w= fi(u) or f*(u)}.

Moreover, note that k| < const(1 + |u|?) and hence Iazle < const(1 + |ul?).
Therefore, it follows from (3.10) with (3.6) and (3.8) that an estimate of the
form (2.8) holds for a certain positive constant K(EZ). O

Now, putting Ky := max{Ko(l), Ké2)}, we see the estimate (2.8) for all solutions
{u, w} with initial data ug, wy.
4. Proof of uniqueness

In this section, we prove (2.10) for two solutions {uk, wi}, k = 1,2, of system
(1.1), (1.2), and (1.3) for given initial data uok, wok, assuming always that condi-
tions (2.1), (2.2), (2.3), (2.4), (2.5), and (2.9) are satisfied.
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For simplicity we put

k k
aE Vo= a; (up wi), bf V= by (g wi), g% = g(uk, wi),
hk) = h(uk, Wk), hk) = ﬁ(uk, Wk), k=12, (4.1)
U:=u; — Uy, W= W] — Wy, ’
Uy := Ugr — Uz, Wo 1= Wo1 — Wo2.
With these notations, by taking the difference of two solutions, we have
(1) -/ (1) -/ (1) 2 ’ 1 (2) ’
ay i +ay w = (gV-g?) - (a) - ag ))uz - (ag ) —ay )wh. (4.2)
Now, take any measurable function s; in time so that
1 ifi >0,
sp €sign (@) =1 [-1,1] ifa=0, (4.3)
-1 ifiz<0,

and multiply (4.2) by sz and use the Lipschitz continuity of functions a;, g. Then,
since it's; = (d/dt)|i|, we have

d - -7 ’ 7 - -
agl)EIuHagl)w sa <Lo(1+ |u5| + |wy ) (lal + |w]). (4.4)

We arrange this inequality in the following form:

)

d 4 4 ! ’ 14 - -
@ al} v @ Wse < Lo(U+ L+ Jus [+ [wi| + [wi ) (lal+ ). (4.5)

Next, we show that

W'SQZ%IWIfZLI(IQHIWI) a.e.on [0, T], (4.6)

where L; is a Lipschitz constant of h on R%; note that L, is dominated by a
positive number of the form const(1 + |ug;|® + |ug2|®). We show (4.6) on the
following four subsets of time t € [0, T]: (a) E; := {01 =0, w< 0}, (b) E; :=
{sn<0, w>0}, (c) E3:= {2t >0, w>=0}, (d) E;:= {t;2 <0, w <0}. On the
set E3 U E4, by the definition of the function sign(-), we can choose s so that
sw = sz. Therefore, (4.6) trivially holds. Next, we consider the case (a). In this
case observe that

wiy < f*(u1), wa> fu(u2) onkE. (4.7)
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In fact, if not, then wy = f*(u) = f*(u2) = wy or wy = fi(u2) < fiu (1) < wy,
which contradicts our assumption. By the definition of 91, (w;) we see that

(K0 = wi)(z=w) <0, ful) < Vz < f*(m). (48)

Taking f*(u;) as z in (4.8) yields that 2V < w{ on E; and similarly #® > w} on
E,. Consequently, it follows that

W — ("W —h?) >0 onkE,. (4.9)
Since s = —1 <53 on E;, we derive by multiplying the above inequality by
Si — sy (= 0) that
Vs s> a4 (R 7@
ws,;za\w|+(h —h'¥)(sy —sp) a.e.onE. (4.10)

This is easily arranged to the form (4.6). Just as (a), we see that inequality (4.6)
holds a.e. on E,, too. Thus (4.6) holds a.e. on [0, T].
Moreover, multiply (4.6) by aél) (= co) to get

_, d i} _
agl)w = aél)zlwl - Zagl)Ll (lal + |wl)
d,. o, .-
= a1}
— (Lo+2a5"Ly) (1 + || + |w)])(lal + |w]) a.e. on [0, T).
(4.11)
We then obtain from (4.5) with the above inequality that
%{aﬁ“muag”w}
<2(Lo+as L) (1+ |ui | + [ ] + | wi | + [wh|) (1al + w])
4.12
2(Lo+a"Ly) , , (4.12)
5460 (1+ uy | + |us |

+ [wi| +[wh] )(a(11)|11|+a§1)lwl) a.e.on [0, T].

Here, on account of estimates (2.8) with the fact that agl)Ll is dominated by a
positive number of the form const(1 + |ug; |* + |up2|*), the last inequality implies
that

d _ _
o la 1l +a 1)
t (4.13)
< eKl(”T)(l + |uo |7+ |u02|7>(a(11)|11| +a§1)IWI) a.e.on [0, T],
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where K] is a positive constant depending only on the quantities in assumptions
(2.1), (2.2), (2.3), (2.4), (2.5), and (2.9). Therefore,

al ()| a(t)| +as" () | w(1)|
< exp{er(HT) (1 + uor | + | oz | 7)T} (4.14)

(a(0) |1 | +a5”(0)|wo|) Vte[0,T].

Now, noting that a(ll)(O) and a(zl) (0) are dominated by a number of the form
const(1 + |ug;|), from (4.14) we infer the required inequality (2.10) for a positive
number M, of the form eX1(*7) where K is a positive constant depending only
on the quantities in (2.1), (2.2), (2.3), (2.4), (2.5), and (2.9).

5. Proof of existence

Throughout this section assume that the extended assumptions (2.1), (2.2),
(2.3), (2.4), (2.5), (2.6), and (2.7) hold and (2.12) as well. Let ug, wy be a pair of
initial data such that (ug, wo) € &F. According to the a priori estimates (2.8) for
solutions, we may assume, without loss of generality, that the functions a;, b;,
i=1,2,gand f are bounded on R2.

Consider approximate problems (Py), which consist of (5.1), (5.2), and (5.3),
with parameter A € (0,1¢] for a positive number Ay small enough, to find a pair
of functions {u, w} satisfying

d

ar(u, w)u' +ax(u, w)a](u, w) =g(u,w) a.e.on[0,T], (5.1)
w +0IMw) = h(u,w) a.e.on [0, T], (5.2)

subject to the initial conditions
u(0) = uo, w(0) = wy, (5.3)

where J(u, ) is the projection mapping from R onto [ fi (u), f*(u)], namely
](u,w)=w—(w—f>“(u))++(f*(u)—w)+ VweR (5.4)

and oI} is the Yosida approximation of oI, namely

w=F*w)"  (fw-w)"
A

oI} (w) = T

VweR. (5.5)
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Clearly, J is Lipschitz continuous on R? and nondecreasing in both variables,
and 9I} is Lipschitz continuous on R? and nondecreasing in w. Also, I}(+) is
the subdifferential of the convex function

(v = @)1 1w =)' |

A o
Lw):= 21 21

VweR. (5.6)

LemMaA 5.1. For each parameter A € (0,A0], problem (Py) has a solution {uy, wy}
such that uy and w) are Lipschitz continuous on [0, T]. Moreover, the following
uniform estimates hold: there is a positive constant R, independent of A € (0,¢]
such that

lua ()| + |ma(t)| <Ry Vte[0,T],

, (5.7)
|uj(t)| <R, forae t€[0,T],

)SRl.

Proof. Let J. be the regularization J by means of the usual mollifier p,, 0 < € < &
(& is a positive number close enough to 0), namely

— | J@Ep - G- ddE V) eRL (58)
Consider the further regularized approximate equation of (5.1)
a(u, w)u' +ax(u, w)%]s(u, w) =g(u,w) onl0,T]. (5.9)
This is written in the form
{al(u, w)+ay(u, w) ]g(u, )}u' +a;(u, w)%ls(u, w)w' =g(u,w). (5.10)

Note here that

£*'(u) (resp., 0) ifw >f*(u
(u, w)) =0 (resp., 1) if fi(u) <w< f*(u
fi(u) (resp., 0) ifw< fi(u

0 0
a](u, w) (resp., %J

(5.11)
which shows that

0< aa] (w,w) < f*"(u) (resp., fi(u)) + e (5.12)
in the e-neighborhood of {(u, w); w = f*(u) (resp., w < fi(u))}, where

ze=sup | [ (un,w1) =T (unw2) 5 (|r — w2 | + [y —W2|2)U2 <efs (5.13)

clearly 7, — 0 as € — 0. Therefore, on account of (2.4), (2.7), and (2.11), we see
that the coefficient a; (u, w) + ay(u, w)(9/0u)J:(u, w) of ' in (5.10) is bounded
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from below by a positive constant §; on R?, where § is independent of A € (0, Ao]
and ¢ € (0, &]. Therefore, system (5.9) and (5.2) is written in the form

, gu,w) —ax(u,w)(d/ow)]:(u, w)(fl(u, w) — oI} (w))

>

a1 (u,w) + ax(u, w)(9/0u)J (u, w) (5.14)
w' = h(u,w) — oI} (w)

and the right-hand sides are Lipschitz continuous in (u, w). By the general
existence-uniqueness theorem for ODEs, problem (5.9) and (5.2) with initial
condition (5.3) admits a unique solution, denoted by {1, Wy} .

Next, we give uniform estimates for {u),, wi} in € and A. To do so, multiply
(5.9) by (ure — Ng)*, with Nj := ko + 1+ |ugl. Then, just as (3.1) of Lemma 3.1,
we see that

|u/\£(t)| <K, |]£(u)w(t)>w)w(t)) | <K, 0=<Vts< T, (5-15)

for a positive constant K independent of A and . From these uniform estimates
and (5.14) with (5.11) we derive easily that for each A > 0 small enough, there is
a positive constant K3(A) independent of ¢ such that

<K;(1), ae.onl0,T].
(5.16)

d
] <K Wi <K, | SCmam)

Therefore, it is possible to extract a null sequence {e,} such that u),, and wy,,
converge to some Lipschitz continuous functions u) and w) uniformly on [0, T,
respectively, as n — +co. Moreover, it is easy to see that the pair {u), w)} is a
solution of (Py); note from (5.15) that

lua(t)| <K, 0<Vt<T. (5.17)

Taking account of (5.17) and the expression

p h(u,wa)  ae.on{t; fu(m) <wm < f*(m)},
&](ub wy) =1 f* (wm)uy ae.on{tw>f*(u)} (5.18)
feluw)uy, ae.on{tw< f*(m)},

just as (3.10) in the proof of Lemma 3.3, we obtain by condition (2.7) that
|u)| <Ky ae.on[0,T] (5.19)

for a positive constant K, independent of A > 0.
Finally, multiplying (5.2) by w;, we have

|wi|* +0I), (wh) - w) = hw. (5.20)
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Here, use the following inequality which is derived directly from the expressions
(5.4), (5.5), and (5.6):

d 4 ’
a]ﬁk(m) — oI} (wp) - wy < Lo|uy| |0} (wa)| a.e.on [0, T]. (5.21)

Then, noting this with (5.19), we immediately obtain

|w) |+ %I{}A (wa) < LoKy(|wi| + |R]) ae.on[0,T]. (5.22)

From this inequality it is easy to get a uniform estimate for |w}|2(, ) with re-
spect to A, since h := h(uy, w)) is uniformly bounded and Iﬁo(wo) = 0. Thus uni-
form estimates of the form (5.7) hold for a positive constant R; independent of A.

O

By virtue of Lemma 5.1 there is a null sequence {A,} such that the solu-
tion u, := uy,, w,:=wy, of (P),) constructed above converge to some func-

tions u, w uniformly on [0,T] as n — +oco. Simultaneously, since alﬁj(wn)
(= —w), + h(upn, wy)) is bounded in L2(0, T), we see from (5.5) that

(W= ()" = (fi (1) = )"

_ (5.23)
= Ay} (wy) — 0 inL*(0,T) (as n — +),
so that fy(u) <w < f*(u) on [0,T] and
J(tty, w,) — w  uniformly on [0, T],
, , o (5.24)
u, — u’  weaklyin L°(0,T)
as well as
d , .
—J (up, wy) — w' weakly in L*(0, T). (5.25)

dt

Therefore, the limit {u, w} gives a solution of the original problem. Thus the
existence proof is now complete.

6. Some numerical simulations

Another objective of this paper is to verify by some numerical simulations that
our system (1.1), (1.2) is useful enough as the mathematical description of var-
ious input-output relations u — w of hysteresis type appearing in many nonlin-
ear phenomena, and what is the influence of the choice of the coefficients a;, b;,
i= 1,2, and of functions g, h on the behaviour of the orbit (u(t), w(t)).

In order to catch the main trends of the input-output relation u — w we sim-
ply take constants as the coefficients a;(u, w), bi(u, w), i = 1,2, and mostly linear
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functions as g(u, w), h(u, w). The constants are denoted by the same notations
ai, bi, and they are chosen so as to satisfy that

a; >0, bz >0, albz—azbl > 0. (61)

Also, in our simulation the functions f and f* are fixed as follows:

-

-1 ifu<-1.6,
5u>+16u+11.8 if — 1.6 <u<-—14,
f(u):=42u+2 if —1.4<u<-0.6,
—5u? —4u+02 if —0.6<u<-0.4,
L1 if —0.4<u,
(6.2)
(-1 ifu<0.4,
5u? —4u—0.2 if0.4 <u<0.6,
fe(u):=q2u—-2 if0.6 <u<1.4,
52 +16u—11.8 ifl.4<u<1.6,
L1 if 1.6 < u.

As was mentioned above, the following system is considered in this section:

au' +aw =gluw), 0<t<T, (6.3)

w' + 3L, (w) 3 h(u,w) := a1g(u,w) — bih(u,w)

4
P —— , 0<t<T, (6.4)

u(0) = uo, w(0) = wy, (6.5)

where JI,(+) is the subdifferential of I,(-) associated with functions f* and fi
given by (6.2). Note that (6.4) is equivalent to the original form byu’ + byw’ +
oI, (w) 2 h(u,w).

Now let A and At be positive numbers small enough, and put t* = kAt (k =
1,2,...). Then the difference scheme for our numerical simulation is of the form

a (uk+1 _ uk) a (Wk+1 _ Wk)
+ =
At At 8

k+1 _ .k .
%+alik(wk+l) =h( k}wk)’ k=0,1,2,..., (6.6)

kW),

u® = uy, w® = wy,

where

Iy (W) = - —{*(uk)r C[fe(h) —wk“]+.

3 (6.7)

The graphs of I} and 91} are illustrated in Figures 6.1 and 6.2, respectively.
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Je(w) ()

Figure 6.1

oL (w)

S (u)

Figure 6.2

In the numerical computations which are performed below, we take

1 1

t=1000° 1 10000’ (6.8)

and we examine the following items.

(i) By choice of coefficients a;, b; and functions g, h, system (6.3), (6.4)
creates various behaviours of the solution pair (u(t), w(t)). In particular, it is
possible to control by them the trend of clockwise or anti-clockwise behaviour
of (u(t),w(t)).

(ii) Fixing the coefficients a;, b; and the initial data, we investigate the influ-
ence of the functions g, h on the behaviour of (u(t), w(t)).

(iii) We investigate the asymptotic behaviour of (u(t), w(t)) as t — +o for
various initial data when any other data are fixed.
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Figure

-/

6.3

Figure 6.5

w
u
©
Figure 6.4
w
u

Figure 6.6

Simulation 1. These experiments show that the clockwise and anti-clockwise
behaviour of the orbit (u(t), w(t)) is created by choosing suitable coefficients for
given initial data. It seems that the orbit is periodic in time after a certain time.

Datatable a; a, by by h(uw) gluw) Uy, Wo

Figure 6.3 1 1 -1 1 u+w u—w ug=-0.7,wy=-0.8
Figure 6.4 1 1 -1 1 —-u-w —-u+w uy=-07,wy=-0.38
Figure 6.5 1 1 -1 1 wu+3w u-2w wuy=-18wy=-10
Figure 6.6 1 1 -3 1 —-u—-w —-u+w uy=-1.8w=-1.0
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w w
u u
b
/
o T o
Figure 6.7 Figure 6.8
w w
u u
o ©
Figure 6.9 Figure 6.10
Simulation 2. These experiments show that b; = —1 gives an anti-clockwise

(resp., a clockwise) periodic behaviour of the orbit (u(¢), w(t)) in time. When
the value of b; becomes smaller (resp., larger), the orbit asymptotically converges
anti-clockwise (resp., clockwise) to a stable point along a spiral curve.

Datatable a; a by by h(uw) glu,w) Uy, Wo

-1 u+w u—-w  ug=-0.7,wo=-0.8

Figure 6.7 1
-2 1 u+w u—-w  ug=-0.7,wy=-0.8
-1 1 —u—w —u+w uy=-07,wy=-0.8
1

-0.5

1
Figure 6.8 1
Figure 6.9 1

1

—_ = =

Figure 6.10 —u—w —utw u=-07,w=-08
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w w
u u
e ( e /
Figure 6.11 Figure 6.12
w w

Figure 6.13 Figure 6.14

Simulation 3. These experiments show that for fixed coefficients a;, b;, i = 1,2
and initial data as in the table, we can create various (asymptotically) anti-clock-
wise periodic orbits only by the choice of linear functions g, /. Also we observe
the similar behaviours of orbits in the clockwise case.

Datatable a; a, by by huw) gluw) Uy, Wo

Figure 6.11 1 1 -1 1 u+w u—w uy=-0.7,wy=-0.8
Figure 6.12 1 1 -1 1 u+2w  u—-2w ug=-0.7,wog=-0.8
Figure 6.13 1 1 -1 1 2u+3w —-w uy = —0.7, wp = —0.8
Figure6.14 1 1 -1 1 u+2w u-w uy=-0.7,wy=-0.38
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Figure 6.17
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w
/
/ o)

u

Figure 6.16

w
u
Q
Figure 6.18

Simulation 4. These experiments suggest that the large-time behaviour of orbits
(u(t), w(t)) is one of the following two cases: (1) the orbit converges to a periodic
one as t — +0c0; (2) the orbit diverges to the point (—co,—1) or (1,+c0) as t —

+00.
Datatable a1 a» b1 by huw) gluw) Uy, Wo
Figure 6.15 1 1 -1 1 wu+2w u-w uy=-07,wy=-0.8
Figure 6.16 1 1 -1 1 u+2w u—w uy =0.4, wy =0.3
Figure 6.17 1 1 -1 1 u+2w u-—-w ug = 1.2, wo = 0.9
Figure6.18 1 1 -1 1 u+2w u-w uy=-13,w;=-0.8
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w w
u u
/
/
19 (€]
Figure 6.19 Figure 6.20
w
w
u
5 u
e}
Figure 6.21 Figure 6.22

Simulation 5 (nonlinear case of hand g). These experiments show that for fixed
coefficients a;, b;, i = 1,2 as in the table, we can create various behaviours differ-
ent from the linear case of h and g. Figures 6.19 and 6.20 are periodic orbits of
(u(t), w(t)) in time. Figure 6.21 shows that the orbit diverges to the point (1, +o0)
as t — co. Figure 6.22 shows that the orbit converges to the point (—1.2, -0.4) as
[ — oo,

Datatable a; a2 by b, h(u, w) g(u,w) o, Wo
i ; =-0.7,
Figure6.19 1 1 -1 1 —sin(u+w)+cos(u+w) —u+l.5w U
Wy = -0.8
Figure6.20 1 1 -1 1 sin(uw) —cos(uw) u—1.5w U ==-0.7,
Wy = -0.8
Figure6.21 1 1 -1 1 uw W — W up=0.8,
Wy = -0.1
i =0.2,
Figure6.22 1 1 -1 1 2uw " 3w Uo

Wy = -0.8
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