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We investigate the asymptotic properties of the inhomogeneous nonautonomous evo-
Iution equation (d/dt)u(t) = Au(t) + B(t)u(t) + f(t), t € R, where (A, D(A)) is
a Hille-Yosida operator on a Banach space X, B(t), t € R, is a family of opera-
tors in £(D(A), X) satisfying certain boundedness and measurability conditions and
fe Lll0 (R, X). The solutions of the corresponding homogeneous equations are repre-
sented by an evolution family (Ug(t, s));>s. For various function spaces & we show
conditions on (Upg(?, 5));>s and f which ensure the existence of a unique solution con-
tained in %. In particular, if (Up(t, s));>s 1S p-periodic there exists a unique bounded
solution u subject to certain spectral assumptions on Ug(p,0), f and u. We apply
the results to nonautonomous semilinear retarded differential equations. For certain
p-periodic retarded differential equations we derive a characteristic equation which is
used to determine the spectrum of (Up(t, 5))s>s-

1. Introduction

Consider the inhomogeneous nonautonomous evolution equation

%u(r):A(t)u(t)—}—f(t), teR, (1.1)

where A(t), t € R, are (unbounded, linear) operators on a Banach space X and f €

LllOC (R, X). Assume that the homogeneous equation

%u(r):A(z‘)u(l‘), teR, (1.2)

is well posed in the sense that the solutions of (1.2) define a uniquely determined
evolution family (U(t,s));>, of bounded operators on X. In that case solutions u :
R — X of the integral equation

t
u(t) = U(t,s)u(s)—i—/ U(t,o)f(o)do, t=>s, (1.3)
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can be interpreted as mild solutions of (1.1). It has been shown in [5, 22, 23] that for
each f € Cp(R, X) (respectively, Co(R, X)) equation (1.1) has a unique mild solution
u € Cp(R, X) (respectively, Co(R, X)) if and only if the evolution family (U (¢, s));>s
has an exponential dichotomy (see also [12, 24] when the operators A(?), ¢t € R, are
bounded). For a detailed account of the numerous other results in this direction we refer
to [7, 22].

Now assume that (1.2) is p-periodic, that is, A(t + p) = A(t), t € R. It has been
shown in [6, 19, 27, 30] that under a certain spectral condition (nonresonance condition)
on the monodromy operator U (p,0) and the inhomogeneity f there is a p-periodic
(respectively, almost periodic) mild solution of (1.1) provided that f has the same
property. Moreover, u is unique subject to certain spectral assumptions. If (U (¢, §));>s
has an exponential dichotomy, then the nonresonance condition is always satisfied and
we obtain existence and uniqueness of a p-periodic (respectively, almost periodic) mild
solution of (1.1) for every p-periodic (respectively, almost periodic) inhomogeneity f.
We point out that in [10, 31] related results are discussed for Volterra equations (see
also [32]).

In the present paper, we study the modified equation

%u(r): (A+B®)u@®)+ f(t), teR, (1.4)

where (A, D(A)) is a Hille-Yosida operator on the Banach space X, B(t), t € R, is
a family of operators in £(D(A), X), and f € LIIOC(R, X). We stress that, in general,
Xo = D(A) is a proper subspace of X from which the main difficulties arise. Our
approach is based on the theory of extrapolation spaces associated with the operator A
(see Section 2 and [26]). In particular, it is used in our definition of mild solutions of
(2.3). Moreover, it allows to show that under a certain boundedness and measurability
condition on the family B(#), t € R, there is a (unique) evolution family (Ug(t,s))>s

on X associated with the homogeneous equation

%u(r) =(A+B®)u(r), 1eR, (1.5)

(cf. [9, 33]). The evolution family (Up(¢,s));>s is used to derive another representation
of the mild solutions of (2.3) (see Theorem 2.2). This representation is crucial for
the investigations in Section 3. There we extend the above-mentioned results on the
existence and uniqueness of mild solutions of (1.1) satisfying a particular asymptotic
behavior to mild solutions of (2.3). We point out that in the autonomous case, that
is, B(t) = B, similar results are obtained in [2]. In Section 4, we discuss asymptotic
properties of mild solutions of the semilinear nonautonomous equation

%u(l) = (A+B®)u@)+F(r,u(), 1eR, (1.6)

where the nonlinearity F : R x Xo — X satisfies a standard Lipschitz condition. In
Section 5, the advantage of our approach becomes visible when we study inhomoge-
neous nonautonomous retarded differential equations

%w(r):Cw(r)—FK(t)wt—i—h(t), teR, (1.7)
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on a Banach space Y. A standard procedure (cf. [16, 33, 39]) allows to transform
(5.1) into an equation of the form (2.3) on a different Banach space. Now the results
of Section 3 can be applied to investigate asymptotic properties of mild solutions of
(5.1). For a special periodic retarded differential equation we derive a characteristic
equation which makes it easier to verify the spectral conditions in our results (see
Theorem 5.9). Finally, we point out that in finite dimensions asymptotic properties
of solutions of inhomogeneous retarded differential equations have been studied in
[37] under the assumption that the corresponding homogeneous equation admits an
exponential dichotomy (see also [17, Section 6.6.2], [29]).

2. Mild solutions and extrapolation spaces

We first recall some properties of Hille-Yosida operators and extrapolation spaces. For
more details we refer to [26] and the references therein. Throughout the whole paper
X denotes a Banach space and (A, D(A)) is a Hille-Yosida operator on X, that is, A is
linear and the resolvent set p(A) of A contains a half-line (w, co) such that

M =sup{|(A—w)"R(A, A)"|| : 1 > w; n € N} < 00, 2.1

where R(A, A) = (L — A)~! is the resolvent of A at A. It is well known that the
part Ap of A in Xy = D(A) generates a Co-semigroup (7p(¢));>0 on Xo and that
ITo®| < Me®", t > 0. For A € p(Ag) the resolvent R(A, Ag) is the restriction of
R(A, A) to Xo.

Typical examples of Hille- Yosida operators appearing in partial differential equations
can be found, for example, in [11], see also Section 5. On X we introduce the norm
lxll=1 = IR(Xg, Ag)x]|, where Ag € p(A) is fixed. A different choice of Ay € p(A)
leads to an equivalent norm. The completion X_; of X, with respect to || - ||— is
called the extrapolation space of Xy with respect to A. The extrapolated semigroup
(T—1(2)):>0 consists of the unique continuous extensions 7_1(¢) of the operators Ty (?),
t >0, to X_1. The semigroup (7—;(¢));>0 is strongly continuous and its generator A_
is the unique continuous extension of Ag to £(Xg, X_1). Moreover, X is continuously
embedded in X_; and R(A, A_;) is the unique continuous extension of R(X, A) to
X_1 for 2 € p(A). Finally, Ag and A are the parts of A_; in X¢ and X, respectively. It
follows from [26, Proposition 3.3], that for f € LllOC R, X)and t > s

t
/ T_1(1—0) f(0)do € Xo,

t
(t,s) —> / T_1(t —o0) f(o)do is continuous,
N

We consider the inhomogeneous nonautonomous evolution equation

t
< le ¢~ | f(o)|ldo for a constant M; > 1.
N
2.2)

t
/ T ((t—o)f(o)do

%u(t) =(A+BO)u®)+ f(1), teR, felLl (R X), (2.3)
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where (A, D(A)) is a Hille-Yosida operator on the Banach space X and B(¢) € (X, X),
t € R, is a family of operators such that 1 — B(¢)x is strongly measurable for every
x € Xg and ||B(:)|| < b(-) for a function b € LIIOC(R). For our purposes the notion of a
mild solution of (2.3) is most useful. We point out that our definition of a mild solution
coincides with that given in [8], the F'-solutions in [11], the weak solutions in [13] and
the integral solutions in [39].

Definition 2.1. If f € LIIOC(R, X)and T > s,thenu =u(-, f) € C([s, T], Xo) is called
a mild solution of (2.3) on [s, T'] if

t
u(t) = To(t—s)u(s)—i-/ T_1(t—o)(B(G)u(a)+f(o)) do fortels, T]. (24)

A function u = u(-, f) € C(R, Xy) that satisfies (2.4) for all t > s in R is called a
mild solution on R of (2.3).

Under our assumptions on A and B(¢), ¢t € R, it follows that for f € Llloc(]R, X) and

s € R there is a unique mild solution u = u(-, f,s,x) € C([s, 00), Xo) of

%u(t) = (A+B(t))u(t)+f(t), t>s, u(s)=ux e Xo, (2.5)

(cf. [15] or Theorem 2.2). Mild solutions of the homogeneous equation
d
Ev(t) =(A+B®)v(1), teR, (2.6)

have another representation. For that we need the following notion. A family (U(t, 5))>s
in £(Xg) is called an evolution family on Xo if U(t,t) = 1d, U(t,r)U(r,s) = U(t,s)
fort >r >sand (¢t,s) — U(t, s)x is continuous for # > s and x € Xg. It is known (cf.
[9, Theorem 2.3], [33, Theorem 2.3], where a slightly more special situation is consid-
ered) that there exists a unique evolution family (Up(t,s));>s on Xo that satisfies the
variation-of-parameters formula

Upg(t,s)x = Tp(t —s)x—i—/t T_1(t—o0)B(o)Upg(o,s)xdo, t>s, xe Xg. (2.7
5
Thus t — Up (¢, s)x is the unique mild solution on [s, c0) of the initial value problem
%u(t) =(A+B®)u@), t=s, uls)=xe Xo. (2.8)
Gronwall’s inequality (cf. [1, Corollary I1.6.2]), the estimate in (2.2), and (2.7) imply

t
B, < M2t s , >, .
|Us(,9)|| < Me @M [ib@rdo 2.9)

for the constants M, M| > 1. In particular, if || B(-) || is bounded from above by a function

be Llloc,u(R)’ thatis, ||6||1,10c,u = SUP;eR le—l |b(o)|do < oo, then the evolution family

(Up(t,5));>s is exponentially bounded, that is, |[Up(t,s)|| < Nef=5) for t > s and
constants N > 1, 8 € R. In the following result we give a representation of mild
solutions of (2.3) in terms of the evolution family (Upg(#,s)):>s. A special case has
been discussed in [16, Theorem 3.6].
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THEOREM 2.2. Let f € LI (R, X), s € R, and x € Xo. Then there is a unique mild

loc

solution u € C([s,00), Xo) of (2.5) given by
t

u(t):UB(t,s)x—}—klim Up(t,0)AR(A,A)f(o)do fort>s. (2.10)

Moreover, 1im,\ﬁoofst Up(t,0)AR(M, A) f(o)do € Xg exists uniformly for t > s in
compact sets in R.

Proof. Let A > o and set
wk(t,s)=/tUB(t,o))LR()\,A)f(o)do, = 2.11)
Then (2.7) leads to X
wy(1,8) = ft To(t —0)AR(, A) f(0)do
+/t (/t T_1(t —7)B(t)Up(t.0)AR(, A)f(o)dt) do
=AR(A,A0)/t T 1(t—0)f(o)do
+/t (/r T_(t—1)B(r)Up(t,0)AR(, A)f(o)da) dt

t t
=AR(A,A0)/ T_l(t—a)f(a)do+/ T_1(t—0o)B(o)wy(o,s)do, t=>s.

N

(2.12)

If z2(t,5) = [{ T_1(t —0) f(0)do, t > s, then by (2.2) for A, pw

[witt,9) = w9 = [(AR(, Ao) = 1R (1, Ao))z(t.5)]
! (2.13)

+ M, / 1= p(o) |wa(o,5) —wy(o, )| do.
N
From (2.2) it follows that z is a continuous mapping into Xo. Hence

Jim [(AR(x, Ao) — R (i, Ao))z(t, )| =0 (2.14)

uniformly for ¢ > s in compact intervals. Thus if € > 0 and I € R is a compact interval,
then by (2.13) there is a constant M depending only on the length of / such that

- t
wat, ) —wy () fe—l—M/ b(o)|wi(o,5) —wyu(o,s)| do (2.15)

fort > s in I and X, u > o sufficiently large. An application of Gronwall’s inequality
(see [1, Corollary I1.6.2]) leads to the estimate

lwr(t.8) —wy(t.5)] < ee™ s b@)do (2.16)
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fort > s in I and A, u > w sufficiently large. Hence w(t, s) = limy_, oo w; (¢, 5) exists
uniformly for # > s in compact intervals.

Since A is a Hille-Yosida operator it follows from the definition of w, that

sup{||wy(t,s)]| : A > w+1;t > s in I} < co. Hence, by (2.12) and Lebesgue’s domi-
nated convergence theorem, we have

t '
w(t,s):/ T_1(I—U)B(o)w(a,s)da+/ T_1(t—o)f(o)do, t=s. Q.17
N N
Now consider the function

u(t) = UB(t,s)x—i-Alim / Up(t,0)AR(\,A) f(o)do =Upg(t,s)x+w(t,s), t>s.

(2.18)
By (2.17) and (2.7), we obtain
t t
u(t) = UB(t,s)x+/ Tfl(t—cr)B(G)w(o,s)da+/ T_1(t—o0)f(o)do
t
= To(t—s)x+/ T_1(t—o)B(c7)(UB(a, s)x—i—w(o,s))da
s (2.19)

t
+/ T \(t—0)f(0)do
N ,
= To(t—s)x-I—/ T_1(t—0)(B(o)u(o)+ f(0))do.

Hence u is a mild solution of (2.3).
If u € C([s,0), Xp) is another mild solution of (2.5) we obtain

t
u(t)—ft(t):/ T_1(t—U)B(U)(u(a)—ﬁ(cr))da, t>s, (2.20)

and an application of Gronwall’s inequality yields u = u. (|

Remark 2.3. If in Theorem 2.2 we assume that f € L) (R, Xp), then the function

loc

u € C([s, 0], Xo) is a mild solution of (2.5) if and only if

u(t):UB(t,s)x—i—/ Up(t,o)f(o)do, t=>s. (2.21)

Theorem 2.2 has the following immediate consequence.

COROLLARY 2.4. If f € LllOC R, X), then u € C(R, X¢) is a mild solution of (2.3) if and
only if

t

u(t) =Upg(t,s)u(s) —I—)Llim Up(t,0)AR(A,A)f(oc)do fort>s. (2.22)
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In our next result we improve the convergence of the integrals considered in Theorem
2.2. By BUC, (R, X) we denote the space of bounded, uniformly continuous functions
f from R into X such that f has relatively compact range.

PROPOSITION 2.5. Let ||B(-)|| < b(-) for some b € LIIOC’M(R) and let f € BUC, (R, X).
Then, for fixed s > O, the limit

t
lim Ug(t,0)AR(., A) f(0)do (2.23)

A—>00 Ji_¢

exists uniformly for t in R.
Proof. We claim that the function

t s
1//:]1{—>X0:tv—>z(t,t—s)=/ T_1(t—cr)f(cr)da=/ T_1(0)f(t—o)do
t—s 0

(2.24)
has relatively compact range. In fact, fix € > 0. There exists § =s/n > 0forann € N
and a function g : R — X such that g is constant on each interval [k§, (k+1)5),k € Z,
the range of g is contained in a finite set K C X, and || f — glloo < €. From (2.2) it
follows that the mapping

(r,x) —> /(;r T_1(0o)xdo (2.25)

from R x X into X is continuous. The range of
¢:R—>X0:t|—>/: T_1(o)g(t—o)do (2.26)
is contained in Ko = {nTo(‘L’)fOr T_1(o)xdo : 0 <t,r <s;x € K}, and hence, Ky

is compact. On the other hand, by (2.2), there is a constant N independent of ¢ € R
such that

H/O T 1(0)(f(t—0)— gt —0))do

= N/S | f(t—0)—g(t—o)lldo < Nse.
0

(2.27)
Thus the range of v is contained in Ko+ Nse By,, where By, denotes the closed unit
ball of Xy. In particular, the range of 1 is totally bounded, which proves the claim.
Since ¥ has relatively compact range we obtain

lim (AR(, Ag) — uR(s, Ag))z(t,t—5) =0 uniformly for 7 € R. (2.28)
—00

If wy(t,t —s) = ftt_s Up(t,0)AR(A,A) f(o)do, t € R, then as in the proof of
Theorem 2.2 we derive from (2.28) and (2.13) that

lim [wy(t,t—s)—wu(t,t—s)| =0 (2.29)
A, u— 00

uniformly for ¢ € R. This completes the proof. O
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The following lemma will be used in Section 3.

LEMMA 2.6. Let f € Ll (R, X) and let u € C(R, Xo) be a mild solution of (2.3). If

loc

¢ € CL(R), then ¢u is a mild solution of (1.4) with f replaced by ¢'u+ ¢f.

Proof. If t > s, then the representation of u obtained in Theorem 2.2 leads to

t
/UB(t,U)qﬁ’(a)u(U)do
N ,
=/ Ug(t,0)¢' (0)Upg (0, 5)u(s)do

t o
+ lim / UB(t,a)gb/(a)/ Ug(o, T)AR(L, A) f (1) dtdo
= (1) — ¢ (5))Up(t,5)u(s) (2.30)
t t
+ lim / / &' ()Up(t, T)AR(A, A) f(t)dodt

t
=¢(1) (UB(t,s)u(s)—i—klim / Up(t,T)AR(A, A)f(r)dr)

t
—Up(t,s)p(s)u(s) —)Llim / Up(t,T)AR(X, A)p(7) f(r)dr.
— 0 Js
Another application of Theorem 2.2 establishes the result. O

3. Asymptotic properties of solutions of inhomogeneous equations

In this section, we discuss conditions on the evolution family (Ug(t,s));>s and the
inhomogeneity f € LllOC (R, X) which ensure that (2.3) has a (unique) mild solution u
with a prescribed asymptotic behavior. For the rest of the paper we impose the following
condition on the perturbation (B(?));cRr.

B) ||B(-)|| < b(-) for some b € LI'OC’M(R).
Note that (B) implies exponential boundedness of the evolution family (Ug(t,s))>s
(see (2.9)).

At first we discuss the case where (Up(t,s));>s has an exponential dichotomy. We
recall the following notion (see [12, 18, 21, 23, 24, 25, 36]).

Definition 3.1. An evolution family (U (¢, s));>s on the Banach space Z has an ex-
ponential dichotomy with constants « > 0, L > 1 if there exists a bounded, strongly
continuous family of projections (P(?));cr S £(Z) such that for t > s

i) P(OUt,s) =U(t,s)P(s),

(ii) the map U|(¢,s) : (Id — P(s))Z — (Id— P(t))Z : z+— U(t,s)z is invertible,
(iii) |U(t, s)z|| < Le=*"=9)|z|| for z € P(s)Z,
(iv) U (t,5) " 2]l < Le™ =) |z|| for z € (Id — P(1)) Z.
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In that case the family (I'(z, 5)) ; s er2 S £(Z) given by

PU(t,s)P(s), t=>s,

R [ (7R (O e (R N

3.1)

is called the corresponding Green’s operator function.

Remark 3.2. It is shown in [38, Lemma V1.9.15] that (¢, s) — [U] t, )1 Yd—P@))
is strongly continuous for ¢ > s.

The existence of an exponential dichotomy for the evolution family (U (¢, 5));>s on
the Banach space Z allows to connect asymptotic properties of the solution u(:, f) €
C(R, Z) of the integral equation

t

u(t, f)=U(@,s)u(s, f)+f Ui, t)f(t)dt, t=>s, (3.2)
N

with asymptotic properties of the function f € C(R, Z). We recall the following result

in [22, Theorem 2.1], (see also [23, Section 10.2, Theorem 1], [5, Theorem 4]). By

C»(R, Z) we denote the set of all bounded, continuous, Z-valued functions on R, and

Co(R, Z) is the space of all functions in Cp(R, Z) vanishing at £oo.

THEOREM 3.3. Let (U(t,5));>s be an exponentially bounded evolution family on the
Banach space Z and let ¥ (R, Z) be the space Co(R, Z) or Cp,(R, Z). Then (U(t, 5))i>s
has an exponential dichotomy if and only if for every f € F(R, Z) there exists a unique
solution u(-, f) € F[R, Z) of (3.2). In that case u(-, f) is given by

ult, f) =/OO T(t,0)f(o)do, teR. (3.3)

We will show a corresponding result on asymptotic properties of the mild solutions
of the inhomogeneous equation (2.3). We stress that in our case the evolution family
(Up(t,s)):=s given by equation (2.7) consists of operators on the Banach space X
whereas the inhomogeneity f has values in the larger space X. The following lemma
plays a central role. By L! (R, X) we denote the space of uniformly locally integrable

loc,u

functions from R into X equipped with the norm || f|l1,10c,u = SUp;cr ftt_l I f(o)ldo.

LEMMA 3.4. Assume that (Up(t,s));=s has an exponential dichotomy with constants
a > 0, L > 1, and projections (Pg(t)):>0. For f € LIIOC’M(R,X) and A > w define
u (-, f) € C(R, Xo) by

uy(t, f) =/ I'p(t,0)AR(X,A)f(o)do, teR, (3.4)

—0o0

where (g (t, s))(,,S)ERz is the Green’s operator function corresponding to (Up(t, §))i>s.
Then

@ lurC, HI < Cllfl1.10c.u for a constant C independent of A > w+1 and f.
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(1) (up (-, f)) is uniformly convergent on compact intervals in R as A — oo.
(i) If f € BUC, (R, X), then (u,(-, f)) is uniformly convergent on R as A — o0.

Proof. Let Qp(t) = Id — Pg(t), t € R. Since (Up(t,s)):>s has an exponential di-
chotomy and A is a Hille-Yosida operator we obtain for f € R and A > w+1
o -1
it = [ |[wm0] ™ Qs@nr. 2 )| do
t

t
+/ |Us(t,0)Pg(c)AR(X, A) f (0)||do

t+k+1
<3 Le iR, A f - les@lis@lds @9
1+

k>0

t—k
+Y Le ™™ ARM, Al / | Ps(@)]11f (@)l do
k=0 t—k—1
=< C”f”l,loc,m
where C is a constant independent of f. This proves assertion (i) and the continuity of

u; follow.
In order to show (ii) note that

t
u,\(t,f)zUB(t,s)u,\(s,f)—i-f Ug(t,0)AR(A, A) f(0)do fort>s  (3.6)

(see [22, Proof of Proposition 1.2]). For A, u > w+1,t € R, and r > 0 we have

| Ps () (ualt, £)—uu(t, )|
<||Ug(t,t =r)Pp(t —r)(us(t —r, ) —uu(t—r, f))|

4 (3.7)

t
PB(I)/ Ug(t,0)(AR(A, A) — uR (i, A)) f (o) do

s

t
SLe‘”C1+HPB(t)f Ugp(t,0)(AR(:, A) = uR(w, A)) f(0)do
t—r

where Cy = sup{|| Pg (D) |I[lux(t, f)—uu(t, )l :t € R; A, u > w+1}. By Theorem 2.2,
limy 00 A f; Up(t,0)AR(X, A) f (0)do exists uniformly for ¢ > s in compact intervals
in R. Thus, if in (3.7) we choose r > 0 sufficiently large and then consider A, . — oo
we obtain

lim Py, =, )] =0 (3.8)

uniformly for ¢ in compact intervals in R.
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On the other hand, for A, 4 > w+1,7 € R, and r > 0 we obtain
H[UB‘(I—H’, 0] Qs+ (w47 f)—uut+r, f))H
> Q@) (ualt, ) —uu(t, )|
—H[UB|(t+r,t)]_lQB(t—{—r)fttJrrUB(t—{—r,a)(AR(A,A)—MR(,u,A))f(o)dcr )

(3.9)

Thus
H QB(I)(MA(Z‘, f) _u/L(t’ f)) ”

< Le—“’(@ +

t+r
QB(t+r)/ Up(t+r,0)(AR(., A) = uR (1, A)) f () do )
t
(3.10)

where Cy = sup{l| Qg @) |llu;.(t, f)—uu(t, Il :t €R; A, u > w+1}. As above, if we
choose r > 0 sufficiently large and apply Theorem 2.2 we obtain

im 050 (wate, ) —wute, )] =0 3.11)

uniformly for ¢ in compact intervals of R. Assertion (ii) is now an immediate conse-
quence of (3.8) and (3.11).

Finally, if f € BUC, (R, X), then (3.7) and (3.10) together with Proposition 2.5
imply that

lim || Pp(t)(us(t. ) —un(t, /)] =0,
A, u—>00
' (.12)
im @50, )= uut, D) =0,
uniformly for 7 € R. This proves (iii). =

We come to our first main result. It is an analogue of Theorem 3.3 and connects
asymptotic properties of mild solutions of (2.3) with the existence of an exponential
dichotomy for the evolution family (Up(%, s));>s. In the special case where B(t) = B
is constant a similar result has been shown in [2] by completely different methods.

THEOREM 3.5. The following assertions are equivalent.
(1) The evolution family (Upg(t,s)):>s has an exponential dichotomy.
(i) For every f € LllOC 4R, X) there is a unique mild solution u € Cp(R, Xo)
of (2.3). ’
(iii) Forevery f € Cp(R, X) there is a unique mild solution u € Cp(R, Xg) of (2.3).
(iv) Forevery f € Co(R, X) there is a unique mild solution u € Co(R, Xg) of (2.3).
In that case the function u = u(-, f) is given by

u(t,f):AILII;O/m Tp(t,0)AR0., A) f(0)do, teR, (3.13)

where (I'p(t,5))(; 5)eRr2 is the Green’s operator function corresponding to (Up(t, 5))r>s.
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Proof. (1)=(ii). Assume that (Ug(t,s));>s has an exponential dichotomy and let f €
LIIOC’M(R, X). Lemma 3.4 implies that the limit function u = u(-, f) in (3.13) is defined

and u € C, (R, X). We claim that u(-, f) is a mild solution of (2.3). In fact, if t > s,
then

M(t,f)—UB(t,S)M(S,f)
— lim A(/Oo Tp(t,0)R(., A) f(o)do —fs Ug(t,0)Pg(0)R(x, A) f(0)do

A— 00 — 00 —00

t
+ f Up(t,0)Q5(0)R(x, A) f(0)do
+ / [U|B(o,r>]‘1QB<o)R(A,A)f(o)do)

o0 t
= lim x(/ rB(z,o)R(,\,A)f(a)da—/ Ug(t,0)Pg(a)R(x, A) f(0)do

A—00 —00 —00

t
+f Up(t,0)R(A,A)f(0)do

+ / [U|B(o,r>]‘1QB<o)R<A,A)f(o)do)

t

= lim | Ug(t,0)AR(, A) f(o)do.

A—>00 J¢

(3.14)

By Theorem 2.2, u(-, f) is a mild solution of (2.3). To show that u(-, f) is the only
mild solution of (2.3) belonging to Cp (R, X) we can assume that f = 0 and repeat the
arguments in [22, proof of Proposition 1.2].

Since Cp(R, X) C Llloc’ « (R, X) the implication (ii)=(iii) is obvious.

(ili)=(iv). From the definition of a mild solution it follows immediately that the
operator G assigning to each f € Cp(R, X) the unique mild solution u = u(-, f) €
Cp(R, Xo) of (2.3) is closed. Hence, G is bounded. Now let f € Co(R, X). We
have to show that also u(-, f) € Co(R, X). Let n € N and choose #, > n such that
SUP|¢|=1,—n lf@®| < 1/n.For |t| > t, choose ¢; € CY(R) suchthat 0 < ¢, <1, ¢, (t) =
1,supp¢; € [t—n,t+n], and ||¢;|| <2/n.ByLemma 2.6, G(¢;u+¢; f) = ¢;u. Hence

[l < UGH|pfu+¢n f]l oo <n M IGH(2Nullos+1). (3.15)
In particular, [lu(t)|| = ll¢;(Ou@)|| < n~|G||2llulloo + 1) for |t| > 1,. Hence
u € Co(R, Xp). Since Co(R, X9) € Co(R, X) implication (iv)=-(i) follows from
Theorem 3.3. U

Remark 3.6. The arguments in the proof of (iii)=>(iv) can be used to simplify parts of
the proof of [22, Theorem 2.1] considerably.

Now we assume that the evolution family (Up(%, s));>s is p-periodic, in the sense
that there exists p > 0 such that Ug(t+ p,s + p) = Up(t,s) for t > s. From formula



G. Giihring and F. Ribiger 181

(2.7) we see that (Up(t, s));>s is p-periodic provided that r — B(t) is p-periodic, that
is, B(t) = B(t+ p). We call Ug(p, 0) the monodromy operator of the evolution family
(Up(t,s))i=s. On C(R, X() we define the operator T by

Th(t) = Ug(t,t — p)h(t—p), he CR,Xo),teR. (3.16)

If u e CR, Xp) is a mild solution of (2.3), then the representation formula for u
obtained in Theorem 2.2 leads to

t
(Id=T)u(r) = lim Up(t,0)AR(x, A) f(0)do, teR. (3.17)
—> 00 t*p

We need the notion of the spectrum sp(f) of a Banach space-valued function f : R — Z
(cf. [3, 20, 23, 32, 35]). If f € Cp(R, Z) we set
sp(f) = {E € R: for every € > 0 there exists ¢ € LI(R),

A (3.18)
such that supp(¢p) C [§ —€,E+€] and p* f # 0},

where ¢? denotes the Fourier transform of ¢ and ¢ » f is the convolution of ¢ and f.
Moreover, we set

Xp(f) =sp(f)+Q2n/p)Z S R. (3.19)

We obtain the following extension of [6, Theorem 3.8].

THEOREM 3.7. Assume that the evolution family (Up(t,s));>s is p-periodic. Let f €
Cp(R, X) and suppose that o (Ug(p,0))N{ei"? :n € sp(f)} = 0. Then

(a) There is at most one mild solution u € Cp(R, Xo) of (2.3) such that sp(u) C
=, ().

(b) Let F(R, Xo) be a closed, translation-invariant subspace of BUC(R, X¢) such
that s — e*7"/P Rh(s) belongs to (R, Xo) whenever h € F(R, Xg), R € £(Xy), and
n € Z. Suppose that f € BUC, (R, X) such that AR(A,A) f(-) € F(R, Xo) for L > w.
Then there exists a mild solution u € F(R, Xo) of (2.3), and u has relatively compact
range.

Proof. In order to prove (a) consider
M={h e Cp(R,Xo) :sp(h) € Z, (N} (3.20)

In [6, proof of Theorem 3.8] it is shown that the operator 7" defined in (3.16) maps Jit
into itself and the restriction T of T to Jl is bounded and satisfies 1 € p(7j). The
invertibility of /d — T} and (3.17) show that there is at most one mild solution u of
(2.3) contained in Jd.

For the proof of (b) let

N={heFR, Xo):sp(h) € Z,()}. (3.21)

In [6, proof of Theorem 3.8] it is shown that N'is T-invariant and 1 € p(T}y). For A > w
set f,, = AR(A, A) f(-). Note that sp(f,) C sp(f). By [6, Theorem 3.8] for each A > w
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there is a (unique) mild solution u; € F(R, Xg) of (1.4) with f; instead of f such that
sp(uy) € Xp(fa) € Xp(f), and u;, has relatively compact range. Let

t
wy (1) = / Up(t,0)AR(A,A)f(o)do, teR,A>ow. (3.22)
t—p

Since f € BUC, (R, X) Proposition 2.5 implies that w(¢) = lim;_, oc w, (¢) exists uni-
formly for ¢ in R. From (3.17) we obtain (/d — Tx)uj = wy, A > w. In particular, w;, €
NforA >w,anduy = (Id— T|N)_1 w,, converges uniformly to u = (Ia’—Tw)_]w eN
as A — 00. From Theorem 2.2 and the fact that each u;, is a mild solution of (1.4) with
f replaced by f; it follows that the limit function u is a mild solution of (2.3). More-
over, since each u;, has relatively compact range also u has relatively compact range.
This completes the proof. O

Recall that a function # € BUC(R, Z) is almost periodic if the set of translates
{h(-+1) : t € R} is relatively compact in BUC(R, Z). By AP(R, Z) we denote the
space of almost periodic, Z-valued functions. Theorem 3.7 has the following immediate
consequence (cf. [6, Corollary 3.9]).

COROLLARY 3.8. Assume that (Ug(t,s));>s is p-periodic. Let f € AP(R, X), and sup-

pose that o (Ug(p,0)) N{ei"? : n € sp(f)} = 0. Then there is a unique u € Cp(R, Xg)
such that u is a mild solution of (2.3) and sp(u) € X ,(f). Moreover, u € AP (R, Xo).

Let S' = {1 € C: |A| = 1} be the unit circle.

COROLLARY 3.9. If the evolution family (Up(t, s)):>s is p-periodic, then the following
assertions are equivalent.

i) ' p(Up(p,0)).

(ii) For every f € AP(R, X) there is a unique mild solution u € AP(R, Xg)
of (2.3).

Proof. Note that (i) is equivalent to the existence of an exponential dichotomy for
(Up(t,s))i=s (see [19, Theorem 3.2.2], [18, Theorem 7.2.3]). Hence if (i) is satisfied
and f € AP(R, X), the existence of a mild solution u € AP (R, Xg) of (2.3) follows
from Corollary 3.8, whereas the uniqueness is a consequence of Theorem 3.5. The
converse implication (ii)=>(i) follows immediately from [27, Lemma 4]. O

By P,(R, Z) we denote the space of p-periodic, continuous, Z-valued functions
on R.

COROLLARY 3.10. Ifthe evolution family (Ug(t,s));>s is p-periodic, then the following
assertions are equivalent:

(i) 1€ pWUs(p,0)).

(ii) For every f € Pp(R, X), there exists a unique mild solution u € P,(R, Xo)
of (2.3).
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Proof. Assume that (i) is satisfied. If f € P, (R, X), then sp(f) € (2n/p)Z (see [32,
Example 0.1]). Hence, by Theorem 3.7, there is a unique mild solution u € P, (IR, Xo)
of (2.3). The implication (ii)=>(i) follows immediately from [19, Theorem 3.3.4] (see
also [27, Proposition 1]). O

Remark 3.11. The operator Tp, on P, (R, Xo) satisfies Tp,h(1) = Up(t,t — p)h(1),
h e Py(R, Xp), t € R. Moreover, 1 € p(Ug(p,0)) implies 1 € p(Ug(t + p, 1)) for all
t € R (see [18, Lemma 7.2.2]). From this we obtain (/d — Tpp)_lh(l) ={d-U(t,t—
p))_lh(t), h e P,(R, Xo), t € R. In particular, by (3.17), the mild solution u obtained
in Corollary 3.10(ii) has the representation

13
u(t):/\lim (Id—UB(t,t—p))_I/ Up(t,o)AR(A, A) f(o)do, teR. (3.23)
—00 t—p

4. The semilinear equation

In this section, we apply the results of Section 3 to the semilinear equation

%mz): (A+B@®)u@®)+F(t,u@)), teR, 4.1

where A and B(t), t € R, are as in the previous sections and F : R x Xg — X is jointly
continuous and Lipschitz continuous in the second variable with Lipschitz constant /
independent of ¢ and x. Moreover, we assume that ¢ — F'(¢,0) is a bounded function
on R. Our definition of a mild solution of (4.1) is similar to Definition 2.1.

Definition 4.1. A function u € C(R, Xo) is called a mild solution of (4.1) if

t
ut) = To(t—s)u(s)—i-/ T_1(t —0)(B(o)u(o)+F(a, u(o))) do fort>s. (4.2)

The following conditions will be needed.

(H1) The evolution family (Upg(t,s));>s has an exponential dichotomy with con-
stants o« > 0, L > 1, and projections (Pp(?));cgr, and I < «/2LC, where C = sup;cg
X sup; -, {IA P (1) R(A, A, IA(Id — Pp(t)) R(A, A) ||} < o0.

(H2) The evolution family (Ug(t,s));>s is p-periodic, 1 € p(Up(p,0)), and | <
(CpC)~!, where C = sup, g [|(Id = U (t,t — p))~"'|| and C = sup,g |U (¢, — p)||.

THEOREM 4.2. If condition (HI1) holds, then there exists exactly one mild solution
ue Cp(R, Xo) of (4.1).

Proof. For f € Cp(R, Xg) set

Sf(t):kli)rgo/ Tp(t,0)AR(A, A)F (0, f(0))do, t€R. (4.3)



184  Asymptotic properties of mild solutions of nonautonomous ...

By Lemma 3.4 and the boundedness of F(-,0), S is well defined and maps C,(R, X()
into itself. If f, g € Cp(R, X9), then

I1Sf —Sgllco = sup

lim /OO T'p(t,0)AR(A, A)(F (o, f(0))— F(0,8(0)))do

teR | A=00 ) oo
o0 2CL
< supCL/ o) £ —glloodo = 211 £ —glloe.
teR —00 o

(4.4)

By our assumption (2CL/a)l < 1. Hence S is a contraction, and by Banach’s fixed
point theorem there is a unique function u € Cp(R, X¢) such that

u(t)zkli)rrgo/oo I'(t,0)AR(\, A)F (o,u(0))do, t€R. 4.5)

Theorem 3.5 implies that u is the unique mild solution of (4.1) contained in Cp (R, Xo).
O

In the same way, the following two results can be derived from Theorem 3.5 and
Corollary 3.9, respectively.

ProOPOSITION 4.3. Assume that condition (HI) holds and that lim;_, 1, F(t,y) =0

uniformly for y in compact sets in Xo. Then there exists exactly one mild solution
ue CoR, Xo) of (4.1).

ProrosITION 4.4. Assume that condition (HI) holds and that the evolution family
(Ug(t,$))t=s is p-periodic. If F(-,x) is almost periodic uniformly for x in compact
sets in X, that is, for every compact set K in Xo and every sequence (t;) in R there
is a subsequence (s,) of (t,) such that (F(t+s,,x)) converges uniformly for (t,x) in
R x K, then there is exactly one mild solution u € AP (R, Xo) of (4.1).

The following result is the semilinear version of Corollary 3.10.

THEOREM 4.5. Assume that condition (H2) holds and that F(t + p,x) = F(t,x) for
everyt € R and every x € Xo. Then there exists exactly one mild solutionu € P, (R, Xo)

of (4.1).

Proof. For f € Py(R, Xo) set

Sf(0) = lim (Id—UB(t,t—p))_I/ U(t,0)AR(., A)F (0, f(0))do, 1€R.
—00 t—p

(4.6)
By Proposition 2.5 and Remark 3.11, S is well-defined and maps P, (R, Xo) into itself.
If f,g € P,(R, Xp), then
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lim (Id—Ug(t,t—p))~"

A—00

IS/ — Sglloc = sup
teR

! 4.7
X Up(t,0)AR(, A)(F (0, f(0)) — F(0,8(0)))do
t

-pr
< CpCl| f —gllco-

Since C pCl < 1, the map § is contractive and there is a unique function v € PR, Xq)
such that

1
v(t):klim (Id—UB(t,t—p))_I/ Up(t,0)AR(A, A)F (0,v(0))do, t€R.
—00 t—p

4.8)
By Corollary 3.10, there is a unique mild solution u € P,(RR, Xo) of (1.4) where f is
replaced by the function F (-, v(-)). The representation of u obtained in Remark 3.11
shows that u = v, and hence v is a mild solution of (4.1). On the other hand, it follows
from (3.17) and Remark 3.11 that each p-periodic mild solution of (4.1) satisfies (4.8).
Hence v is the only p-periodic mild solution of (4.1). O

5. Nonautonomous retarded differential equations

In this section, we apply the results obtained for (1.4) to retarded differential equations.
Throughout the whole section Y is a fixed Banach space. We consider the inhomoge-
neous nonautonomous retarded differential equation

%w(t):Cw(t)—FK(t)wt—i—h(t), teR, (5.1)

where (C, D(C)) is a Hille-Yosida operator on Y and & € Ll (R,Y). The part Cp of

loc

C on Yo = D(C) generates a Co-semigroup (So(#));>0 on Yy, and by (S_1(¢));>0 we
denote the corresponding extrapolated Cp-semigroup on the extrapolation space Y_j.
We set E = C([—p,0],Yy), p > 0, and for a function w € C(R, Yy) we define w; € E
by w;(r) = w(t+r), r € [—p,0]. Finally, we assume that K (¢), t € R, is a family of
operators in £(E,Y) such that t — K (t)¢ is strongly measurable for every ¢ € E,
and || K(:)|| < d(-) for a function d € LIIOC’M(R). We define mild solutions of (5.1) as
follows (cf. [4, 15, 16, 28, 34, 40]).

Definition 5.1. If h LIIOC(R, Y), then w = w(-, h) € C(R, Yp) is called a mild solution
of (5.1)if

w(t):So(t—s)w(s)—{—f S_1(t—o)(K(o)wo+h(o))da fort > s. 5.2)

Remark 5.2. If C is the generator of a Cp-semigroup on Y, then the above definition
of a mild solution coincides with that given in [15, 28, 34, 40].
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In [16] (see also [33, 39]) it is shown how (5.1) can be transformed into an equation
of the form of (1.4). For this we set X =Y x E and consider the equation

%u(t) =Au@)+B@)u)+ f(), teR, (5.3)

where A : D(A) — X is the linear operator on X given by

A(O)::<—¢%oy+c¢«n)

¢ ol '
Dun={(gyﬂmXE:¢e0%kpﬁLmy¢mnuxo}

B(t) e ({0} x E, X), t € R, is defined by

0y (K)o
B(t)<¢>—( 0 ) (5.5)

and f(-) = (h(()')). It is shown in [33] that A is a Hille-Yosida operator on X, and the
Co-semigroup (Tp(1));>0 generated by the part Ag of A in Xg = D(A) = {0} x E is
given by

54

¢@t+r) ift4+r <0,
(To)ed)(r) = ) (5.6)
So(t+r)p(0) ift+r > 0.

We recall the following results obtained in [16, Theorem 5.3 and Proposition 5.4].

ProposITION 5.3. (a) If foru € C(R, E) the map t — (u?t)) is a mild solution of (2.3),
then t — u(t)(0) is a mild solution of (5.1) and u(t)(§) = u(t +£&)(0) for t € R and

§ €[—-p,0]
) If w € CR, Yy) is a mild solution of (5.1), then t +— (,81) is a mild solution

of (2.3).

ProPOSITION 5.4. If (Up(t,s)):>s is the evolution family on E determined by the
variation-of-parameters formula

0 0 t 0
(UB(t,s)cj)) =To(t—s) <¢> +/S T_1(t—0)B(o) (UB(G,s)qb> do, (5.7

t>s, ¢ € E, then each mild solution w € C(R, Yp) of (5.1), with h(t) = 0 for all t,
satisfies
w; =Upg(t,s)wg fort>s. (5.8)

Furthermore, if € E and t > s, then

So(t+£ — ) (0)
t+&
(Us(t.5)) (&) = -+/ S_1(t+E—0)K(0)Us(0,5)pdo, 1+E>s, (59)

pE+E—ys), t+& <s.
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Asymptotic properties of the mild solutions of (5.1) are connected with properties of
the evolution family (Ug(t, s));>s on E in the following way.

THEOREM 5.5. Assume that the evolution family (Up(t,s)):>s defined by (5.7) has an
exponential dichotomy. Then
(a) For every h € LIIOC’M(R, Y) (in particular, for every h € Cp(R,Y)) there exists a

unique mild solution w € Cp(R, Yy) of (5.1).
(b) Forevery h € Co(R, Y) there exists a unique mild solution w € Co(R, Yp) of (5.1).

Proof. If his in L} (R,Y) (respectively, Co(R, Y)), then f : R — X defined by

loc,u
f@) = (hg)) is in C,(R, X) (respectively, Co(R, X)). Proposition 5.3 shows that there
is a one-to-one correspondence between the mild solutions w € C(R, Yy) of (5.1)
and the mild solutions u € C(R, X¢) of (2.3), and w is in Cp(R, Yy) (respectively,
Co(R, Yp)) if and only if u is in Cp(R, X¢) (respectively, Co(R, Xp)). An application
of Theorem 3.5 and proves the theorem. (]

In the same way the following results can be derived from Corollary 3.9 and
Corollary 3.10.

THEOREM 5.6. If the evolution family (Up(t,s)):>s defined by (5.7) is p-periodic and
Sl c pUp (p,0)), then for every h € AP(R,Y) there is a unique mild solution w €
APR,Yy) of (5.1).

THEOREM 5.7. If the evolution family (Up(t,s)):>s defined by (5.7) is p-periodic and
1 € p(Ug(p,0)), then for every h € P,(R,Y) there is a unique mild solution w €
P,(R,Yy) of (5.1).

To give more concrete results we impose the following additional condition on the
family K (¢), t € R.
(K) Each operator K (t), t € R, is of the form

K)p=Kn$(—p), @€k, (5.10)

where 1€(t), t € R, is a p-periodic family in £(Yp, Y) such that ¢ — Ie(t)y is strongly
measurable for all y € Y, and ||I€(~)|| <d(-) for some d € LIIOC(R).

If condition (K) holds, then the evolution family (Up(t, s));>s is p-periodic. Now,
we want to determine the spectrum o (U (p, 0)) of the monodromy operator Up (p, 0).
To that purpose we consider for each A € C the evolution family (Vlé (t,8))i=s 0N Yo

determined by the integral equation
t A
Vi, s)y = So(t—s)y—{—/ S_1(t—0)e K (o) Vi(o,s)ydo (5.11)
N

for y € Yy and ¢ > s. The existence of (VIQ (t,5))s>s 1s guaranteed by the same reasons
as for the evolution family (Upg (¢, s))s>s in (2.7). One can easily see that (V}% (t,8))i>s
is p-periodic for every A € C.
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Remark 5.8. If , e Cand y € Yy, then t — VIQ (t,8)y,t > s,is the unique mild solution
of the initial value problem

ﬁw(r):Cw(r)Jre**PI%(z)w(z) t>s
dt =Y (5.12)

w(s) =y €Y.

Next we derive a generalized characteristic equation for (5.1), with h(¢t) = 0 for all ,
under the additional condition (K). In the finite dimensional case, that is, ¥ = C",
C =0, and K (t)y = k(t)y, where k is a p-periodic matrix-valued function, this leads
to the classical characteristic equation as it can be found, for example, in [17, Theorem
8.3.1]. In the autonomous case, that is, K () = K e Z(Yy), a related result is shown in
[14, Chapter VI, Proposition 6.7].

THEOREM 5.9. Assume that condition (K) holds and let A € C. If (Up(t,5));>s is the
evolution family defined in (5.7) and (Vlé (t,8))i>s is the evolution family defined in
(5.11), then

e € p(Up(p,0)) ifand only if & € p(V§(p,0)). (5.13)

Proof. First we show the “only if” part. Let ¢*” € p(Ug(p,0)). Then for every ¢ € E
there exists ¥y € E such that ¢ = e*” v, — Ug(p,0)¥y. By (5.9) we have

¢ (—p) = PPy (—p) — Yy (0), (5.14)

and
p+E

¢(s>=e*l’w¢<s>—50<p+s>w¢<0>—fo S_1(p+&—0)K(0)Yg(o —p)do
= MYy (E)+So(p+E)p(—p) — e So(p+E)Yp(—p)

§ R
—/ S_1(§ —0)K(0)Yy(o)do
! (5.15)

for £ € [—p, 0]. In order to show surjectivity of e*” Id — Vl){‘ (p,0) fix y € Yy and set

#E)=So(p+8)y, §&el—p,0l (5.16)
Then (5.15) leads to
& N
Ve(§) = So(p+§)1/f¢(—p)+/ S_1(E—0)e K (0)Yy(0)do, & e[—p.0].
-p
(5.17)

By Remark 5.8, £ — VI’} (§, —p) ¥y (—p) is the unique mild solution of (AP)—p vy (—p)-

Hence ¥y (§) = VI’} (&, —p)¥y(—p) for & € [—p,0]. Since ¢ (—p) = y we obtain from
(5.14)

y =" Yy(=p) = Vg (0, —p)¥is(—p) (5.18)
which proves the surjectivity of e*” Id — V[’} (p,0).
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In order to prove injectivity assume that Vlé (0, —p)x = e*Px for some x € Yy. Let
Ye(€) = Vlé &,—p)x, & € [—p,0]. Using (5.11), (5.9), and condition (K), a straight-
forward computation shows that Ug (0, —p)i, = e’ r,. Thus ¥, = 0. In particular,

x =Yx(=p)=0.
Now we prove the “if” part. Let ¢ € E. An application of the generalized form of
Banach’s fixed point theorem shows that for every y € Yy there is ¥, € E such that

§ .
Py (€) =¢(§)+So(p+é)y+/ S-1(§ —0)K(0)Yy(o)da (5.19)

14
for & € [—p, 0]. By subtracting (5.11) we obtain

Py (&)= VEE, —p)y

§ s ; (5.20)
=¢(§)+f S_1(§—0)e P K (o) (e Yy (0) — Vi (o, —p)y)do.
P

For y1, y2 € Yy this leads to
Yy (€)= VEE, —p)yi — PPy, (E) + VEE, —p)y2

§ A
= / S_1(E—0)e K (0)(e ¥y, (0) = Vi (0, —p)yi (5.21)
-P

— e‘”’xpyz (0)+VE(o, —p)y2)do.
An application of Gronwall’s inequality yields
Yy, () = Vg (&, —p)yi = &y, (5) = Vg (5, —p)y2  for§ € [—p,0l.  (5.22)
By the assumption and the y-independence of e*” Yy — Vlé (-,—p)y, we can choose
y € Yo such that
0
5= Vg0, —p)y = ¢(0)+ / S-1(=0)e K (0)("¥5(0) = Vi (0. = p)§) do.
-p
(5.23)
Evaluation of (5.20) at £ = 0 then leads to

y =Yy 50). (5.24)

By using (5.9) and (5.19) a direct computation yields Ug(0, —p)yr5 = et Y5 — ¢,
which shows the surjectivity of e*” — Ug(p,0).

To prove injectivity assume that e*”v — Ug(p,0)¥ = 0 for some ¥ € E. Then (5.9)
leads to

§ N
ekplﬂ(é)—So(PJrf)w(O)—/ S_1(6 —0)K(o)Y(0)do =0 for& €[—p,0]
-p

(5.25)
Since & +— VI’} (¢, —p)¥(0) is the unique mild solution of (AP)_) y (), we obtain
ey (§) = VE(E, —p)¥(0),& € [—p,0]. In particular e*”v/(0) = V£ (0, —p)¥(0), and
the invertibility of e*”1d — V};(0, —p) implies ¥ (0) = 0. Hence ¢ = e *’V} (-, —p)
x¥(0)=0. a
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As a concrete example we discuss the retarded differential equation

2
iw(t,x) = %w(l,x) —aw(t,x)—b)wt—1,x)+ f(,x), 0<x<2m, t=>s5,
wt,x)=p(t—s,x), 0<x<2m s—1<t<sys,

(5.26)
with initial value ¢ € C([—1,0] x [0,27]). We assume that a € R, b : R — R is
1-periodic and locally integrable, and f : R x [0,27] — R is continuous. It is known
(see [11]) that on the Banach space Y = C[0, 27] the operator (C, D(C)) given by

82
(CY)(x) = @lﬂ(x)—mﬁ(x), x €[0,2x],

D(C) = {y € C*([0,2x]) : Y(0) = ¥ (27) =0},

(5.27)

is a Hille-Yosida operator. The spectrum of the part Cp of C in Yy = D(C) = {¢ €
C[0,27] : ¥ (0) = Yy(2w) = 0} is the set {—n® —a : n = 1,2,3,...}. For E =
C([—1,0], Yy) and r € R we define

Kt):E— Yy:p— —b(t)p(t—1,-). (5.28)

Clearly, the operator family (K (¢));cr satisfies condition (K) for p = 1. The evolution
family (Up (¢, s));>s on E given by (5.7) is 1-periodic. Hence we can apply Theorem 5.9
to determine the spectrum of Ug(1,0). We set b= fol b(t)dr.

PROPOSITION 5.10. ¢ € o (Ug(1,0)) ifand only if there exists k € Zandne€{1,2,3,...}
such that )
A2mik=—e*b—n’—a. (5.29)
Proof. The evolution family (V}g (t,5))i=s defined in (5.11) is given by
VEts) =e ke 5), 1>, (5.30)

where (So(?))s>0 is the Co-semigroup on Yo = D(C) generated by Cy. From Theorem

5.9 it follows that ¢* € o(Ug(1,0)) if and only if et e (7(e_f0l e_kb(f)dTS(l)). Since
for Cy the spectral mapping theorem holds we have

s(SM)=fe " :n=1,2,3,.}. (5.31)
Thus e* € o(U(1,0)) if and only if
o= el @ dT P —a _ pme b= o comen €41,2,3,...). (5.32)
However, this is the case if and only if

A+27ik = —e *b—n*—a forsomen ¢ {1,2,3,...} and some k € Z. (5.33)
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While it appears difficult to determine the set of all A € C satisfying (5.29), there
are results saying for which values of n? 4+« and b all solutions 1 € C of

nw=—e*b—n*—a (5.34)

have negative real part (cf. [17, page 135]). This is the case if (n>+a, b) belongs to the
shaded region shown in Figure 5.1.

S

—Ln |7

|

(_1]’0)/,’/ ‘ a+n2

FIGURE 5.1.

Since n? > 1, we obtain Reu < 0 for each u satisfying (5.34) for some n €
{1,2,3,...}if (a, l;) is in the shaded region in Figure 5.2.

For example, if a = —1 and b = /3, then all A € C such that ¢* € o (Ug(1,0))
have negative real part. Hence (Up(?, s));>s is exponentially stable and, in particular,
has an exponential dichotomy. Note that in this case the semigroup (So(#));>0 does not
have an exponential dichotomy. The proof our next theorem follows from Theorem 5.5
and Theorem 5.6.

THEOREM 5.11. Assume that (a, b) belongs to the shaded region shown in Figure 5.2.
Then the following holds.
(1) Ifthe function f is bounded, then there exists exactly one bounded mild solution

w of (5.26).

@) If f(-,x) € Co(R) for every x € [0,27], then there exists exactly one mild
solution w of (5.26) such that lim;_, + o, w(t, x) =0.

@ii) If f (-, x) is almost periodic uniformly for x € [0, 2m], then there exists exactly
one mild solution w of (5.26) such that w(-,x) is almost periodic uniformly for x €
[0, 27].

Proposition 5.10 and Theorem 5.7 lead to conditions for the existence of a unique
periodic mild solution.
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b

(=2, ’

FIGURE 5.2.

THEOREM 5.12. If f(-,x) € P,(R) for all x € [0,27] and b+a # n* for all n €
{1,2,3,...}, then there exists exactly one mild solution w of (5.26) such that w(-,x) €
P,(R).
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