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1. Introduction

In this paper, we consider the following problem:
—Au=f(u) inQ, u=0o0n0dQ, (1.1)

where € is the ball Bg = {x € RV; |x| < R},|-| is the Euclidean norm in R", and
f :R* — Ris a locally Lipschitzian continuous function. We are concerned with two
classes of problems, namely,

(1) the positone problem: f(0) > 0;

(i1) the non-positone problem: f(0) < 0.

The study of positone problems was initiated by Keller and Cohen [14], see also
[15], motivated by problems arose from the theory of nonlinear heat generation. In the
past twenty five years there has been considerable interest in this class of semilinear
elliptic boundary value problems and there is a wide literature on this subject. The
reader may consult the survey by Lions [17], and the references therein, where many
interesting questions are studied under a different point of view.

In the positone case we consider the following assumptions:

(f1) there exist 0 < a; < ay < az so that f(a;) = f(az) =0 and F(a3) > F(ay),
where F (1) = fol 7

(f2) | f ()| < a, for all t € R, for some constant o > 0;

(P) f(0) > 0 or, if f(0) =0, then f}(0) > 0, where [/ (0) = lim,_,o+(f(t)/1)
and prove the result below.

THEOREM 1.1. Suppose that f : RT — R satisfies (fI), (f2), and (P). If R is sufficiently
large, problem (1.1) possesses at least three radial positive solutions uy, us, and us3
such that du; /or <0, fori =1,2,3 and 0 <r < R. In particular

0<{u1|oo<a1 <ay < |u2}oo, (1.2)
where || is the sup norm.
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Remark 1.2. Some results like the one above have been obtained by several authors
when the area condition F(a3) > F(a;) has been considered. This condition was first
used by Brown and Budin [3] who proved a result similar to Theorem 1.1 by using a
combination of variational and monotone iteration methods. Later Hess [13] studied
this problem by using variational methods and degree theory. In [9], the above condition
is also used and, by using solely variational methods, the existence of three ordered
positive solutions is shown. These authors studied the case in which f has a third
root, that is, f(a3) = 0. In Theorem 1.1 this assumption is not made and we use only
variational methods. Also, Theorem 1.1 is used as an essential tool in the study of
non-positone case.

The non-positone case has been studied in recent years mainly by Brown, Castro,
Shivaji, Arcoya, and Calahorrano, among others. See, for example, [2, 4, 5]. In this
case the following assumption is posed:

f(0) <0. (1.3)

Motivated by the study of discontinuous nonlinear problems we consider, as in [2],
the following multivalued problem:

—Au(x) € f(u(x)) aeinQ, u=0ond<Q, (1.4)

where f is the multivalued function defined by

0, ift <0
F@o=1£0),01, ifr=0 (1.5)
f@), if t > 0.

By a solution of (1.4), we mean a function u € C1(Q) N C?(Q*(u)) with Q*(u) =
{x € Q; u(x) # 0} and verifying (1.4).

Remark 1.3. Some authors (cf. Chang [6]) have treated discontinuous problems by using
a direct variational approach. In the present case, we consider the multivalued problem
(1.4) as the limit of smooth approximating problems in order to use Theorem 1.1. Thus
two nonnegative solutions ug and vp, in the sense of (1.4), are obtained as limits of
smooth approximating solutions. Then we use the symmetry results in [11] and the
maximum principle to show that u¢ and vg are positive classical solutions of (1.1). For
this a crucial step is to show that the set Q¢ (u) = 2/ Q*(«) has null Lebesgue measure
for u = ug, vo.

The following assumptions on f are considered:
(f3) there exists 6 > 0 such that f(#) <0if0 <t <6 and f(6) =0,
(f4) there is a > 6 satisfying F'(a) > 0.

We are now ready to state the following theorem.

THEOREM 1.4. Suppose that f : Rt — R is a bounded C'-function satisfying (f3), (f4),
and (1.3). Then problem (1.4) has at least two radial positive solutions ug and v if R
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is sufficiently large. In fact Q(ug) = Qo(vg) = ¢, which implies ug and vy are radial
classical positive solutions of (1.1) such that du/dr < 0, for 0 <r < R and u = vo,uy.

Remark 1.5. It is well known in the positone case, see, for example, Cohen and Laetsch
[7], that if f is concave, problem (1.1) has at most one positive solution, but may have
multiple solutions when f is convex. In contrast with this case Theorem 1.4 shows that
in the non-positone problem we may obtain multiplicity of positive solutions with f
concave. The function f(t) =a—e™’, 0 <a < 1 and ¢ > 0, is a simple example of a
bounded concave function satisfying (f3), (f4), and (1.3).

2. Proof of Theorem 1.1

First solution. Let us consider the following function:

f(0), ifr<o0;
fie)=3f@), if0<t=<ay; 2.1)
0, ifa; <t;

and the functional I, : E — R, E := Hj (Q) with the usual norm [u|> = [ |Vul|?,
where the integrals are taken over all €2, unless we state the contrary, defined by

1 u
11(M)=§/|VM|2—/F1(M), Fl(u)=/ fi. (2.2)
0
Note that /7 is the Euler-Lagrange functional associated to the problem
—Au= fi(u) iInQ, u=0o0n0RQ. 2.3)

Since I; is coercive and weakly lower semi-continuous (w.Ls.c.), see [10], it achieves
its minimum at some point #1 € E, which is a weak solution of (2.3) and a bootstrap
argument shows that u; is a classical solution of (2.3). Assumption (P) implies that
liminf,_ o+ (f()/t) > A1 := A1(R), if R is sufficiently large, where A is the first
eigenvalue of (—A, Hol(Q)). In particular, this yields /;(u1) < 0, that is, u; # 0 in Q.
So the maximum principle provides 0 < u1(x) < ay in 2 and then u; satisfies (1.1).
Moreover, it is easy to show that

Ii(u1) > —KnF(ar)R", (2.4)

where K is a positive constant depending only on N. Actually (2.4) is valid for all
u € E satisfying 0 < u(x) < aj a.e. in Q.

Second solution. We now consider the function / : E — R given by

1 u
I(M)=§/IVMIZ—/F(M), F(M)=/O /s (2.5)

where we still denote by f the extension of the former function f and defined by

o) — {f<0>, ifr <0;

f@), if0<t. 26)



104  On multiple positive solutions of positone and non-positone problems
A standard calculation shows that I is coercive and w.l.s.c. Hence [ attains its

minimum at up € E. We may not guarantee, up to now, that u # u,. For this we
consider the following function used by Klaasen and Mitidieri [16]:

@) as, if [x]| < R-1, 27
u X) = .
K (R—|xDa3, if R—1<|x| <R.

Setting Cg = {x € R¥; R—1 < |x| < R} we obtain

1
tn) =5 [ [Vul= [ Fla)= [ Fur)
Cr Br—1 Cr
2
< 5 |Cr| = F(as)| Bror| + Cr|Crl 28)

2
< Sy RN () Kn(R= 1)V + iy RN,
Thus
I(ug) < CNRY'—KnF(a3)RY, 2.9)

where the constants C1, Ky, hy, and Cy do not depend on R. Since F'(az) — F(a;) >0
one has, for R sufficiently large,

Ky(F(a3)—F(a1))RY > CyRN™! (2.10)
which implies
I(ug) < —KnF(a))RN < Iy (ur) = I(u1). (2.11)

Then the minimum u, of I satisfies
I(uz) < I(ug) < I(ui). (2.12)

This shows that 11 # u>. A bootstrap argument guarantees that 1y € C>%($2) and the
maximum principle implies that 0 < u»(x), for all x € Q, and az < |u2|, because
I(uz) < —KnF(a))RN < I(u), for all u so that 0 < u(x) < a; in .

Third solution. Using an argument as in de Figueiredo [10] we may prove that u
is a local minimum of /. A straightforward computation shows that I satisfies the
Palais-Smale condition, see [1]. So by the Ambrosetti and Rabinowitz’s Mountain Pass
Theorem, see [1], we find a third solution (positive) u3 of (1.1) satisfying

I(u3) > —Kn F(a1)R". (2.13)
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Finally we observe, in view of symmetry results in Gidas, Ni, and Nirenberg [11], that
uj, i =1,2,3, are radial and du;/or <0, i =1,2,3, for all 0 < » < R. This proves
Theorem 1.1. (|

Remark 2.1. If f is decreasing on [0, a;], there exists only the solution u; such that
0 < u1(x) < ay. Hence, in this case, u3 also satisfies a» < |u3|~0. In fact the Cosner
and Schmitt’s result, see [8], implies that |u2|xo, 43|00 > a3.

3. Proof of Theorem 1.4

To prove Theorem 1.4 we use mainly Theorem 1.1.
For this, we first consider smooth approximations of f given by

£, if
@) =1 fu®) = f(@), if
LO=L <o

n

3.1)

fn is C!, there is aj, € (0, 1/n) such that Fy,(a) > F,(ay,) and f,(t) — f(¢), for all
t > 0. As usual F,(t) = fé fn- Let us now consider the problem

—Au= f(u) inQ, u=0o0naIR. (3.2)

In order to apply Theorem 1.1 to problem (3.2) we consider the functional /,, on E
defined by

Ly(u) = %/sz—/&(u). (3.3)

Since f, : R — R satisfies the assumptions of Theorem 1.1, problem (3.2) possesses at
least three positive solutions u1,, #2,, and us,. In particular

I (u2q) < CNRY ' —KnFu(@RY < —Kn Fy(ain)RY < I (u3n). (3.4)
Elliptic regularity yields |u2,|,2.p, [U3n]y2p < Cp, forall p > 1. For p > N one has

usn — ug and uz, — vo in CH¥(Q) for some 0 < o < 1, eventually for subsequences.
Since F,,(a) — F(a) and Fy(a1,) — 0 as n — o0, one has

/|w2n|2—>/|wo|2, f|Vu3n|2—>/|Vvo
/F(MZH)H/F(MO), /F(u3n)—>/F(vo).

Taking limits in the inequalities in (3.4) we obtain

2

9

(3.5)

I(uo) < CNRN ™' —KnF(a)RN < I(v). (3.6)
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Noticing that —KnFu(a1n)RN < I,(u3,) and F,(a1,) — 0 one has 0 < I(vp).
Because F(a) > 0 we obtain CyRVY "' —KyF(a)RN <0if R is sufficiently large.
Thus
I(uo) < CNRY ™' —KnF(@)RY <0 < I(v) (3.7)

and so ug # vp.
We show that u( and vg are nontrivial nonnegative solutions of (1.4). First we observe

that f,, may be chosen decreasing in (0, 1/n), for each n = 1,2, .... Thus problem
(3.2) possesses a unique positive solution u1, satisfying 0 < u1,(x) < 1/n, for each
n=1,2,.... Hence |u;|oo, [U3nlco > O, for all n = 1,2,.... In fact, the result in
Cosner-Schmitt [8] implies that |u2,|co, |43n]co = a foralln = 1,2, .... Consequently,

|10]cos |V0loo > a and ug and vg are not identically zero.

Ift, >0and t, — t > 0, then f,(t,) — f(¢). From now on, we set u = ug or
u = vg. Thus if x € Q*(u) one has lim,_, oo f;, (U, (x)) = f(u(x)), where u,, = uy, or
un = u3y. Taking ¢ € CG°(2*(u)) and using the fact that

—Autp(x) = fu(un(x)) in Q, u, =0o0n 0K, (3.8)

we obtain

/ Vu, -Vo = / fn(un)(/’ - Vu-Vo = / fwe. (3.9)
Q* Q*(u) Q*(u) Q% (u)

Consequently, u € C?(2*(u)) and —Au = f(u) in Q*(u). In Qo(u) we have, as a
consequence of a well-known result by Stampacchia (cf. [15, Lemma A.4]), —Au(x) =
0 €[f(0),0] a.e., and so ug and vp are both nontrivial nonnegative solutions of (1.4).
Let us now prove that if u(xg) = 0 for some |xo| =r < R, it follows that u(x) = 0 for
all » < |x| < R. Actually, if u(x) > 0 for some r < |x| < R, then (du/dr)(y) > 0, for
some r < |y| < R, which is a contradiction in view of (du/dr)(x) <0if 0 < |x| < R.
Remember that du, /dr < 0 for 0 < r < R which implies that du/dr < 0 because
up — u in CH¥(Q). So Qo(u) is a set like A, = Bgr— Bg_,, for some p > 0. Suppose
that p > 0. In view of f(u) € C'(Bg—,) one has

—A(a—u> = f’(u)a—u in Bp_. (3.10)
ar r

Since f is C! there is w > 0 satisfying f/(t) +u > 0, for all ¢ € [0, M], with M =
max{|uo|oo, |V0]co}. Consequently,

A ou ou\ ., ou B 311
(=g ) en(5) = rwen(-5) nmen

Therefore, in view of du/dr = 0 in A, we have by applying the generalized Green’s

formula on Bg_, that
ou ou .
Al ——)+u[-—)=0 nQ (3.12)
or or

in the weak sense and as u > 0 in Bg_, we have du/0r # 0 and so, by using the
generalized maximum principle, (cf. [12, Theorem 8.19]), du/dr < 0 in 2, which is a
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contradiction with assumption p > 0. Hence, p = 0. This implies that Qg (u) = ¢, then
u>0in Q2 and du/dr < 0if 0 < r < R. It follows that u¢ and v are classical solutions
of (1.1). This concludes the proof of Theorem 1.4. O
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