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We consider a class of dynamic discrete-time two-player zero-sum games. We show
that for a generic cost function and each initial state, there exists a pair of overtaking
equilibria strategies over an infinite horizon. We also establish that for a generic cost
function f, there exists a pair of stationary equilibria strategies (x 7, y¢) such that each
pair of “approximate” equilibria strategies spends almost all of its time in a small
neighborhood of (x ¢, y¢).

1. Introduction

The study of variational and optimal control problems defined on infinite intervals has
recently been a rapidly growing area of research [4, 6, 9, 10, 15, 16, 17]. These problems
arise in engineering [1, 19], in models of economic dynamics [11, 13, 18], in continuum
mechanics [5, 10, 12], and in game theory [3, 4, 7].

In this paper, we study the existence and the structure of “approximate” equilibria
for dynamic two-player zero-sum games.

Denote by || - || the Euclidean norm in R™. Let X C R™! and ¥ C R™2 be nonempty
convex compact sets. Denote by 9t the set of all continuous functions f : X x X x
Y x Y — R! such that:

e for each (y1, y2) € Y x Y the function (x1,x2) = f(x1,x2, V1, y2), (x1,x2) €
X x X is convex;

e for each (x1,x2) € X x X the function (y, y2) — f(x1,x2, y1, ), (y1,2) €
Y x Y is concave.

For the set 9t we define a metric p : M x M — R! by

p(f. @) =sup{|f (x1.x2,y1,y2)—g(x1. X2, y1. y2)| : x1,:2€ X, y1. ;2 €Y}, figeM.
(1.1)

Clearly 9t is a complete metric space.
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22 The turnpike property for dynamic discrete time zero-sum games

Given f € 9 and an integer n > 1, we consider a discrete-time two-player zero-sum
game over the interval [0, n]. For this game {{x;}?_,:x; € X,i =0,...,n} is the set of
strategies for the first player, {{y;}?_,:yi €Y, i =0,...,n} is the set of strategies for
the second player, and the cost for the first player associated with the strategies {x;}!_,

{yi)l_y is given by 3020 f (X, Xit1, Vi Vit1)-

Definition 1.1. Let f € 9, n > 1 be an integer and let M € [0, 00). A pair of sequences
{xi}'_g C X, {(3i}i_y C Y is called (f, M)-good if the following properties hold:

(i) for each sequence {x;};_, C X satisfying xo = Xo, Xy = X

n—1 n—1
M+Zf(xi,xz'+1,§i,§i+1) > Zf()_fi,)_fi+lv)_’ia)_’i+l)§ (1.2)

i=0 i=0

(i) for each sequence {y;}!_, C Y satisfying yo = Yo, Yn = ¥n

n—1 n—1
M+Zf(ii,ii+1,ﬁi,ﬁi+1) > Zf(ii,iiﬂ,yi,yiﬂ)- (1.3)
i=0 i=0

If a pair of sequences {x;}!_, C X, {yi}]_, C Y is (f,0)-good, then it is called (f)-
optimal.

Our first main result in this paper deals with the so-called “turnpike property” of
“good” pairs of sequences. To have this property means, roughly speaking, that the
“good” pairs of sequences are determined mainly by the cost function, and are essen-
tially independent of the choice of interval and endpoint conditions, except in regions
close to the endpoints. Turnpike properties are well known in mathematical economics
and optimal control (see [11, 13, 15, 16, 17, 18, 19] and the references therein).

Consider any f € 9. We say that the function f has the turnpike property if there
exists a unique pair (x ¢, ys) € X x Y for which the following assertion holds.

For each € > 0 there exist an integer ng > 2 and a number § > 0 such that, for each
integer n > 2no and each (f, §)-good pair of sequences {x;}7_, C X, {yi}i_, C Y the
relations ||x; —x¢||, |lyi —yrll < € holds for all integers i € [ng,n —no].

In this paper, our goal is to show that the turnpike property holds for a generic
f € 9. We prove the existence of a set § C 9t which is a countable intersection of
open everywhere dense sets in 21 such that each f € § has the turnpike property (see
Theorem 2.1). Results of this kind for classes of single-player control systems have
been established in [15, 16, 17]. Thus, instead of considering the turnpike property
for a single function, we investigate it for a space of all such functions equipped with
some natural metric, and show that this property holds for most of these functions.
This allows us to establish the turnpike property without restrictive assumptions on the
functions.

We also study the existence of equilibria over an infinite horizon for the class of zero-
sum games considered in the paper. We employ the following version of the overtaking
optimality criterion which was introduced in the economic literature by Gale [8] and
von Weizsacker [14] and used in control and game theory [1, 3, 4, 19].
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Definition 1.2. Let f € M. A pair of sequences {X;}{°) C X, {3i}72, C Y is called
(f)-overtaking optimal if the following properties hold:
(i) for each sequence {x;}{°, C X satisfying xo = xo

r-1 T—1
lim sup |:Z S (X Xig1, Yis Yir1) — Z f(xi,xz'+1,§i,§i+1)} <0; (1.4)

T—o0 i=0 i=0

(i1) for each sequence {y;}7°, C Y satisfying yo = yo

T-1 T—1
lim sup {Z £ iy yion) = Y f (% i1 i ym)} <0. (15

T—oo | iz i=0

Our second main result (see Theorem 2.2) shows that for a generic f € 9t and each
(x,y) € X x Y there exists an (f)-overtaking optimal pair of sequences {x;}7°, C X,
{yi}72, C Y such that xg = x, yo = y.

2. Main results

In this section we present our main results.

THEOREM 2.1. There exists a set § C 9 which is a countable intersection of open
everywhere dense sets in 9 such that for each [ € § the following assertions hold.
(1) There exists a unique pair (x¢,ys) € X XY for which

sup (x‘f,xf, v, y) = f(xf,xf, Vf yf) = inf f(x,x, Vs yf). 2.1
yeY xeX

(2) For each € > 0 there exist a neighborhood U of f in 9M, an integer ng > 2, and
a number § > 0 such that for each g € U, each integer n > 2ng, and each (g, §)-good
pair of sequences {x;}}_, C X, {yi}]_, C Y the relation

lxi —xfll, lyi—yrll <€ (2.2)

holds for all integers i € [ng,n—ngl. Moreover, if [ xo—x¢|l, |yo—y¢ll <6, then (2.2)
holds for all integers i € [0,n—ng), and if |x, —x 7|, |y —yfll <6, then (2.2) is valid
for all integers i € [ng,n].

THEOREM 2.2. There exists a set § C 9 which is a countable intersection of open
everywhere dense sets in 9 such that for each f € § the following assertion holds.
For each x € X and each y € Y there exists an (f)-overtaking optimal pair of

sequences {x;}72o C X, {yi}72, C Y such that xo = x, yo = y.

3. Definitions and notations

Let f € M. Define a function f : X x Y — R! by

fx,y)=f(x,x,y,y), xe€X, yeY. 3.1
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Then there exists a saddle point (xr,ys) € X x Y for f. We have

sup f (x7,y) = f(xf,yp) = Inf f(x,5y). (3.2)

yeY

Set )
w(f) = f(xr.yy). 3.3)

Definition 3.1. Let f € 9. A pair of sequences {x;}7°, C X, {yi}2, C Y is called
(f)-minimal if for each integer n > 2 the pair of sequences {x;}7_, {yi}/_, is (f)-
optimal.

We show in Section 5 (see Proposition 5.3) that for each f € 901, each x € X, and
each y € Y there exists an (f)-minimal pair of sequences {x;}7°, C X, {yi}i%, C ¥
such that xg = x, yo = y.

Let f € M, n > 1 be an integer, and let £ = (£1,£,,£3,&1) € X x X x Y x Y. Define

Ax(E,n) = {{xi)i_g C X :x0 =§1, X, = &2}, (3.4
Ay(E.n) ={{yiti_o CY :y0=6&, yn =&}, (3.5

n—1

f(s’n)((XO»~--7xi’--~,xn),()’O’---’yiw-w)’n)) =Zf(xi,xi+l’)’i’yi+l),

= (3.6)
{xili_g € Ax(&,n), {yili_g€ Ay, n).
4. Preliminary results
Let M, N be nonempty sets and let f: M x N — R!. Set
U@ =sup fx,y), xeM,  fP(y)=inf f(x,y), yeN, (4D
)7€N xXeM
v‘;c = inf sup f(x,y), v? =sup inf f(x,y). 4.2)
’ xXeM yeN yeEN xeM
Clearly
vl} < v;i-. (4.3)
We have the following result (see [2, Chapter 6, Section 2, Proposition 1]).
PROPOSITION 4.1. Let f : M x N — R x e M, y € N. Then
sup f(x,y) = f(x,y) = inf f(x,y) (4.4)
yeN xXeM
if and only if
vj=vy, sup f(F,y)=vf, inf fx,5) =0} 4.5)

yeN
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Let f:MxN — R If (&, y) € M x N satisfies (4.4) that it is called a saddle point
(for f). We have the following result (see [2, Chapter 6, Section 2, Theorem 8]).

ProrosITION 4.2. Let M C R™, N C R" be convex compact sets and let f : M x N —
R! be a continuous function. Assume that for each y € N, the function x — f(x,y),
x € M is convex and for each x € M, the function y — f(x,y), y € N is concave.
Then there exists a saddle point for f.

PROPOSITION 4.3. Let M, N be nonempty sets, f : M x N — R! and

_°°<“?‘=U?<+OO’ xo€M, yoe N, Ay, Az €[0,00), (4.6)
<v¢+Ap, inf > b — A, 4.7
sup f(r0:3) =+ 80, f(xo0) 20— 2 @)
Then
sup f(x0,y) — A1 — Az < f(x0.y0) < xig/[f(x,yo)—erl + As. (4.8)

yEN

Proof. By (4.7) and (4.6)

sup f(x0,y) — A1 — Ay
yeEN

<vi—Ay= v? —Ay < xlglf(x ¥0) < f (%0, y0) 4.9)

< sup f(x0,) <vi+A; =vl)’p—i—A1 < inf f(x,y0)+A1+As.
yeN ’ k xXeM

This completes the proof. U

PROPOSITION 4.4. Let M, N be nonempty sets and let f : M x N — R'. Assume that
(4.6) is valid, xo € M, yo € N, A1, Ay €[0,00), and

sup f(x0,y) — A2 < f(x0,y0) < inf f(x,y0)+A1. (4.10)
yeN xeM
Then
sup f(x0,y) Svi+A1+A2,  inf f(x,y0) = vf—A1—As. (4.11)
yeN xeM

Proof. Tt follows from (4.10), (4.2), (4.6), and (4.3) that

vi—Ar=vf—As < sup f(x0,y) = Az < inf f(x,y0)+ A1 Svi+AL (412)
yeN xe

This implies (4.11). The proposition is thus proved. 0
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5. The existence of a minimal pair of sequences
Let feIM, xreX,yreY,and

supf(xf,y) = f(xf,yf) = inf f(x,yf). 5.1
yey xeX

PROPOSITION 5.1. Let n > 2 be an integer and
)El'z)(jf, ylzyf, i:O,...,n. (52)

Then the pair of sequences {x;}!_,, {yi}_, is (f)-optimal.

Proof. Assume that {x;}!_, C X, {yi}_, C Y, and

X0, Xp = Xf, Y0, Yn = Yf- (5.3)
By (5.1), (5.2), and (5.3)
n—1 n—1
D Fixien v Fin) =Y f(xixig1.37.57)
i=0 i=0

n—1 n—1

> nf (nlzx,-,nl in+1,yf,yf)
i=0 i=0
n—1 n—1

=nf (n‘1 > xin! ZMJfJf)
i=0 i=0

>nf(xp, x5, 95:7))

(54)
n—1 n—1
Zf(ii,iiﬂ,yi,yi“) = Zf(xf’xf’)’i,YHI)
i=0 i=0
n—1 n—1
<nf (xf,xf,n_lzyi,n_l Z)’i+1)
i=0 i=0
n—1 n—1
=nf (xf,xf,n_lz}%n_lzyz)
i=0 i=0
This completes the proof of the proposition. O
PROPOSITION 5.2. Let n > 2 be an integer and let
n n
({xi(k)}. ,{y}’”}. )chY, k=1,2,... (5.5)
i=0 i=0

be a sequence of ( f)-optimal pairs. Assume that

lim x® =x;, 1limy® =y, i=01.2 .. .n (5.6)
! k—o00" !

k—o00
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Then the pair of sequences ({x;}7_, {yi}i_g) is (f)-optimal.

Proof. Let
{uiYi_o C X, wuo==x0, Up =xp. (5.7)
We show that
n—1 n—1
Zf(-xi’xi—i-l’yisyi—FI) < Zf(ui,uiﬂ,yz',yiﬂ)- (5.8)
i=0 i=0

Assume the contrary. Then there exists € > 0 such that

n—1 n—1
Zf(xi,xz'ﬂ,yi,yiﬂ) > Zf(ui,ui+1,yi,yi+1)+86- (5.9)
i=0 =0

There exists a number § € (0, €) such that
|f(z1.22.61,6) — f(Z1.%2.61.6) | < eBn) ! (5.10)

foreach z1,22,21,22 € X, £1.62.81,& € ¥ satisfying ||z; —Zi || 1§ =& <6, i = 1,2.
There exists an integer ¢ > 1 such that

| x|, |yi—y@| <8, i=0,....n. (5.11)
Define {ul@}:’zo C X by
u(()q)zx(()q), u,(,q)zx,(,q), ul(q)zui, i=1,....,n—1. (5.12)

Since the pair of sequences ({x (q)} {yl(q)} o) is (f)-optimal it follows from
(5.12) that

n—1 n—1
(9) (q) @) (q) (@) (q) @) (q)
Zf(xi Xiv10Yi ’y1+1) = Zf(”, u;1 1Y ,ylH) (5.13)
i=0 i=0
By the definition of § (see (5.10)), (5.11), (5.12), and (5.7) fori =0, ...,n—1,
‘f( @ ,(i)p)’, ,y,(_‘ﬁ) —f(xi,xz‘ﬂ,yi,yiﬂ)‘ <@8n) e
(5.14)
\f(uﬁ’” ,(i)l,y,(q) y;ﬂ) —f(ui,ui+1,yi,yi+1)‘ <@8n)'e

It follows from these relations and (5.9) that

n—1

(q) (q) @ (@) (q) (q) (@) (@)
Zf(xi Xy Vi z+l> Zf< Uip Vi ’yz+1)>€' (5.15)
i=0

This is contradictory to (5.13). The obtained contradiction proves that (5.8) is valid.
Analogously we can show that for each {u;}! , C Y satisfying up = yo, un = yn,
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the following relation holds:

n—1 n—1
D Fixipnyioyie) = > f (xi Xigprouinuig). (5.16)
i=0 i=0

This completes the proof of the proposition. O

PROPOSITION 5.3. Let f € M and let x € X, y € Y. Then there exists an ( f)-minimal
pair of sequences {x;};2, C X, {yi}72, C Y such that xo = x, yo = y.

Proof. By Proposition 4.2, for each integer n > 2 there exists an (f)-optimal pair of
sequences {xl.(")};’ 0 C X, {yi(”)}?=0 C Y such that x(()") =X, y(()") = y. There exist a
pair of sequences {x;}7°, C X, {yi}{2, C Y and a strictly increasing sequence of natural

numbers {nx}72 | such that for each integer i > 0

g,y oy ask — oo (5.17)

It follows from Proposition 5.2 that the pair of sequences {x;}2,, {yi}ic, is (f)-
minimal. The proposition is proved. O

6. Preliminary lemmas for Theorem 2.1

Let f € 9. There exist xy € X, yr € Y such that

sup f(xf,xf,,9) = fxp.xp,v5,7) = inf f(x, 2,57, y7)- (6.1)
yGY xeX

Let r € (0, 1). Define f : X2 x Y2 — R! by

fr(x1,x2, y1,32) = f(xnx2, v, y2) +rllxs —xgll = rllyi =y,

(6.2)
x1,x2€X, y1,meY.

Clearly f, € 9,

sup fr(xp, x5y, ) = fr(xp. x5, ypvp) = inf fr(x,x,y7,57).  (6.3)
yGY xeX

LEMMA 6.1. Let € € (0, 1). Then there exists a number § € (0, €) such that for each
integer n > 2 and each (fy,d)-good pair of sequences {x;};_, C X, {yi}i_y C Y
satisfying

-xna-x():va ynﬁy():yfs (64)

the following relations hold:

lxi —xgll, lyi—yrll<e, i=0,....n. (6.5)



Alexander J. Zaslavski 29

Proof. Choose a number
§ € (0,87 're). (6.6)

Assume that an integer n > 2, {x;}!_, C X, {yi}7_, C Y is an (f;,d)-good pair of
sequences and (6.4) is valid. Set

EL.&=x7, &.b=yr, &=(§.6.6.8). (6.7)

Consider the sets A x (£, n), Ay (&,n) and the functions (f,) ™, £ (see (3.4), (3.5),
and (3.6)). It follows from (6.1) and Proposition 5.1 that

n—1
sup {Zf(xf’xf’uiaui-'rl) : {ui}?:() € AY(E,”)}

i=0
=nf(xp.xp yp,5f) (6.8)

n—1
:inf{Zf(PiaPi+lv)’fv)’f) : {Pi},r'l:() GAX(&”)}-

i=0
Equation (6.8) and Proposition 4.1 imply that

n—1
sup {Zf(xf,xf,ui,uiﬂ) Huill_y € AY(S,H)}

i=0

n—1
=inf{sup{2f(p,-, pitt,uisuiv) {ui}i_g € AY@»")} Apitioo € Ax(%‘,n)} ,
i=0
(6.9)
n—1
inf {Zf(pi, Pit1, Y. vr) ApiYi_g € Ax(é,n)}

i=0

n—1
= Sup{inf{Zf(Pi,PiH,ui,uiH) Apitig € Ax(é,n)} Huili_g € AY(S,H)} :

i=0
(6.10)
It follows from (6.3) and Proposition 5.1 that
n—1
sup {Zfr(xf,xf,ui,u,-m il € Ay(s’n)}
i=0
=nf(xs.xr. 7. 7) (6.11)

n—1
= inf {Zfr(Pi,PH-l’yfvyf) HApitizg € Ax(é,n)} :

i=0
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Equation (6.11) and Proposition 4.1 imply that

i=0

n—1
sup {Zfr(xf,xf,ui,u,url) HuiYly € Ay(é‘,n)}

n—1
= inf{SUP{Zfr(pi, Pt uisuiv1) {uili_g € Ay(é,n)} Apiti_g € Ax(é,n)} ,

i=0

6.12)

n—1
inf {fo(pi’PiJrl’Yf’Yf) Apitioo € Ax(E,n)}

i=0

n—1
= sup {inf{Zfr(Piv pitt,uisuiv1) {piYi_g € Ax(&”)} Huili_ € AY(S,H)} .

i=0
(6.13)
By (6.4) and (6.7)
{xi}?:() € AX(&”L {)’1}?:0 € AY(E!”) (614)
Since ({x;}_, {yi}{_p) is an (f;, §)-good pair of sequences, we conclude that
n—1
sup {Zf,(xi,xi_,_l,ui,uiH) . {Ml‘}?=0 S Ay(g,n)} -6
i=0
n—1
= Zfr (Xi,xz'+1,yi,yi+1) (6.15)
i=0
n—1
<inf {Zfr(pi,l?iﬂ,yi,ym) Apitioo € Ax(é,n)} +3.
i=0
It follows from Proposition 4.4, (6.12), (6.13), and (6.15) that
n—1
sup {Zfr(xi,xiﬂ,ui,uiﬂ) Huili_g € AY(S,H)}
=0 (6.16)
n—1
< sup{Zfr(xf,xf,u,-,u,-H) Hui}l_o € Ay(é,n)} 428,
i=0
n—1
inf {Zfr(pi,piﬂ,yi,yiﬂ) Apiti_o € Ax(S,n)}
=0 (6.17)

n—1
> inf {Zfr(l?is Pi+1. Y. vr) piYi_g € Ax(&n)} —26.

i=0
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By (6.2), (6.8), (6.11), and (6.16)

nf(xr.xp.yp,yr)=nfe(xp.xr, 57, r)

n—1

>sup{ > fr (i xig uisuigr) : {wilj_g € Ay(E,n) § —

i=0
n—1
2 _28+Zfr(xl',xi+19yf’yf)
i=0
n—1 n—1
=—28+r ) Il —xgll+ D f (¥ x4t vp0vf)
i=0 i=0
n—1
> =28+r ) Ixi—xpl+nf (. xp.y5.35)-
i=0

By (6.2), (6.8), (6.11), and (6.17)

nf(xp xp,ve,vp) =nfr(xp x5, v, vf)

n—1

26

(6.18)

<inf 1Y £ (pis piss vis vi1)  {pikiog € Ax(§,n) § 426

i=0
n—1
= 25+Zfr (xp x5, yisvig1)
i=0
n—1 n—1
=285—rY lyi—yrl+)_ f(xr x5 vi yit)
i=0 i=0

n—1

< 25—’2 lyi—yrll+nf(xr.xr, v, v5)-
i=0

Equations (6.6), (6.18), and (6.19) imply that fori =1,...,n—1
i —xpll <r7'@8) <e. lyi—ypl =287 <e
This completes the proof of the lemma.
Choose a number
Do = sup{|fr(x1.x2. y1.32)| s x1, 2 € X, y1.y2 €Y}

We can easily prove the following lemma.

(6.19)

(6.20)

6.21)
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LEMMA 6.2. Let n > 2 be an integer, M be a positive number, and let {x;};_, C X,
{yiY!_y C Y bean (f,, M)-good pair of sequences. Then the pair of sequences {X;}7_, C
X, {yi}}_y C Y defined by

)Eiz_xi, yizyl‘, i=1,...,7’l—1, )E(),)EnZXf, )_Jann:yf (622)

is (fr, M +8Dg)-good.

By using the uniform continuity of the function f, : X x X x Y x ¥ we can easily
prove the following lemma.

LEMMA 6.3. Let € be a positive number. There exists a number § > 0 such that for each
integer n > 2 and each sequences {x;}!_,,{x;}]_, C X, {yi}i_q. (i}i_y C Y which
satisfy

IXj—x;ll. Iyj—yill<é, j=0.,n, xj=x;; yj=y, j=1....n—1,

the following relation holds:

n—1

S [ (i xign yio yisn) = fr (& Fopn, 31, i) ]| < e (6.24)
i=0

Lemma 6.3 implies the following result.

LEMMA 6.4. Assume that € > 0. Then there exists a number § > 0 such that for each
integer n > 2, each ( fy, €)-good pair of sequences {x;}!_, C X, {yi}i_, C Y and each
pair of sequences {x;}!_, C X, {yi}i_y C Y the following assertion holds.

If (6.23) is valid, then the pair of sequences ({X;}i_q, {Vi}i_q) is (fr,2€)-good.

Lemmas 6.4 and 6.1 imply the following.

LEMMA 6.5. Let € € (0, 1). Then there exists a number § € (0, €) such that for each
integer n > 2 and each (f;, 8)-good pair of sequences {x;}!_, C X, {yi}i_, C Y which
satisfies |xj —xzll, lly; —yrll <8, j = 0,n, the following relations hold: ||x; — x|,
lyi—yrll <€, i=0,...,n.

Denote by Card(E) the cardinality of a set E.

LEMMA 6.6. Let M be a positive number and let € € (0, 1). Then there exists an integer
no
i

no > 4 such that for each (f,, M)-good pair of sequences {x;};,_, C X, {y,-}?io cY
which satisfies

X0, Xnyg =X f, Y05 Yng = V> (6.25)
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there is j € {1,...,no— 1} for which

lxj=xzll [lyj=yrll <e. (6.26)

Proof. Choose a natural number
no > 8+8(re)~' M. (6.27)
Set
ELg=xp, B.E=yp,  E={E) (6.28)

Assume that {x,-}?io C X, {y,-}?io C Y is an (f, M)-good pair of sequences and
(6.25) holds. It follows from Proposition 4.4 that

no—1
Sup Z fr(-xi’-xi-i-l?uivui-i-l) : {ul}:lio EAY(é:vnO)
i=0
no—1
<infisupd Y filpi. pigrouiswigr) {ui}jo € Av(E. no)t +{pi)iLy € Ax(E.no) t +2M,
i=0
(6.29)
no—1
inf Z fr(pis pis1s yisyie1) s {(pididy € Ax (&, n0)
i=0
no—1
> supdinf 8 > f(pi. piriowisuin1) (piiSg € Ax(E.no)p lui}io € Ay(E.no)p —2M.
i=0
(6.30)
By Proposition 5.1, (6.3), and Propositions 4.1, 4.2
no—1
inf { sup Z Fr(pis pir,ui uigr) {uiY;2o € Ay (§,n0) ¢+ {pili2y € Ax(§,n0)
i=0
no—1
= supinf 3 >~ fr(pi, piviowiswir1): (piYig € Ax(E,no) ¢ :ui}2y € Ay(&, no)
i=0

=nofr(xp.xf V5 Y5)- 6o
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Equations (6.2), (6.29), (6.30), and (6.31) imply that

nof(xr.xp,ypyr) =nofr(xp.xr,ys,95)

no—1
> —2M+sup > (i xign i uig) < {uidi%g € Ay (€.n0)
i=0
no—1
i=0
n()—l l’lo—]
=—2M+ Y f(xixigryp ) +r Y i —xll,
i=0 i=0
(6.32)
nof(xp.xp v yr)=nofr(xp. x5, yr)
no—1
< 2M +inf Z Fr(pis Pists yis yie1) < {pi}ily € Ax(§,n0)
i=0
no—1
<2M+ Z Fr(xpoxp,yinvig1)
i=0
no—1 no—1
=2M+ Y f(pxp,yiyivnr)=r Y Iyi—yrll.
i=0 i=0
(6.33)
It follows from (6.1) and Proposition 5.1 that
no—1 no—1
Z fxivxivn,yr.yr) =nof (xp.xpyr,y5) = Z flxpxr,yioyiq).  (6.34)
i=0 i=0
Together with (6.32) and (6.33) this implies that
no—1
nof (xp.xp.yp.yr) = —2M+nof (xp.xp.yp.yp)+r Y llxi—xzll,
i=0
no—1
nof(xp.xp.yp.yr) 2M+nof(xp,xp, v, yf5)—r Z lyi—=yrll, (6.35)
i=0

no—1 no—1

Py lxi—xpl<2M, r Y llyi—ysll <2M.
i=0 i=0
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By (6.25), (6.27), and (6.35)

eCard{i € {1,...,no—1}: lx; —x/ || = €} <2Mr~",
eCard{i € {1,...,no—1} : |lyi —ysll = €} <2Mr ",

Card{i € {1,...,no—1}: |xi —xsl <€, llyi—ysl <€} =no—1—4M(er)™" > 6.
(6.36)

This completes the proof of the lemma. (]

Lemmas 6.2 and 6.6 imply the following.

LEmMA 6.7. Let € € (0,1), M € (0,00). Then there exists an integer ng > 4 such
that for each (f,, M)-good pair of sequences {x; }700 C X, {yi}:’io C Y there is

Jefl,....no—1} for which |lxy —x;jll. llys =yl <e.

LEmMA 6.8. Let € € (0,1), M € (0,00). Then there exists an integer ng > 4 and a
neighborhood U of f, in 9 such that for each g € U and each (g, M)-good pair of
sequences {xi}?oo c X, {yi}?io C Y thereis j €{l,...,ng— 1} for which

lxy=xjll lyr—vill < e (6.37)

Proof. By Lemma 6.7 there is an integer ng > 4 such that for each (f,, M + 8)-good
pair of sequences {x;}*, C X, {yi}i>, C Y thereis j € {1,...,no— 1} for which (6.37)
is valid. Set

U={geM:p(f.g)<(16n0)"'}. (6.38)

Assume that g € U and {x;}2, C X, {yi}2, C Y isa (g, M)-good pair of sequences.
By (6.38) the pair of sequences {x;};2,, {yi}i"y is (fy, M + 8)-good. It follows from

the definition of ng that there exists j € {I,...,n9— 1} for which (6.37) is valid. The
lemma is proved. O

LEMMA 6.9. Let € € (0,1). Then there exist a neighborhood U of f, in M, a number
6 € (0,¢€), and an integer n| > 4 such that for each g € U, each integer n > 2ny, and
each (g, 8)-good pair of sequences {x;};_y, C X, {yi}i_y C Y the relation

lxi =xpll lyi =yrll <€ (6.39)

holds for all i € [n1,n—n]. Moreover, if ||xo—x¢ll, lyo—ysll <39, then (6.39) holds
foralli € [0,n—ny], and if ||x, — x¢|l, |yn — yrll <9, then (6.39) is valid for all
i €ny,n].

Proof. By Lemma 6.5 there exists §p € (0, €) such that for each integer n > 2 and each
(fr-80)-good pair of sequences {x;}_, C X, {yi}]_, C ¥ satisfying
lxj—x¢ll, Iy —yrll b0, j=0,n, (6.40)

the relation (6.39) is valid fori =0, ..., n. By Lemma 6.8 there exists an integer ng > 4
and a neighborhood Uy of f; in 91 such that for each g € Uy and each (g, 8)-good pair
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of sequences {x;}; 00 C X, {y,} o C Y thereis j €{l,...,no— 1} for which

llxj—xzll lly; —yrll < do. (6.41)
Fix an integer
ny >4no (6~42)
and a number
€ (0,47'8). (6.43)
Define
U=Uoﬂige£m:p(g,fr)§16_18n1_1]. (6.44)

Assume that g € U, an integer n > 2ny, and {x;}7_, C X, {yi}i_, C Y isa (g,9)-
good pair of sequences. It follows from (6.42), (6.43), and the definition of ng, Uy that
there exists a sequence of integers {t,} _; C [0, n] such that

ty <ng, tixz1—t €l|ng,3ng|, i=1,....,k—1,
1 Sno,  tig1—1 € [no,3n0] . (6.45)
n—1It < no, ||xt,-_xf||v||)’t,-_)’f”560, l=1""7kv

and, moreover, if || xo—x 7|, [yo—yrll <6, thent; =0, andif |lx, —xr|l, |y —ysll <9,
then #; = n. Clearly k > 2. Fix g € {1, ...,k —1}. To complete the proof of the lemma
it is sufficient to show that for each integer i € [#,,#,1] the relation (6.39) holds.

Define sequences {x(q)} 17l - x, {y(q)}tq+1 “cy by

2P =xive 0P =vinys P €[0,tg11—14]. (6.46)

It is easy to see that {x(q)} 17l gy q)} 171 i5 2 (g, 8)-good pair of sequences. To-

gether with (6.43), (6.44), and (6.45) this 1mphes that the pair of sequences {xi(q) };":& ~la ,
DAY T is (fr, 80)-good.

1

It follows from (6.43), (6.45), (6.46), and the definition of &g (see (6.40)) that

[P —x D _yil<e =0, 190114 (6.47)

Together with (6.46) this implies that ||x; —x ¢, |lyi —yrll <€, i =14,...,1541. This
completes the proof of the lemma. (]

7. Preliminary lemmas for Theorem 2.2

For each metric space K denote by C(K) the space of all continuous functions on K
with the topology of uniform convergence (||¢|| = sup{|¢(z)|: z € K}, ¢ € C(K)).
Let f € M. There exist xy € X, ys € Y such that

supf(Xf,xf,y,y) = f(xf,xf,yf,yf) = inf f(x,x,yf,yf) (7.1
yeY xeX

(see equation (6.1)).



Alexander J. Zaslavski 37

Let r € (0,1). Define f, : X x X xY xY — R! by

fr(xl,XZ,)’la)’Z) :f(x17x2ay1»)’2)+”||x1_xf”_rHYI_)’f”,

(7.2)
x1,x2€ X, yi,meY

(see equation (6.2)). Clearly f, € 9. Define functions fr(X) X xX - R, fr(Y) :
Y xY — Rl by

8 (x1,x2) = fr(x1.x2,y7.v7), X1, X2 € X, (7.3)
K01 y2) = fr(xr.xp, 31, 32), yiymevy. (7.4)

LEMMA 7.1. Let € € (0, 1). Then there exists a number § € (0, €) for which the following
assertion holds.
Assume that an integer n > 2,

{xiyi_o C X, x0.xp=xy (7.5)

and for each (z;}!_, C X satisfying

20 = X0, in = Xn, (7.6)
the relation
n—1 n—1
O wixien) = D00 (@ zig) +8 1.7)
i=0 i=0
holds. Then
lxi —xfll<e, i=0,...,n. (7.8)
Proof. Choose a number
8 € (0,87 're). (7.9)

Assume that an integer n > 2, {x; ?:0 C X, (7.5) is valid and for each sequence
{zi}7_y C X satisfying (7.6), the relation (7.7) holds. This implies that

n—1

D o fr(ixivn v vs) Snfe(xpxp,vp yp) 48 =nf(xp, x5, y5, y5)+8. (7.10)
i=0

It follows from (7.1), (7.2), and (7.5) that

n—1 n—1 n—1
Zfr(xi’xi+la)’fa yr) = rZ llxi —x¢ll +Zf(xz',xz'+1 Y YF)
i=0 i=0 i=0
n—1 n—1 n—1
>r Y llxi—xsll4+nf (n—l in,n—lzxi,yf,yf)
i=0 i=0 i=0
n—1
=r ) llxi—xsll+nf(xpxpv5,v5)-
i=0

(7.11)
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Together with (7.9) and (7.10) this implies that for each i € {0, ..., n — 1}, the relation
lxi —xrll < r~18 < € is true. This completes the proof of the lemma. O

Definition 7.2. Let g € C(X x X), n > 1 be an integer and let M € [0, c0). A sequence
{xi}!_y C X is called (g, X, M)-good if for each sequence {x;}_, C X satisfying
X0 = X0, Xn = X, the relation M+ 3" g(x;, xiy1) = Y 1=y g(Fi, Zi41) is valid.

Definition 7.3. Let g € C(Y xY), n > 1 be an integer and let M € [0, 00). A se-
quence {y;}7_, C Y is called (g, Y, M)-good if for each sequence {y;};_, C Y satisfying

Y0 = 30, ¥n = Ju the relation Y75 g(vi. yit1) < M+ Y I g, yl+1) is valid.

Definition 7.4. Let n; > 0, ny > n1 be integers, and let {g,}"2 I CXxX),Me
C X is called ({g; }"2 ! X, M)- good if for each sequence

=n’

[0, o0). A sequence {x,}

1=ni
{x,} izn, C X satisfying x,,, = Xp,, Xn, = Xn,

np—1 ny—1

M+ gilxixin) = Y g% K1) (7.12)

i=n i=n|
Definition 7.5. Let n1 > 0, ny > n; be integers, and let {g,-}’-’r1 CcCC(YxY), Me

[0, 00). A sequence {y,-}?2 C Y is called ({g,}"inl, Y, M)-good if for each sequence
{vi };an C Y satisfying yu, = ¥n,» Ynr = ny

ny—1 ny—1

Y ai(vivie) < Y g Sivr) + M. (7.13)

i=n i=n|
Analogously to Lemma 7.1 we can establish the following.

LEMMA 7.6. Let € € (0,1). Then there exists a number § € (0, €) such that for each
integer n > 2 and each (fr(Y), Y, 8)-good sequence {y;};_y C Y satisfying yo, yn =y
the following relation holds: |y; —yrll <€, i =0,...,n

By using Lemmas 6.3 and 7.1 we can easily deduce the following lemma.
LEmMA 7.7. Let € € (0,1). Then there exists a number § > 0 such that for each
integer n > 2 and each (fr(X), X, 8)-good sequence {x;}_, C X satisfying | xo— x|,
lxn —x 7|l <& the following relation holds: ||x; —x¢|| <€, i =0,...,n.

By using Lemmas 6.3 and 7.6 we can easily deduce the following lemma.
LEmMA 7.8. Let € € (0,1). Then there exists a number § > 0 such that for each

integer n > 2 and each (fr(y), Y, 8)-good sequence {y;}!_, C Y satisfying |lyo— yrl,
lyn —y7ll <& the following relation holds: ||y —yfll <€, i =0,...,n.
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LEMMA 7.9. Let € € (0, 1) and let M be a positive number. Then there exists an integer
ng > 4 such that for each (fr(x), X, M)-good sequence {x; }’-lo0 C X satisfying

i=
X0=Xxf, Xpy =Xf (7.14)
there is j € {1,...,no— 1} for which
lxj —x7ll <e. (7.15)
Proof. Choose a natural number

no>8+8M(re)” L. (7.16)

Assume that {xi}?io C X is an (fr(X), X, M)-good sequence and (7.14) is valid. It is
easy to see that

Mnof(xp.xp,yr.yr) =nofr(xp.xp.ypvr)+M

no—1
> Z Jr(Xis Xie1, Y7,V f)
i=0
no—1 no—1
=r Y lxi—xsl+ D f (i xivn,yr0vy)
i=0 i=0
no—1 no—1 no—1
>r Y lxi—xgll+nof [ng" D xiong Y xiiyp.yvy
i=0 i=0 i=0
no—1
>r Y xi—xgll+nof (xp. s, yf,vr)-
i=0

(7.17)

Together with (7.16) this implies that there is j € {1,...,n9 — 1} for which (7.15) is
valid. This completes the proof of the lemma. O

Analogously to Lemma 7.9 we can establish the following lemma.

LEMMA 7.10. Let € € (0, 1) and let M be a positive number. Then there exists an integer
ng > 4 such that for each (fr(y), Y, M)-good sequence {y,-}?io C Y satisfying yo =y,
Yno =Yy thereis j € {1,...,no— 1} for which ||y; —yrll <e.

Choose a number Dy > sup{| fr(x1, x2, ¥1,y2)| : x1,x2 € X, y1,y2 € Y}. We can
easily prove the following lemma.

LEmMA 7.11. (1) Assume that n > 2 is an integer;, M is a positive number, a sequence
Yy € Xis (£, X, M)-good and T = xy, % = xy, Zi=x;, i =1,...,n—1.
Then the sequence {X;}7_ is ( f,(x), X, M +8Dy)-good.
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(2) Assume that n > 2 is an integer, M is a positive number, a sequence {y;};_, C Y
is (f),Y, M)-good and 5o = yf, $u = yr. ¥i = yi» i = 1,....,n— 1. Then the
sequence {y;}7_ is (fr(Y), Y, M +8Dy)-good.

Lemmas 7.9, 7.10, and 7.11 imply the following two results.

LEmMMA 7.12. Let € € (0,1) and let M be a positive number. Then there exists an
integer no > 4 such that for each (fr(X), X, M)-good sequence {xi}?io C X there is
Je{l,...,no—1} for which ||xj —x¢|| < e.

LEmMMA 7.13. Let € € (0,1) and let M be a positive number. Then there exists an
integer ng > 4 such that for each (fr(Y), Y, M)-good sequence {y; };’io C Y there is
Je{l,...,no—1} for which ||ly; —ysll < €.

By using Lemmas 7.12 and 7.13, analogously to the proof of Lemma 7.12, we can
establish the following two results.

LEmMMA 7.14. Let € € (0,1), M € (0,00). Then there exists an integer no > 4 and
a neighborhood U of fr(x) in C(X x X) such that for each {gi}?ial C U and each
({g,-}?igl,X,M)-good sequence {x,-}?io C X there is j € {1,...,n0 — 1} for which
lxr—xjll <e.

LEmMMA 7.15. Let € € (0,1), M € (0,00). Then there exists an integer no > 4 and
a neighborhood U of f,(Y) in C(Y xY) such that for each {gi}:-lig] C U and each
({gi}?ial, Y, M)-good sequence {y;};2, C Y there is j € {1,...,ng — 1} for which
lyr=yjl <e.

LEMMA 7.16. Let € € (0, 1). Then there exist a neighborhood U of f,(X) in C(X x X),
a number § € (0,€), and an integer n| > 4 such that for each integer n > 2ny, each
{g,-}?z_o1 C U and each ({g; }:’:_01, X, 8)-good sequence {x;}!_, C X the relation

lxi —xpll <€ (7.18)

holds for all integers i € [ny,n—n1]. Moreover, if |xo—x ¢l <6, then (7.18) holds for
all integers i € [0,n—n], and if |x, —x7|| <6, then (7.18) is valid for all integers
i €ny,n].

Proof. By Lemma 7.7 there exists dp € (0, €) such that for each integer n > 2 and each
(£, X, 80)-good sequence {x;}'_, C X satistying [|xo — x|, [, — x 7 < 8, the
relation (7.18) is valid for i =0, ...,n. By Lemma 7.14 there exist an integer ng > 4
and a neighborhood Uy of f,(X) in C(X x X) such that for each {gi}?ial C Up and
each ({g,-}?igl , X, 8)-good sequence {x;}!_, C X thereis j € {1,...,no— 1} for which
lxj —x#ll < do.
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Choose an integer ny > 4ngp and a number § € (0, 4-18). Define

U=Upn{geCXxX):|g— 10| < (16n1)"'s}. (7.19)

Assume that an integer n > 2nj, {g,-};':_ol C U and a sequence {x;}7_, C X is

({(gr,-};:ol , X, 8)-good. Arguing as in the proof of Lemma 6.9, we can show that (7.18)
is valid for all integers i € [n1,n —n1] and, moreover, if ||xg — x|l < &, then (7.18),
holds for all integers i € [0,n—n1], and if ||x, —x¢|| <8, then (7.18) is valid for all
integers i € [n,n]. The lemma is thus proved. O

Analogously to Lemma 7.16 we can prove the following lemma.

LEMMA 7.17. Let € € (0, 1). Then there exist a neighborhood U of £ in C(Y x Y),
a number § € (0,€), and an integer n1 > 4 such that for each integer n > 2n, each

{gi}?;ol C U, and each ({gi}l'.';ol, Y, 8)-good sequence {y;};_, C Y the relation

lyi—yrll <e (7.20)

holds for all integers i € [ny,n—n1). Moreover, if |[yo—yrll <8, then (7.20) holds for
all integers i € [0,n—ny], and if |yn — yf|l <6, then (7.20) is valid for all integers
i€ln,n].

8. Proofs of Theorems 2.1 and 2.2

We use the notation from Sections 1, 2, 3, 4, 5, 6, and 7.

Let f € 9. There exists a pair (x s, yr) € X x Y such that (6.1) holds. Let r € (0, 1)
and let i > 1 be an integer. Consider the function f, : X x X x Y x Y defined by (6.2).
Clearly all lemmas from Sections 6 and 7 are valid for f;.

By Lemma 7.16 there exist a number

vi(f.ri) e (0,277, (8.1)

a number '
81(f,r,i) € (0,277, (8.2)

and an integer n(f,r,i) > 4 such that the following property holds:
(a) for each integer n > 2n(f,r,i), each {gj}’};(l) C C(X x X) satisfying

lgi =X <nifirdd, j=0.....n—1, (8.3)

and each ({g j};f;(l), X,81(f,r,i))-good sequence {x; }’}:O C X the following relation
holds: )
lxj—xpll <27, jelni(firi),n—ni(fir,i)]. (8.4)

By Lemma 7.17 there exist numbers

852(fr i), ya(for,i) € (0,27, (8.5)
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and an integer na(f,r,i) > 4 such that the following property holds:
(b) for each integer n > 2n,(f, r,i), each {gj};?;(l) C C(Y x7Y) satistying

lgi = £ < valfirid, j=0,....n—1 (8.6)

and each ({g.,-}’};(l), Y,82(f,r,i))-good sequence {yj}s?zo C Y the following relation
holds: .
lyj—yrll <27, je[na(firi),n—na(f.r,i)]. (8.7)

Set

n3(fvrvi) =n1(f,r,i)+n2(f,r,i),
83(f,r, i) =min{8; (f,r, i), 82(f, r, D)}, (8.8)
y3(f’ r’i) = min{)’l(f, rvi)» VZ(f7 rvi)}'

It follows from the uniform continuity of the function f; that there exists a number
84(for,i) € (0,83(f,ri)) (8.9)
such that for each x1, x2, X1, X2 € X, y1, Y2, ¥1,y2 € Y satisfying
llxj =%l lyj =yl <da(fori), j=1,2, (8.10)
the following relation holds:
| fr (x1, 32, y1, 32) = fr (%1, %2, 51, 32) | < 167 (£ ). (8.11)
By Lemma 6.9 there exist numbers
ya(for,i) € (0,167 ys(fir, 1), 8s(f,r,i) € (0,87 184(f,1.1)) (8.12)

and an integer na(f,r,i) > 4 such that the following property holds:
(c) for each g € M satisfying p(g, fr) < ya(f,r, i), each integer n > 2n4(f,r,i),
and each (g, 85(f, r,i))-good pair of sequences

the relation
lxj=xfll lyj—yrll <871 8a(fir,i) (8.14)

holds for all j € [n4(f,r,i),n—n4(f,r,i)]; moreover, if
Ixo—xrll, lyo—yrll <85(f,r i), (8.15)
then (8.14) holds for all integers j € [0,n —n4(f,r,i)], and if

[0 =xp Il lyn =y 7l < 85Cf, 7, 0), (8.16)

then (8.14) is valid for all integers j € [n4(f,r,i),n].
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By Lemma 6.9 there exist numbers

y(firi) € (0,87 ya(fir D)), 8(firi) e (0,87 85(f,r 1)), (8.17)

and an integer ns(f,r,i) > 4 such that the following property holds:
(d) for each g € M satisfying p(g, f) < y(f,r,i), eachinteger n > 2ns(f,r,i), and
each (g,d8(f,r,i))-good pair of sequences
n
{xj}j=0CX’ {vil

n

", CY. (8.18)

the inequality

lxj—xgll llyj—yrll <87 18s(fir.i) (8.19)
holds for all j € [n5(f,r,i),n—ns5(f,r,i)].
Set
U(f,r,i)={g€9ﬁ:p(g,f,)<y(f,r,i)}. (8.20)
Define
F=n,U{Uu(fir,i): feM re©,1), i=kk+1,...}. (8.21)

It is easy to see that § is a countable intersection of open everywhere dense sets in 9.

Proof of Theorem 2.1. Let h € §. There exists a pair (x1, y;) € X x Y such that

suph(x1,x1,y,y) = h(xl,xl,y1,y1) = inf h(x,x,yl,yl) (8.22)
yey xeX

(see (3.1) and (3.2)).
Assume that (x2, y2) € X x Y and

suph(xz,xz, v, y) = h(xz,xz, 2, yz) = inf h(x,x, 2, yg). (8.23)
yeY xeX

We show that
Xy = X1, Y2 =y1. (8.24)
(D 2) (nH 2)
Define sequences {x; };?‘;0, {x;" 152 Cc X, {y; }?io’ {y; }}”:0 CY by
1 2 1 2 .
WV =x, 2P =x ¥ =y =y j=0.1... (8.25)

It follows from (8.22), (8.25), and Proposition 5.1 that the pairs of sequences

P L) e b 826
({xj j=0, y/ j=0 ’ x] j=0, yJ j=0 ( . )
are (h)-minimal. Let € € (0, 1). Choose a natural number & such that

27k <647 e (8.27)

There exist f € M, r € (0, 1), and an integer i > k such that

heU(f,ri). (8.28)
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. . 1 1 2 2 .
Since the pairs of sequences ({x§ )}3‘;0, {yj(. )}?OZO), ({xﬁ. )}?‘;O, {y; )};?‘;0) are (h)-minimal,

it follows from (8.25), (8.27), (8.28), property (d), and (8.20) that

It —x Il 2 —x el Iyt =y el 2 — vl <87 '8s(firi) <277 <,

(8.29)
llxr —x20l, Iyt —y2ll < 2e.

Since € is an arbitrary number in the interval (0, 1), we conclude that (8.24) is valid.
Therefore, we have shown that there exists a unique pair (xj, y,) € X x Y such that

suph(xh,xh, v, y) = h(xh,xh, Vh, yh) = inf h(x,x,yh, yh). (8.30)
yeY xeX
Let € > 0. Choose a natural number k for which (8.27) holds. There exist f € 9N,
r € (0,1) and an integer i > k for which (8.28) is valid. Consider the sequences
122 € X, (7152, C ¥ defined by

x;h):xh, yj(.h):yh, j=0,1,.... (8.31)

It was shown above that the pair of sequences {xj.h)};?ozo, { y;h) } 0 is (h)-minimal. It

follows from (8.27), (8.31), (8.20), and property (d) that

loxh —x £l lyn — v 7l < 87 '85(f,r,1). (8.32)

Assume that g € U(f,r,i), an integer n > 2n4(f,r,i), and {x,-};?:() C X,
{yj};?:() CYisa(g,d5(f, r i))-good pair of sequences. It follows from property (c),
(8.17), (8.20), and (8.32) that the following properties hold:

() lxj —xrll lyj = yell < 87'84(f,r, ), and |lx; — xull, lly; — yall < € for all
integers j € [ng(f,r,i),n—na(f,r,i)];
(i) if [l xo—x s, [yo—y 7l < 8s(fir i), then |lx;—xzll, v —yrll <87 18a(fir.i)
for all integers j € [0,n —na(f,r,i)];
(i) if [lxp —x £ 1l |lyn —y 71l < 85(f.rv i), then [lxj—x sl [ly; —yrll <87 '84(f.r.i)
for all integers j € [n4(f,r,i),n].
Together with (8.32) this implies that the following properties hold:

(W) if llxo — xall. lyo — yall < 27'85(f.r.i), then xj — xyll,ly; — ysll <
87184(f,r, i) for all integers j € [0,n —na(f,r,i)];
() if fon — xall, llyn — yull < 27'8s(fir i), then |lx; — xsll. lly; — yrll <
8_164(f, r, i) is valid for all integers j € [na(f,r, i), n].
This completes the proof of the theorem. (|

Proof of Theorem 2.2. Leth €§, z € X, § € Y. By Theorem 2.1 there exists a unique
pair (xp, yp) € X x Y such that
suph(xp, xp, ¥, ¥) = h(xn, xn, yp. yn) = inf h(x,x, yn, yn)- (8.33)
yeyY xeX
By Proposition 5.3 there is an (k)-minimal pair of sequences {x j}(]?ozo C X,
{yj}j?io C Y for which )
X0 =2, yo=¢&. (8.34)
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We show that the pair of sequences ({x j}?oz()’{)_)j}?i()) is (h)-overtaking optimal.
Theorem 2.1 implies that

Xj—> Xp, Yj—>yn asj—> oo. (8.35)

Let {x;}72, C X and xo = z. We show that

-1 -1
liTmSUP Zh(fjsij+laijyj+l)—Zh(xj,ijrl,ij)_’jH) <0. (8.36)
I =0

Assume the contrary. Then there exists a number I'g > 0 and a strictly increasing
sequence of natural numbers {7} ]2 | such that for all integers k > 1

Ti—1 Tr—1
Z h(Xj,Xj41, Y, Vj+1) — Z h(xj,xj+1,¥j,¥j+1) = To. (8.37)
=0 j=0

We show that
Xj—> Xp as j—> oo. (8.38)

For j =0,1,... define a function g; : X x X — R! by
gj(ul,uz)=h(u1,u2,§j,)7j+1), up,uy € X. (8.39)
Clearly gj € C(X x X), j=0,1,.... Let € > 0. Choose a natural number ¢ such that
277 < 647 le. (8.40)
There exist f € M, r € (0, 1), and an integer p > g such that
heU(f,r,p). (8.41)

Since the pair of sequences ({x j};?’;o, {y; ?‘;0) is (h)-minimal, it follows from the
definition of U(f,r, p) (see (8.20)), (8.41), and property (d) that for all integers j >
ns(f,r, p)

I1%j —xfl 15— yrll <87 '85(f.r, p). (8.42)

By (8.33), Proposition 5.1, (8.41), and property (d)

llen —x ¢l llye =yl <87'85(f.r, p). (8.43)

Since the pair of sequences ({x j}?‘;o, {yj j=0) is (h)-minimal there exists a constant
co > 0 such that for each integer 7' > 1

T-1 -1
Zh(ij,fjﬂ,fj,yjﬂ) <inf Zh(uj,ujﬂ,ﬁj,)_fjﬂ):{uj}JTZOCX, up =z ¢ +co.
=0 j=0

(8.44)
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Equations (8.44), (8.39), and (8.37) imply that the following property holds:

(e) for each A > 0 there exists an integer j(A) > 1 such that for each pair of integers
n1 > j(A), ny > nj the sequence {xj}';zzn1 is ({gj};l.i;i,x, A)-good.

Consider the function f,(X) : X x X — R! defined by (7.3). For j =0,1,... define
a function g; : X x X — R! by

gj(ur,ua) = fr(ur,u2, 35, yj11), uruz €X. (8.45)

It follows from (7.3), (8.12), (8.42), (8.45), and the definition of §4(f, r, p) (see (8.9),
(8.11)) that for all integers j > ns(f,r, p)

lg; = £ < 167 ys(fir p). (8.46)
By (8.12), (8.17), (8.20), (8.39), (8.41), (8.45), and (8.46) for all integers j > ns(f,r, p)

lgj = £ <167 ys(f.r. pY+ v (f.r. P) < y3(f.7. P). (8.47)

It follows from (8.47), properties (e) and (a), and (8.8) that there exists an integer
mo > 1 such that ||x; —x || <277 for all integers j > mg. Together with (8.40) and
(8.43) this implies that for all integers j > my, the relation ||x; —xp|| <277 +277 <€
is true. Since € is an arbitrary positive number, we conclude that
lim x; = xp. (8.48)
j—oo
There exists a number €y > 0 such that for each z;,z2,71, 22 € X and each &, &, &,
& €Y which satisfy

El

lzj =zl | =&i] <2e0, j=1.2, (8.49)

the following relation holds:
|h(z1,22.61.6) —h(21,72.61.&)| <87 'To. (8.50)
By (8.35) and (8.48) there exists an integer jp > 8 such that for all integers j > jo
lej—xnl <270, 1=l <27 eo. 8.51)
There exists an integer s > 1 such that
Ts > jo. (8.52)
Define a sequence {x7}]_, C X by
x;»‘:xj, j=0,...,T;—1, xi:)frs. (8.53)

Since the pair of sequences ({x j};?';o, {yj} j=0) is (h)-minimal, we conclude that by
(8.53)
Ts_l Ts’ 1
Zh(£j7ij+l7)_}jayj+l)_ h(-x;<7x;k+]7)_)jayj+l)§0 (854)
Jj=0 j=0
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On the other hand, it follows from (8.37), (8.51), (8.52), (8.53), and the definition of
€o (see (8.49),(8.50)) that

Ts—1 Ts—1
DY IETRE TN TR TEEY B R 165 I T T Jae))
j=0 j=0
Ts—1 Ts—1
=Y h(%j X1 5, i) = Y (x40, 35, Fi)
j=0 j=0

+h(x1,—1, %1, Y1,—1, ¥1,) —h(XT, _1, X7, Y1,-1, V1)
> Co+h(xz,—1,x1,, y1,-1. y1,) —h(X7,—1. X137, Y1, 1, VT,
> F()—S_IF().

This is contradictory to (8.54). The obtained contradiction proves that (8.36) holds.
Analogously we can show that for each sequence {y j}j?o o C Y satisfying yo = §

T-1 T-1
limsup | Y h(%j. %1, 970 yj41) — k(%5 %41, 5, Fj41) | <0 (8.55)
T—o00 =0 =0

This implies that the pair of sequences ({x j}‘]?‘;o, {yj} j=0) is (h)-overtaking optimal.
This completes the proof of the theorem. (]

References

[1] Z. Artstein and A. Leizarowitz, Tracking periodic signals with the overtaking criterion, IEEE
Trans. Automatic Control AC-30 (1985), 1123—-1126 (English). Zbl 576.93035.

[2] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Pure and Applied Mathematics, John
Wiley & Sons Inc., New York, 1984. MR 87a:58002. Zbl 641.47066.

[3] D. Carlson and A. Haurie, A turnpike theory for infinite-horizon open-loop competitive
processes, SIAM J. Control Optim. 34 (1996), no. 4, 1405-1419. MR 97d:90120.
Zbl 853.90142.

[4] D. Carlson, A. Haurie, and A. Leizarowitz, Overtaking equilibria for switching regulator and
tracking games, Advances in Dynamic Games and Applications (Geneva, 1992), vol. 1,
Birkhduser Boston, Boston, MA, 1994, pp. 247-268. MR 95a:93118. Zbl 823.90149.

[5] B. D. Coleman, M. Marcus, and V. J. Mizel, On the thermodynamics of periodic phases,
Arch. Rational Mech. Anal. 117 (1992), no. 4, 321-347. MR 93d:73008. Zbl 788.73015.

[6] V. Gaitsgory, Some asymptotic properties of optimal control problems with averaged per-
formance indices considered on unbounded time intervals, Optimization and Nonlinear
Analysis (Haifa, 1990), Pitman Res. Notes Math. Ser., vol. 244, Longman Sci. Tech.,
Harlow, 1992, pp. 130-141. CMP 1 184 637. Zbl 757.49026.

, Limit Hamilton-Jacobi-Isaacs equations for singularly perturbed zero-sum dif-
ferential games, J. Math. Anal. Appl. 202 (1996), no. 3, 862-899. MR 97i:90127.
Zbl 869.49015.

[8] D. Gale, On optimal development in a multisector economy, Rev. Econom. Stud. 34 (1967),
1-19.

[9]1 A. Leizarowitz, Infinite horizon autonomous systems with unbounded cost, Appl. Math.
Optim. 13 (1985), no. 1, 19-43. MR 86g:49002. Zbl 591.93039.

(7]



http://www.emis.de/cgi-bin/MATH-item?576.93035
http://www.ams.org/mathscinet-getitem?mr=87a:58002
http://www.emis.de/cgi-bin/MATH-item?641.47066
http://www.ams.org/mathscinet-getitem?mr=97d:90120
http://www.emis.de/cgi-bin/MATH-item?853.90142
http://www.ams.org/mathscinet-getitem?mr=95a:93118
http://www.emis.de/cgi-bin/MATH-item?823.90149
http://www.ams.org/mathscinet-getitem?mr=93d:73008
http://www.emis.de/cgi-bin/MATH-item?788.73015
http://www.ams.org/mathscinet-getitem?mr=1184637
http://www.emis.de/cgi-bin/MATH-item?757.49026
http://www.ams.org/mathscinet-getitem?mr=97i:90127
http://www.emis.de/cgi-bin/MATH-item?869.49015
http://www.ams.org/mathscinet-getitem?mr=86g:49002
http://www.emis.de/cgi-bin/MATH-item?591.93039

48  The turnpike property for dynamic discrete time zero-sum games

[10] A. Leizarowitz and V. J. Mizel, One-dimensional infinite-horizon variational problems aris-
ing in continuum mechanics, Arch. Rational Mech. Anal. 106 (1989), no. 2, 161-193.
MR 90b:49007. Zbl 672.73010.

[11] V. L. Makarov and A. M. Rubinov, Matematicheskaya Teoriya Ekonomicheskoi Dinamiki i
Ravnovesiya [A Mathematical Theory of Economic Dynamics and Equilibrium], 1zdat.
“Nauka”, Moscow, 1973 (Russian), English translation: Springer-Verlag, New York, 1977.
MR 51#9766.

[12] M. Marcus, Uniform estimates for a variational problem with small parameters, Arch. Ra-
tional Mech. Anal. 124 (1993), no. 1, 67-98. MR 94g:49008. Zbl 793.49019.

[13] A. M. Rubinov, Economic dynamics, J. Sov. Math. 26 (1984), 1975-2012. Zbl 544.90016.

[14] C. C. von Weizsacker, Existence of optimal programs of accumulation for an infinite horizon,
Rev. Econom. Stud. 32 (1965), 85-104.

[15] A.J. Zaslavski, Optimal programs on infinite horizon. I, STAM J. Control Optim. 33 (1995),
no. 6, 1643-1660. MR 96i:49047. Zbl 847.49021.

, Optimal programs on infinite horizon. II, SIAM J. Control Optim. 33 (1995), no. 6,

1661-1686. MR 96i:49047. Zbl 847.49022.

[16]

[17] , Dynamic properties of optimal solutions of variational problems, Nonlinear Anal.
27 (1996), no. 8, 895-931. MR 97h:49022. Zbl 860.49003.
[18] , Turnpike theorem for a class of differential inclusions arising in economic dynamics,

Optimization 42 (1997), no. 2, 139-168. MR 98g:49005. Zbl 923.49006.

[19] A.J. Zaslavski and A. Leizarowitz, Optimal solutions of linear control systems with nonpe-
riodic convex integrands, Math. Oper. Res. 22 (1997), no. 3, 726-746. MR 98g:49018.
Zbl 885.49022.

ALEXANDER J. ZASLAVSKI: DEPARTMENT OF MATHEMATICS, TECHNION-ISRAEL INSTITUTE OF
TECHNOLOGY, 32000, HAIFA, ISRAEL
E-mail address: ajzasl @tx.technion.ac.il


http://www.ams.org/mathscinet-getitem?mr=90b:49007
http://www.emis.de/cgi-bin/MATH-item?672.73010
http://www.ams.org/mathscinet-getitem?mr=51:9766
http://www.ams.org/mathscinet-getitem?mr=94g:49008
http://www.emis.de/cgi-bin/MATH-item?793.49019
http://www.emis.de/cgi-bin/MATH-item?544.90016
http://www.ams.org/mathscinet-getitem?mr=96i:49047
http://www.emis.de/cgi-bin/MATH-item?847.49021
http://www.ams.org/mathscinet-getitem?mr=96i:49047
http://www.emis.de/cgi-bin/MATH-item?847.49022
http://www.ams.org/mathscinet-getitem?mr=97h:49022
http://www.emis.de/cgi-bin/MATH-item?860.49003
http://www.ams.org/mathscinet-getitem?mr=98g:49005
http://www.emis.de/cgi-bin/MATH-item?923.49006
http://www.ams.org/mathscinet-getitem?mr=98g:49018
http://www.emis.de/cgi-bin/MATH-item?885.49022
mailto:ajzasl@tx.technion.ac.il

Mathematical Problems in Engineering

Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years
for one-, two-, and three-dimensional space. Additionally,
such dynamical systems can exhibit a very important and still
unexplained phenomenon, called as the Fermi acceleration
phenomenon. Basically, the phenomenon of Fermi accelera-
tion (FA) is a process in which a classical particle can acquire
unbounded energy from collisions with a heavy moving wall.
This phenomenon was originally proposed by Enrico Fermi
in 1949 as a possible explanation of the origin of the large
energies of the cosmic particles. His original model was
then modified and considered under different approaches
and using many versions. Moreover, applications of FA
have been of a large broad interest in many different fields
of science including plasma physics, astrophysics, atomic
physics, optics, and time-dependent billiard problems and
they are useful for controlling chaos in Engineering and
dynamical systems exhibiting chaos (both conservative and
dissipative chaos).

We intend to publish in this special issue papers reporting
research on time-dependent billiards. The topic includes
both conservative and dissipative dynamics. Papers dis-
cussing dynamical properties, statistical and mathematical
results, stability investigation of the phase space structure,
the phenomenon of Fermi acceleration, conditions for
having suppression of Fermi acceleration, and computational
and numerical methods for exploring these structures and
applications are welcome.

To be acceptable for publication in the special issue of
Mathematical Problems in Engineering, papers must make
significant, original, and correct contributions to one or
more of the topics above mentioned. Mathematical papers
regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

December 1, 2008
March 1, 2009

‘ Manuscript Due

‘ First Round of Reviews

June 1, 2009

‘ Publication Date

Guest Editors

Edson Denis Leonel, Departamento de Estatistica,
Matemadtica Aplicada e Computagdo, Instituto de
Geociéncias e Ciéncias Exatas, Universidade Estadual
Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro,
SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State
University, Vorob’evy Gory, Moscow 119992, Russia;
loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers-4pt
	Guest Editors

