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We consider a class of dynamic discrete-time two-player zero-sum games. We show
that for a generic cost function and each initial state, there exists a pair of overtaking
equilibria strategies over an infinite horizon. We also establish that for a generic cost
function f , there exists a pair of stationary equilibria strategies (xf ,yf ) such that each
pair of “approximate” equilibria strategies spends almost all of its time in a small
neighborhood of (xf ,yf ).

1. Introduction

The study of variational and optimal control problems defined on infinite intervals has
recently been a rapidly growing area of research [4, 6, 9, 10, 15, 16, 17]. These problems
arise in engineering [1, 19], in models of economic dynamics [11, 13, 18], in continuum
mechanics [5, 10, 12], and in game theory [3, 4, 7].

In this paper, we study the existence and the structure of “approximate” equilibria
for dynamic two-player zero-sum games.

Denote by ‖·‖ the Euclidean norm in R
m. Let X ⊂ R

m1 and Y ⊂ R
m2 be nonempty

convex compact sets. Denote by M the set of all continuous functions f : X ×X ×
Y ×Y → R

1 such that:

• for each (y1,y2) ∈ Y ×Y the function (x1,x2) → f (x1,x2,y1,y2), (x1,x2) ∈
X×X is convex;

• for each (x1,x2) ∈ X×X the function (y1,y2) → f (x1,x2,y1,y2), (y1,y2) ∈
Y ×Y is concave.

For the set M we define a metric ρ : M×M → R
1 by

ρ(f,g)=sup
{∣∣f (x1,x2,y1,y2

)−g
(
x1,x2,y1,y2

)∣∣ : x1,x2 ∈X, y1,y2 ∈Y
}
, f,g∈M.

(1.1)

Clearly M is a complete metric space.
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Given f ∈ M and an integer n ≥ 1, we consider a discrete-time two-player zero-sum
game over the interval [0,n]. For this game {{xi}ni=0 : xi ∈ X,i = 0, . . . ,n} is the set of
strategies for the first player, {{yi}ni=0 : yi ∈ Y, i = 0, . . . ,n} is the set of strategies for
the second player, and the cost for the first player associated with the strategies {xi}ni=0,

{yi}ni=0 is given by
∑n−1

i=0 f (xi,xi+1,yi,yi+1).

Definition 1.1. Let f ∈ M, n ≥ 1 be an integer and let M ∈ [0,∞). A pair of sequences
{x̄i}ni=0 ⊂ X, {ȳi}ni=0 ⊂ Y is called (f,M)-good if the following properties hold:

(i) for each sequence {xi}ni=0 ⊂ X satisfying x0 = x̄0, xn = x̄n

M+
n−1∑
i=0

f
(
xi,xi+1, ȳi , ȳi+1

)≥
n−1∑
i=0

f
(
x̄i , x̄i+1, ȳi , ȳi+1

); (1.2)

(ii) for each sequence {yi}ni=0 ⊂ Y satisfying y0 = ȳ0, yn = ȳn

M+
n−1∑
i=0

f
(
x̄i , x̄i+1, ȳi , ȳi+1

)≥
n−1∑
i=0

f
(
x̄i , x̄i+1,yi,yi+1

)
. (1.3)

If a pair of sequences {xi}ni=0 ⊂ X, {yi}ni=0 ⊂ Y is (f,0)-good, then it is called (f )-
optimal.

Our first main result in this paper deals with the so-called “turnpike property” of
“good” pairs of sequences. To have this property means, roughly speaking, that the
“good” pairs of sequences are determined mainly by the cost function, and are essen-
tially independent of the choice of interval and endpoint conditions, except in regions
close to the endpoints. Turnpike properties are well known in mathematical economics
and optimal control (see [11, 13, 15, 16, 17, 18, 19] and the references therein).

Consider any f ∈ M. We say that the function f has the turnpike property if there
exists a unique pair (xf ,yf ) ∈ X×Y for which the following assertion holds.

For each ε > 0 there exist an integer n0 ≥ 2 and a number δ > 0 such that, for each
integer n ≥ 2n0 and each (f,δ)-good pair of sequences {xi}ni=0 ⊂ X, {yi}ni=0 ⊂ Y the
relations ‖xi −xf ‖, ‖yi −yf ‖ ≤ ε holds for all integers i ∈ [n0,n−n0].

In this paper, our goal is to show that the turnpike property holds for a generic
f ∈ M. We prove the existence of a set F ⊂ M which is a countable intersection of
open everywhere dense sets in M such that each f ∈ F has the turnpike property (see
Theorem 2.1). Results of this kind for classes of single-player control systems have
been established in [15, 16, 17]. Thus, instead of considering the turnpike property
for a single function, we investigate it for a space of all such functions equipped with
some natural metric, and show that this property holds for most of these functions.
This allows us to establish the turnpike property without restrictive assumptions on the
functions.

We also study the existence of equilibria over an infinite horizon for the class of zero-
sum games considered in the paper. We employ the following version of the overtaking
optimality criterion which was introduced in the economic literature by Gale [8] and
von Weizsacker [14] and used in control and game theory [1, 3, 4, 19].
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Definition 1.2. Let f ∈ M. A pair of sequences {x̄i}∞i=0 ⊂ X, {ȳi}∞i=0 ⊂ Y is called
(f )-overtaking optimal if the following properties hold:

(i) for each sequence {xi}∞i=0 ⊂ X satisfying x0 = x̄0

lim sup
T→∞

[
T−1∑
i=0

f
(
x̄i , x̄i+1, ȳi , ȳi+1

)−T−1∑
i=0

f
(
xi,xi+1, ȳi , ȳi+1

)]≤ 0; (1.4)

(ii) for each sequence {yi}∞i=0 ⊂ Y satisfying y0 = ȳ0

lim sup
T→∞

[
T−1∑
i=0

f
(
x̄i , x̄i+1,yi,yi+1

)−T−1∑
i=0

f
(
x̄i , x̄i+1, ȳi , ȳi+1

)]≤ 0. (1.5)

Our second main result (see Theorem 2.2) shows that for a generic f ∈ M and each
(x,y) ∈ X×Y there exists an (f )-overtaking optimal pair of sequences {xi}∞i=0 ⊂ X,

{yi}∞i=0 ⊂ Y such that x0 = x, y0 = y.

2. Main results

In this section we present our main results.

Theorem 2.1. There exists a set F ⊂ M which is a countable intersection of open
everywhere dense sets in M such that for each f ∈ F the following assertions hold.

(1) There exists a unique pair (xf ,yf ) ∈ X×Y for which

sup
y∈Y

f
(
xf ,xf ,y,y

)= f
(
xf ,xf ,yf ,yf

)= inf
x∈Xf

(
x,x,yf ,yf

)
. (2.1)

(2) For each ε > 0 there exist a neighborhood U of f in M, an integer n0 ≥ 2, and
a number δ > 0 such that for each g ∈ U , each integer n ≥ 2n0, and each (g,δ)-good
pair of sequences {xi}ni=0 ⊂ X, {yi}ni=0 ⊂ Y the relation

‖xi −xf ‖, ‖yi −yf ‖ ≤ ε (2.2)

holds for all integers i ∈ [n0,n−n0]. Moreover, if ‖x0 −xf ‖,‖y0 −yf ‖ ≤ δ, then (2.2)
holds for all integers i ∈ [0,n−n0], and if ‖xn−xf ‖,‖yn−yf ‖ ≤ δ, then (2.2) is valid
for all integers i ∈ [n0,n].

Theorem 2.2. There exists a set F ⊂ M which is a countable intersection of open
everywhere dense sets in M such that for each f ∈ F the following assertion holds.

For each x ∈ X and each y ∈ Y there exists an (f )-overtaking optimal pair of
sequences {xi}∞i=0 ⊂ X, {yi}∞i=0 ⊂ Y such that x0 = x, y0 = y.

3. Definitions and notations

Let f ∈ M. Define a function f̄ : X×Y → R
1 by

f̄ (x,y) = f (x,x,y,y), x ∈ X, y ∈ Y. (3.1)
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Then there exists a saddle point (xf ,yf ) ∈ X×Y for f̄ . We have

sup
y∈Y

f̄
(
xf ,y

)= f̄
(
xf ,yf

)= inf
x∈X f̄

(
x,yf

)
. (3.2)

Set
µ(f ) = f̄

(
xf ,yf

)
. (3.3)

Definition 3.1. Let f ∈ M. A pair of sequences {xi}∞i=0 ⊂ X, {yi}∞i=0 ⊂ Y is called
(f )-minimal if for each integer n ≥ 2 the pair of sequences {xi}ni=0, {yi}ni=0 is (f )-
optimal.

We show in Section 5 (see Proposition 5.3) that for each f ∈ M, each x ∈ X, and
each y ∈ Y there exists an (f )-minimal pair of sequences {xi}∞i=0 ⊂ X, {yi}∞i=0 ⊂ Y

such that x0 = x, y0 = y.
Let f ∈ M, n ≥ 1 be an integer, and let ξ = (ξ1,ξ2,ξ3,ξ4) ∈ X×X×Y ×Y . Define

�X(ξ,n) = {{xi}ni=0 ⊂ X : x0 = ξ1, xn = ξ2
}
, (3.4)

�Y (ξ,n) = {{yi}ni=0 ⊂ Y : y0 = ξ3, yn = ξ4
}
, (3.5)

f (ξ,n)
((
x0, . . . ,xi, . . . ,xn

)
,
(
y0, . . . ,yi, . . . ,yn

))=
n−1∑
i=0

f
(
xi,xi+1,yi,yi+1

)
,

{xi}ni=0 ∈ �X(ξ,n), {yi}ni=0 ∈ �Y (ξ,n).

(3.6)

4. Preliminary results

Let M,N be nonempty sets and let f : M×N → R
1. Set

f a(x) = sup
y∈N

f (x,y), x ∈ M, f b(y) = inf
x∈Mf (x,y), y ∈ N, (4.1)

vaf = inf
x∈M

sup
y∈N

f (x,y), vbf = sup
y∈N

inf
x∈M

f (x,y). (4.2)

Clearly
vbf ≤ vaf . (4.3)

We have the following result (see [2, Chapter 6, Section 2, Proposition 1]).

Proposition 4.1. Let f : M×N → R
1, x̄ ∈ M , ȳ ∈ N . Then

sup
y∈N

f (x̄,y) = f (x̄, ȳ) = inf
x∈Mf (x, ȳ) (4.4)

if and only if

vaf = vbf , sup
y∈N

f (x̄,y) = vaf , inf
x∈Mf (x, ȳ) = vbf . (4.5)
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Let f : M×N → R
1. If (x̄, ȳ) ∈ M×N satisfies (4.4) that it is called a saddle point

(for f ). We have the following result (see [2, Chapter 6, Section 2, Theorem 8]).

Proposition 4.2. Let M ⊂ R
m, N ⊂ R

n be convex compact sets and let f : M×N →
R

1 be a continuous function. Assume that for each y ∈ N , the function x → f (x,y),
x ∈ M is convex and for each x ∈ M , the function y → f (x,y), y ∈ N is concave.
Then there exists a saddle point for f .

Proposition 4.3. Let M,N be nonempty sets, f : M×N → R
1 and

−∞ < vaf = vbf < +∞, x0 ∈ M, y0 ∈ N, �1,�2 ∈ [0,∞), (4.6)

sup
y∈N

f
(
x0,y

)≤ vaf +�1, inf
x∈Mf

(
x,y0

)≥ vbf −�2. (4.7)

Then

sup
y∈N

f
(
x0,y

)−�1 −�2 ≤ f
(
x0,y0

)≤ inf
x∈Mf

(
x,y0

)+�1 +�2. (4.8)

Proof. By (4.7) and (4.6)

sup
y∈N

f
(
x0,y

)−�1 −�2

≤ vaf −�2 = vbf −�2 ≤ inf
x∈Mf

(
x,y0

)≤ f
(
x0,y0

)
≤ sup

y∈N
f
(
x0,y

)≤ vaf +�1 = vbf +�1 ≤ inf
x∈Mf

(
x,y0

)+�1 +�2.

(4.9)

This completes the proof. �

Proposition 4.4. Let M,N be nonempty sets and let f : M ×N → R
1. Assume that

(4.6) is valid, x0 ∈ M , y0 ∈ N , �1, �2 ∈ [0,∞), and

sup
y∈N

f
(
x0,y

)−�2 ≤ f
(
x0,y0

)≤ inf
x∈Mf

(
x,y0

)+�1. (4.10)

Then

sup
y∈N

f
(
x0,y

)≤ vaf +�1 +�2, inf
x∈Mf

(
x,y0

)≥ vbf −�1 −�2. (4.11)

Proof. It follows from (4.10), (4.2), (4.6), and (4.3) that

vbf −�2 = vaf −�2 ≤ sup
y∈N

f
(
x0,y

)−�2 ≤ inf
x∈Mf

(
x,y0

)+�1 ≤ vbf +�1. (4.12)

This implies (4.11). The proposition is thus proved. �
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5. The existence of a minimal pair of sequences

Let f ∈ M, xf ∈ X, yf ∈ Y , and

sup
y∈Y

f̄
(
xf ,y

)= f̄
(
xf ,yf

)= inf
x∈X f̄

(
x,yf

)
. (5.1)

Proposition 5.1. Let n ≥ 2 be an integer and

x̄i = xf , ȳi = yf , i = 0, . . . ,n. (5.2)

Then the pair of sequences {x̄i}ni=0, {ȳi}ni=0 is (f )-optimal.

Proof. Assume that {xi}ni=0 ⊂ X, {yi}ni=0 ⊂ Y , and

x0,xn = xf , y0,yn = yf . (5.3)

By (5.1), (5.2), and (5.3)

n−1∑
i=0

f
(
xi,xi+1, ȳi , ȳi+1

)=
n−1∑
i=0

f
(
xi,xi+1,yf ,yf

)

≥ nf

(
n−1

n−1∑
i=0

xi,n
−1

n−1∑
i=0

xi+1,yf ,yf

)

= nf

(
n−1

n−1∑
i=0

xi,n
−1

n−1∑
i=0

xi,yf ,yf

)

≥ nf
(
xf ,xf ,yf ,yf

)
,

n−1∑
i=0

f
(
x̄i , x̄i+1,yi,yi+1

)=
n−1∑
i=0

f
(
xf ,xf ,yi,yi+1

)

≤ nf

(
xf ,xf ,n

−1
n−1∑
i=0

yi,n
−1

n−1∑
i=0

yi+1

)

= nf

(
xf ,xf ,n

−1
n−1∑
i=0

yi,n
−1

n−1∑
i=0

yi

)

≤ nf
(
xf ,xf ,yf ,yf

)
.

(5.4)

This completes the proof of the proposition. �

Proposition 5.2. Let n ≥ 2 be an integer and let({
x
(k)
i

}n
i=0

,
{
y
(k)
i

}n
i=0

)
⊂ X×Y, k = 1,2, . . . (5.5)

be a sequence of (f )-optimal pairs. Assume that

lim
k→∞x

(k)
i = xi, lim

k→∞y
(k)
i = yi, i = 0,1,2, . . . ,n. (5.6)
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Then the pair of sequences ({xi}ni=0, {yi}ni=0) is (f )-optimal.

Proof. Let
{ui}ni=0 ⊂ X, u0 = x0, un = xn. (5.7)

We show that

n−1∑
i=0

f
(
xi,xi+1,yi,yi+1

)≤
n−1∑
i=0

f
(
ui,ui+1,yi,yi+1

)
. (5.8)

Assume the contrary. Then there exists ε > 0 such that

n−1∑
i=0

f
(
xi,xi+1,yi,yi+1

)
>

n−1∑
i=0

f
(
ui,ui+1,yi,yi+1

)+8ε. (5.9)

There exists a number δ ∈ (0,ε) such that∣∣f (z1,z2,ξ1,ξ2
)−f

(
z̄1, z̄2, ξ̄1, ξ̄2

)∣∣≤ ε(8n)−1 (5.10)

for each z1,z2, z̄1, z̄2 ∈ X, ξ1,ξ2, ξ̄1, ξ̄2 ∈ Y satisfying ‖zi − z̄i‖,‖ξi − ξ̄i‖ ≤ δ, i = 1,2.
There exists an integer q ≥ 1 such that∥∥xi −x

(q)
i

∥∥, ∥∥yi −y
(q)
i

∥∥≤ δ, i = 0, . . . ,n. (5.11)

Define {u(q)
i }ni=0 ⊂ X by

u
(q)

0 = x
(q)

0 , u
(q)
n = x

(q)
n , u

(q)
i = ui, i = 1, . . . ,n−1. (5.12)

Since the pair of sequences
({
x
(q)
i

}n
i=0,

{
y
(q)
i

}n
i=0

)
is (f )-optimal it follows from

(5.12) that

n−1∑
i=0

f
(
x
(q)
i ,x

(q)

i+1,y
(q)
i ,y

(q)

i+1

)
≤

n−1∑
i=0

f
(
u
(q)
i ,u

(q)

i+1,y
(q)
i ,y

(q)

i+1

)
. (5.13)

By the definition of δ (see (5.10)), (5.11), (5.12), and (5.7) for i = 0, . . . ,n−1,∣∣∣f (x(q)
i ,x

(q)

i+1,y
(q)
i ,y

(q)

i+1

)
−f

(
xi,xi+1,yi,yi+1

)∣∣∣≤ (8n)−1ε,

∣∣∣f (u(q)
i ,u

(q)

i+1,y
(q)
i ,y

(q)

i+1

)
−f

(
ui,ui+1,yi,yi+1

)∣∣∣≤ (8n)−1ε.

(5.14)

It follows from these relations and (5.9) that

n−1∑
i=0

f
(
x
(q)
i ,x

(q)

i+1,y
(q)
i ,y

(q)

i+1

)
−

n−1∑
i=0

f
(
u
(q)
i ,u

(q)

i+1,y
(q)
i ,y

(q)

i+1

)
> ε. (5.15)

This is contradictory to (5.13). The obtained contradiction proves that (5.8) is valid.
Analogously we can show that for each {ui}ni=0 ⊂ Y satisfying u0 = y0, un = yn,
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the following relation holds:

n−1∑
i=0

f
(
xi,xi+1,yi,yi+1

)≥
n−1∑
i=0

f
(
xi,xi+1,ui,ui+1

)
. (5.16)

This completes the proof of the proposition. �

Proposition 5.3. Let f ∈ M and let x ∈ X, y ∈ Y . Then there exists an (f )-minimal
pair of sequences {xi}∞i=0 ⊂ X, {yi}∞i=0 ⊂ Y such that x0 = x, y0 = y.

Proof. By Proposition 4.2, for each integer n ≥ 2 there exists an (f )-optimal pair of
sequences {x(n)

i }ni=0 ⊂ X, {y(n)
i }ni=0 ⊂ Y such that x

(n)
0 = x, y

(n)
0 = y. There exist a

pair of sequences {xi}∞i=0 ⊂ X, {yi}∞i=0 ⊂ Y and a strictly increasing sequence of natural
numbers {nk}∞k=1 such that for each integer i ≥ 0

x
(nk)
i −→ xi, y

(nk)
i −→ yi as k −→ ∞. (5.17)

It follows from Proposition 5.2 that the pair of sequences {xi}∞i=0, {yi}∞i=0 is (f )-
minimal. The proposition is proved. �

6. Preliminary lemmas for Theorem 2.1

Let f ∈ M. There exist xf ∈ X, yf ∈ Y such that

sup
y∈Y

f
(
xf ,xf ,y,y

)= f
(
xf ,xf ,yf ,yf

)= inf
x∈Xf

(
x,x,yf ,yf

)
. (6.1)

Let r ∈ (0,1). Define fr : X2 ×Y 2 → R
1 by

fr
(
x1,x2,y1,y2

)= f
(
x1,x2,y1,y2

)+r‖x1 −xf ‖−r‖y1 −yf ‖,
x1,x2 ∈ X, y1,y2 ∈ Y.

(6.2)

Clearly fr ∈ M,

sup
y∈Y

fr
(
xf ,xf ,y,y

)= fr
(
xf ,xf ,yf ,yf

)= inf
x∈Xfr

(
x,x,yf ,yf

)
. (6.3)

Lemma 6.1. Let ε ∈ (0,1). Then there exists a number δ ∈ (0,ε) such that for each
integer n ≥ 2 and each (fr ,δ)-good pair of sequences {xi}ni=0 ⊂ X, {yi}ni=0 ⊂ Y

satisfying

xn,x0 = xf , yn,y0 = yf , (6.4)

the following relations hold:

‖xi −xf ‖, ‖yi −yf ‖ ≤ ε, i = 0, . . . ,n. (6.5)



Alexander J. Zaslavski 29

Proof. Choose a number

δ ∈ (0,8−1rε
)
. (6.6)

Assume that an integer n ≥ 2, {xi}ni=0 ⊂ X, {yi}ni=0 ⊂ Y is an (fr ,δ)-good pair of
sequences and (6.4) is valid. Set

ξ1,ξ2 = xf , ξ3,ξ4 = yf , ξ = (
ξ1,ξ2,ξ3,ξ4

)
. (6.7)

Consider the sets �X(ξ,n), �Y (ξ,n) and the functions (fr)(ξ,n), f (ξ,n) (see (3.4), (3.5),
and (3.6)). It follows from (6.1) and Proposition 5.1 that

sup

{
n−1∑
i=0

f
(
xf ,xf ,ui,ui+1

) : {ui}ni=0 ∈ �Y (ξ,n)

}

= nf
(
xf ,xf ,yf ,yf

)
= inf

{
n−1∑
i=0

f
(
pi,pi+1,yf ,yf

) : {pi}ni=0 ∈ �X(ξ,n)

}
.

(6.8)

Equation (6.8) and Proposition 4.1 imply that

sup

{
n−1∑
i=0

f
(
xf ,xf ,ui,ui+1

) : {ui}ni=0 ∈ �Y (ξ,n)

}

= inf

{
sup

{
n−1∑
i=0

f
(
pi,pi+1,ui,ui+1

) : {ui}ni=0 ∈ �Y (ξ,n)

}
: {pi}ni=0 ∈ �X(ξ,n)

}
,

(6.9)

inf

{
n−1∑
i=0

f
(
pi,pi+1,yf ,yf

) : {pi}ni=0 ∈ �X(ξ,n)

}

= sup

{
inf

{
n−1∑
i=0

f
(
pi,pi+1,ui,ui+1

) : {pi}ni=0 ∈ �X(ξ,n)

}
: {ui}ni=0 ∈ �Y (ξ,n)

}
.

(6.10)

It follows from (6.3) and Proposition 5.1 that

sup

{
n−1∑
i=0

fr
(
xf ,xf ,ui,ui+1

) : {ui}ni=0 ∈ �Y (ξ,n)

}

= nfr
(
xf ,xf ,yf ,yf

)
= inf

{
n−1∑
i=0

fr
(
pi,pi+1,yf ,yf

) : {pi}ni=0 ∈ �X(ξ,n)

}
.

(6.11)
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Equation (6.11) and Proposition 4.1 imply that

sup

{
n−1∑
i=0

fr
(
xf ,xf ,ui,ui+1

) : {ui}ni=0 ∈ �Y (ξ,n)

}

= inf

{
sup

{
n−1∑
i=0

fr
(
pi,pi+1,ui,ui+1

) : {ui}ni=0 ∈ �Y (ξ,n)

}
: {pi}ni=0 ∈ �X(ξ,n)

}
,

(6.12)

inf

{
n−1∑
i=0

fr
(
pi,pi+1,yf ,yf

) : {pi}ni=0 ∈ �X(ξ,n)

}

= sup

{
inf

{
n−1∑
i=0

fr
(
pi,pi+1,ui,ui+1

) : {pi}ni=0 ∈ �X(ξ,n)

}
: {ui}ni=0 ∈ �Y (ξ,n)

}
.

(6.13)

By (6.4) and (6.7)

{xi}ni=0 ∈ �X(ξ,n), {yi}ni=0 ∈ �Y (ξ,n). (6.14)

Since ({xi}ni=0, {yi}ni=0) is an (fr ,δ)-good pair of sequences, we conclude that

sup

{
n−1∑
i=0

fr
(
xi,xi+1,ui,ui+1

) : {ui}ni=0 ∈ �Y (ξ,n)

}
−δ

≤
n−1∑
i=0

fr
(
xi,xi+1,yi,yi+1

)

≤ inf

{
n−1∑
i=0

fr
(
pi,pi+1,yi,yi+1

) : {pi}ni=0 ∈ �X(ξ,n)

}
+δ.

(6.15)

It follows from Proposition 4.4, (6.12), (6.13), and (6.15) that

sup

{
n−1∑
i=0

fr
(
xi,xi+1,ui,ui+1

) : {ui}ni=0 ∈ �Y (ξ,n)

}

≤ sup

{
n−1∑
i=0

fr
(
xf ,xf ,ui,ui+1

) : {ui}ni=0 ∈ �Y (ξ,n)

}
+2δ,

(6.16)

inf

{
n−1∑
i=0

fr
(
pi,pi+1,yi,yi+1

) : {pi}ni=0 ∈ �X(ξ,n)

}

≥ inf

{
n−1∑
i=0

fr
(
pi,pi+1,yf ,yf

) : {pi}ni=0 ∈ �X(ξ,n)

}
−2δ.

(6.17)
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By (6.2), (6.8), (6.11), and (6.16)

nf
(
xf ,xf ,yf ,yf

)= nfr
(
xf ,xf ,yf ,yf

)
≥ sup

{
n−1∑
i=0

fr
(
xi,xi+1,ui,ui+1

) : {ui}ni=0 ∈ �Y (ξ,n)

}
−2δ

≥ −2δ+
n−1∑
i=0

fr
(
xi,xi+1,yf ,yf

)

= −2δ+r

n−1∑
i=0

‖xi −xf ‖+
n−1∑
i=0

f
(
xi,xi+1,yf ,yf

)

≥ −2δ+r

n−1∑
i=0

‖xi −xf ‖+nf
(
xf ,xf ,yf ,yf

)
.

(6.18)

By (6.2), (6.8), (6.11), and (6.17)

nf
(
xf ,xf ,yf ,yf

)= nfr
(
xf ,xf ,yf ,yf

)
≤ inf

{
n−1∑
i=0

fr
(
pi,pi+1,yi,yi+1

) : {pi}ni=0 ∈ �X(ξ,n)

}
+2δ

≤ 2δ+
n−1∑
i=0

fr
(
xf ,xf ,yi,yi+1

)

= 2δ−r

n−1∑
i=0

‖yi −yf ‖+
n−1∑
i=0

f
(
xf ,xf ,yi,yi+1

)

≤ 2δ−r

n−1∑
i=0

‖yi −yf ‖+nf
(
xf ,xf ,yf ,yf

)
.

(6.19)

Equations (6.6), (6.18), and (6.19) imply that for i = 1, . . . ,n−1

‖xi −xf ‖ ≤ r−1(2δ) < ε, ‖yi −yf ‖ ≤ 2δr−1 < ε. (6.20)

This completes the proof of the lemma. �

Choose a number

D0 ≥ sup
{∣∣fr(x1,x2,y1,y2

)∣∣ : x1,x2 ∈ X, y1,y2 ∈ Y
}
. (6.21)

We can easily prove the following lemma.
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Lemma 6.2. Let n ≥ 2 be an integer, M be a positive number, and let {xi}ni=0 ⊂ X,

{yi}ni=0 ⊂ Y be an (fr ,M)-good pair of sequences. Then the pair of sequences {x̄i}ni=0 ⊂
X, {ȳi}ni=0 ⊂ Y defined by

x̄i = xi, ȳi = yi, i = 1, . . . ,n−1, x̄0, x̄n = xf , ȳ0, ȳn = yf (6.22)

is (fr ,M+8D0)-good.

By using the uniform continuity of the function fr : X×X×Y ×Y we can easily
prove the following lemma.

Lemma 6.3. Let ε be a positive number. There exists a number δ > 0 such that for each
integer n ≥ 2 and each sequences {xi}ni=0, {x̄i}ni=0 ⊂ X, {yi}ni=0, {ȳi}ni=0 ⊂ Y which
satisfy

‖x̄j −xj‖, ‖ȳj −yj‖ ≤ δ, j = 0,n, xj = x̄j , yj = ȳj , j = 1, . . . ,n−1,
(6.23)

the following relation holds:

∣∣∣∣∣
n−1∑
i=0

[
fr
(
xi,xi+1,yi,yi+1

)−fr
(
x̄i , x̄i+1, ȳi , ȳi+1

)]∣∣∣∣∣≤ ε. (6.24)

Lemma 6.3 implies the following result.

Lemma 6.4. Assume that ε > 0. Then there exists a number δ > 0 such that for each
integer n ≥ 2, each (fr ,ε)-good pair of sequences {xi}ni=0 ⊂ X, {yi}ni=0 ⊂ Y and each
pair of sequences {x̄i}ni=0 ⊂ X, {ȳi}ni=0 ⊂ Y the following assertion holds.

If (6.23) is valid, then the pair of sequences ({x̄i}ni=0, {ȳi}ni=0) is (fr ,2ε)-good.

Lemmas 6.4 and 6.1 imply the following.

Lemma 6.5. Let ε ∈ (0,1). Then there exists a number δ ∈ (0,ε) such that for each
integer n ≥ 2 and each (fr ,δ)-good pair of sequences {xi}ni=0 ⊂ X, {yi}ni=0 ⊂ Y which
satisfies ‖xj − xf ‖,‖yj − yf ‖ ≤ δ,j = 0,n, the following relations hold: ‖xi − xf ‖,
‖yi −yf ‖ ≤ ε, i = 0, . . . ,n.

Denote by Card(E) the cardinality of a set E.

Lemma 6.6. Let M be a positive number and let ε ∈ (0,1). Then there exists an integer
n0 ≥ 4 such that for each (fr ,M)-good pair of sequences {xi}n0

i=0 ⊂ X, {yi}n0
i=0 ⊂ Y

which satisfies

x0,xn0 = xf , y0,yn0 = yf , (6.25)
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there is j ∈ {1, . . . ,n0 −1} for which

‖xj −xf ‖, ‖yj −yf ‖ ≤ ε. (6.26)

Proof. Choose a natural number

n0 > 8+8(rε)−1M. (6.27)

Set

ξ1,ξ2 = xf , ξ3,ξ4 = yf , ξ = {ξi}4
i=1. (6.28)

Assume that {xi}n0
i=0 ⊂ X, {yi}n0

i=0 ⊂ Y is an (fr ,M)-good pair of sequences and
(6.25) holds. It follows from Proposition 4.4 that

sup




n0−1∑
i=0

fr
(
xi,xi+1,ui,ui+1

) : {ui}n0
i=0 ∈ �Y

(
ξ,n0

)
≤ inf


sup



n0−1∑
i=0

fr
(
pi,pi+1,ui,ui+1

) : {ui}n0
i=0 ∈�Y

(
ξ,n0

) :{pi}n0
i=0 ∈�X

(
ξ,n0

)+2M,

(6.29)

inf




n0−1∑
i=0

fr
(
pi,pi+1,yi,yi+1

) : {pi}n0
i=0 ∈ �X

(
ξ,n0

)
≥ sup


inf




n0−1∑
i=0

fr
(
pi,pi+1,ui,ui+1

) : {pi}n0
i=0 ∈�X

(
ξ,n0

) :{ui}n0
i=0 ∈�Y

(
ξ,n0

)−2M.

(6.30)

By Proposition 5.1, (6.3), and Propositions 4.1, 4.2

inf


sup




n0−1∑
i=0

fr
(
pi,pi+1,ui,ui+1

) : {ui}n0
i=0 ∈ �Y

(
ξ,n0

) : {pi}n0
i=0 ∈ �X

(
ξ,n0

)
= sup


inf




n0−1∑
i=0

fr
(
pi,pi+1,ui,ui+1

) : {pi}n0
i=0 ∈�X

(
ξ,n0

) :{ui}n0
i=0 ∈�Y

(
ξ,n0

)
= n0fr

(
xf ,xf ,yf ,yf

)
.

(6.31)
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Equations (6.2), (6.29), (6.30), and (6.31) imply that

n0f
(
xf ,xf ,yf ,yf

)= n0fr
(
xf ,xf ,yf ,yf

)
≥ −2M+sup




n0−1∑
i=0

fr
(
xi,xi+1,ui,ui+1

) : {ui}n0
i=0 ∈ �Y

(
ξ,n0

)
≥ −2M+

n0−1∑
i=0

fr
(
xi,xi+1,yf ,yf

)

= −2M+
n0−1∑
i=0

f
(
xi,xi+1,yf ,yf

)+r

n0−1∑
i=0

‖xi −xf ‖,
(6.32)

n0f
(
xf ,xf ,yf ,yf

)= n0fr
(
xf ,xf ,yf ,yf

)
≤ 2M+ inf




n0−1∑
i=0

fr
(
pi,pi+1,yi,yi+1

) : {pi}n0
i=0 ∈ �X

(
ξ,n0

)
≤ 2M+

n0−1∑
i=0

fr
(
xf ,xf ,yi,yi+1

)

= 2M+
n0−1∑
i=0

f
(
xf ,xf ,yi,yi+1

)−r

n0−1∑
i=0

‖yi −yf ‖.
(6.33)

It follows from (6.1) and Proposition 5.1 that

n0−1∑
i=0

f
(
xi,xi+1,yf ,yf

)≥ n0f
(
xf ,xf ,yf ,yf

)≥
n0−1∑
i=0

f
(
xf ,xf ,yi,yi+1

)
. (6.34)

Together with (6.32) and (6.33) this implies that

n0f
(
xf ,xf ,yf ,yf

)≥ −2M+n0f
(
xf ,xf ,yf ,yf

)+r

n0−1∑
i=0

‖xi −xf ‖,

n0f
(
xf ,xf ,yf ,yf

)≤ 2M+n0f
(
xf ,xf ,yf ,yf

)−r

n0−1∑
i=0

‖yi −yf ‖,

r

n0−1∑
i=0

‖xi −xf ‖ ≤ 2M, r

n0−1∑
i=0

‖yi −yf ‖ ≤ 2M.

(6.35)
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By (6.25), (6.27), and (6.35)

εCard
{
i ∈ {1, . . . ,n0 −1} : ‖xi −xf ‖ ≥ ε

}≤ 2Mr−1,

εCard
{
i ∈ {1, . . . ,n0 −1} : ‖yi −yf ‖ ≥ ε

}≤ 2Mr−1,

Card
{
i ∈ {1, . . . ,n0 −1} : ‖xi −xf ‖ < ε, ‖yi −yf ‖ < ε

}≥ n0 −1−4M(εr)−1 > 6.
(6.36)

This completes the proof of the lemma. �

Lemmas 6.2 and 6.6 imply the following.

Lemma 6.7. Let ε ∈ (0,1), M ∈ (0,∞). Then there exists an integer n0 ≥ 4 such
that for each (fr ,M)-good pair of sequences {xi}n0

i=0 ⊂ X, {yi}n0
i=0 ⊂ Y there is

j ∈ {1, . . . ,n0 −1} for which ‖xf −xj‖,‖yf −yj‖ ≤ ε.

Lemma 6.8. Let ε ∈ (0,1), M ∈ (0,∞). Then there exists an integer n0 ≥ 4 and a
neighborhood U of fr in M such that for each g ∈ U and each (g,M)-good pair of
sequences {xi}n0

i=0 ⊂ X, {yi}n0
i=0 ⊂ Y there is j ∈ {1, . . . ,n0 −1} for which

‖xf −xj‖,‖yf −yj‖ ≤ ε. (6.37)

Proof. By Lemma 6.7 there is an integer n0 ≥ 4 such that for each (fr ,M +8)-good
pair of sequences {xi}n0

i=0 ⊂ X, {yi}n0
i=0 ⊂ Y there is j ∈ {1, . . . ,n0 −1} for which (6.37)

is valid. Set
U = {

g ∈ M : ρ(fr,g)≤ (16n0
)−1}

. (6.38)

Assume that g ∈ U and {xi}n0
i=0 ⊂ X, {yi}n0

i=0 ⊂ Y is a (g,M)-good pair of sequences.
By (6.38) the pair of sequences {xi}n0

i=0, {yi}n0
i=0 is (fr ,M + 8)-good. It follows from

the definition of n0 that there exists j ∈ {1, . . . ,n0 −1} for which (6.37) is valid. The
lemma is proved. �

Lemma 6.9. Let ε ∈ (0,1). Then there exist a neighborhood U of fr in M, a number
δ ∈ (0,ε), and an integer n1 ≥ 4 such that for each g ∈ U , each integer n ≥ 2n1, and
each (g,δ)-good pair of sequences {xi}ni=0 ⊂ X, {yi}ni=0 ⊂ Y the relation

‖xi −xf ‖,‖yi −yf ‖ ≤ ε (6.39)

holds for all i ∈ [n1,n−n1]. Moreover, if ‖x0 −xf ‖,‖y0 −yf ‖ ≤ δ, then (6.39) holds
for all i ∈ [0,n− n1], and if ‖xn − xf ‖,‖yn − yf ‖ ≤ δ, then (6.39) is valid for all
i ∈ [n1,n].

Proof. By Lemma 6.5 there exists δ0 ∈ (0,ε) such that for each integer n ≥ 2 and each
(fr ,δ0)-good pair of sequences {xi}ni=0 ⊂ X, {yi}ni=0 ⊂ Y satisfying

‖xj −xf ‖,‖yj −yf ‖ ≤ δ0, j = 0,n, (6.40)

the relation (6.39) is valid for i = 0, . . . ,n. By Lemma 6.8 there exists an integer n0 ≥ 4
and a neighborhood U0 of fr in M such that for each g ∈ U0 and each (g,8)-good pair
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of sequences {xi}n0
i=0 ⊂ X, {yi}n0

i=0 ⊂ Y there is j ∈ {1, . . . ,n0 −1} for which

‖xj −xf ‖,‖yj −yf ‖ ≤ δ0. (6.41)

Fix an integer
n1 ≥ 4n0 (6.42)

and a number
δ ∈ (0,4−1δ0

)
. (6.43)

Define
U = U0 ∩

{
g ∈ M : ρ(g,fr)≤ 16−1δn−1

1

}
. (6.44)

Assume that g ∈ U , an integer n ≥ 2n1, and {xi}ni=0 ⊂ X, {yi}ni=0 ⊂ Y is a (g,δ)-
good pair of sequences. It follows from (6.42), (6.43), and the definition of n0, U0 that
there exists a sequence of integers {ti}ki=1 ⊂ [0,n] such that

t1 ≤ n0, ti+1 − ti ∈ [n0,3n0
]
, i = 1, . . . ,k−1,

n− tk ≤ n0, ‖xti −xf ‖,‖yti −yf ‖ ≤ δ0, i = 1, . . . ,k,
(6.45)

and, moreover, if ‖x0−xf ‖,‖y0−yf ‖ ≤ δ, then t1 = 0, and if ‖xn−xf ‖,‖yn−yf ‖ ≤ δ,
then tk = n. Clearly k ≥ 2. Fix q ∈ {1, . . . ,k−1}. To complete the proof of the lemma
it is sufficient to show that for each integer i ∈ [tq , tq+1] the relation (6.39) holds.

Define sequences {x(q)
i }tq+1−tq

i=0 ⊂ X, {y(q)
i }tq+1−tq

i=0 ⊂ Y by

x
(q)
i = xi+tq , y

(q)
i = yi+tq , i ∈ [0, tq+1 − tq

]
. (6.46)

It is easy to see that {x(q)
i }tq+1−tq

i=0 , {y(q)
i }tq+1−tq

i=0 is a (g,δ)-good pair of sequences. To-

gether with (6.43), (6.44), and (6.45) this implies that the pair of sequences {x(q)
i }tq+1−tq

i=0 ,

{y(q)
i }tq+1−tq

i=0 is (fr ,δ0)-good.
It follows from (6.43), (6.45), (6.46), and the definition of δ0 (see (6.40)) that∥∥x(q)

i −xf
∥∥,∥∥y(q)

i −yf
∥∥≤ ε, i = 0, . . . , tq+1 − tq . (6.47)

Together with (6.46) this implies that ‖xi −xf ‖,‖yi −yf ‖ ≤ ε, i = tq , . . . , tq+1. This
completes the proof of the lemma. �

7. Preliminary lemmas for Theorem 2.2

For each metric space K denote by C(K) the space of all continuous functions on K

with the topology of uniform convergence (‖φ‖ = sup{|φ(z)| : z ∈ K}, φ ∈ C(K)).
Let f ∈ M. There exist xf ∈ X, yf ∈ Y such that

sup
y∈Y

f
(
xf ,xf ,y,y

)= f
(
xf ,xf ,yf ,yf

)= inf
x∈Xf

(
x,x,yf ,yf

)
(7.1)

(see equation (6.1)).
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Let r ∈ (0,1). Define fr : X×X×Y ×Y → R
1 by

fr
(
x1,x2,y1,y2

)= f
(
x1,x2,y1,y2

)+r‖x1 −xf ‖−r‖y1 −yf ‖,
x1,x2 ∈ X, y1,y2 ∈ Y

(7.2)

(see equation (6.2)). Clearly fr ∈ M. Define functions f
(X)
r : X ×X → R

1, f
(Y )
r :

Y ×Y → R
1 by

f (X)
r

(
x1,x2

)= fr
(
x1,x2,yf ,yf

)
, x1,x2 ∈ X, (7.3)

f (Y )
r

(
y1,y2

)= fr
(
xf ,xf ,y1,y2

)
, y1,y2 ∈ Y. (7.4)

Lemma 7.1. Let ε ∈ (0,1). Then there exists a number δ ∈ (0,ε) for which the following
assertion holds.

Assume that an integer n ≥ 2,

{xi}ni=0 ⊂ X, x0,xn = xf (7.5)

and for each {zi}ni=0 ⊂ X satisfying

z0 = x0, zn = xn, (7.6)

the relation
n−1∑
i=0

f (X)
r

(
xi,xi+1

)≤
n−1∑
i=0

f (X)
r

(
zi,zi+1

)+δ (7.7)

holds. Then
‖xi −xf ‖ ≤ ε, i = 0, . . . ,n. (7.8)

Proof. Choose a number
δ ∈ (0,8−1rε

)
. (7.9)

Assume that an integer n ≥ 2, {xi}ni=0 ⊂ X, (7.5) is valid and for each sequence
{zi}ni=0 ⊂ X satisfying (7.6), the relation (7.7) holds. This implies that

n−1∑
i=0

fr
(
xi,xi+1,yf ,yf

)≤ nfr
(
xf ,xf ,yf ,yf

)+δ = nf
(
xf ,xf ,yf ,yf

)+δ. (7.10)

It follows from (7.1), (7.2), and (7.5) that

n−1∑
i=0

fr
(
xi,xi+1,yf ,yf

)= r

n−1∑
i=0

‖xi −xf ‖+
n−1∑
i=0

f
(
xi,xi+1,yf ,yf

)

≥ r

n−1∑
i=0

‖xi −xf ‖+nf

(
n−1

n−1∑
i=0

xi,n
−1

n−1∑
i=0

xi,yf ,yf

)

≥ r

n−1∑
i=0

‖xi −xf ‖+nf
(
xf ,xf ,yf ,yf

)
.

(7.11)
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Together with (7.9) and (7.10) this implies that for each i ∈ {0, . . . ,n−1}, the relation
‖xi −xf ‖ ≤ r−1δ < ε is true. This completes the proof of the lemma. �

Definition 7.2. Let g ∈ C(X×X), n ≥ 1 be an integer and let M ∈ [0,∞). A sequence
{x̄i}ni=0 ⊂ X is called (g,X,M)-good if for each sequence {xi}ni=0 ⊂ X satisfying

x0 = x̄0, xn = x̄n the relation M+∑n−1
i=0 g(xi,xi+1) ≥∑n−1

i=0 g(x̄i , x̄i+1) is valid.

Definition 7.3. Let g ∈ C(Y × Y ), n ≥ 1 be an integer and let M ∈ [0,∞). A se-
quence {ȳi}ni=0 ⊂ Y is called (g,Y,M)-good if for each sequence {yi}ni=0 ⊂ Y satisfying

y0 = ȳ0, yn = ȳn the relation
∑n−1

i=0 g(yi,yi+1) ≤ M+∑n−1
i=0 g(ȳi , ȳi+1) is valid.

Definition 7.4. Let n1 ≥ 0, n2 > n1 be integers, and let {gi}n2−1
i=n1

⊂ C(X×X), M ∈
[0,∞). A sequence {x̄i}n2

i=n1
⊂ X is called ({gi}n2−1

i=n1
,X,M)-good if for each sequence

{xi}n2
i=n1

⊂ X satisfying xn1 = x̄n1, xn2 = x̄n2

M+
n2−1∑
i=n1

gi
(
xi,xi+1

)≥
n2−1∑
i=n1

gi
(
x̄i , x̄i+1

)
. (7.12)

Definition 7.5. Let n1 ≥ 0, n2 > n1 be integers, and let {gi}n2−1
i=n1

⊂ C(Y ×Y ), M ∈
[0,∞). A sequence {ȳi}n2

i=n1
⊂ Y is called ({gi}n2−1

i=n1
,Y,M)-good if for each sequence

{yi}n2
i=n1

⊂ Y satisfying yn1 = ȳn1, yn2 = ȳn2

n2−1∑
i=n1

gi
(
yi,yi+1

)≤
n2−1∑
i=n1

gi
(
ȳi , ȳi+1

)+M. (7.13)

Analogously to Lemma 7.1 we can establish the following.

Lemma 7.6. Let ε ∈ (0,1). Then there exists a number δ ∈ (0,ε) such that for each
integer n ≥ 2 and each (f

(Y )
r ,Y,δ)-good sequence {yi}ni=0 ⊂ Y satisfying y0,yn = yf

the following relation holds: ‖yi −yf ‖ ≤ ε, i = 0, . . . ,n.

By using Lemmas 6.3 and 7.1 we can easily deduce the following lemma.

Lemma 7.7. Let ε ∈ (0,1). Then there exists a number δ > 0 such that for each
integer n ≥ 2 and each (f

(X)
r ,X,δ)-good sequence {xi}ni=0 ⊂ X satisfying ‖x0 −xf ‖,

‖xn−xf ‖ ≤ δ the following relation holds: ‖xi −xf ‖ ≤ ε, i = 0, . . . ,n.

By using Lemmas 6.3 and 7.6 we can easily deduce the following lemma.

Lemma 7.8. Let ε ∈ (0,1). Then there exists a number δ > 0 such that for each
integer n ≥ 2 and each (f

(Y )
r ,Y,δ)-good sequence {yi}ni=0 ⊂ Y satisfying ‖y0 −yf ‖,

‖yn−yf ‖ ≤ δ the following relation holds: ‖yi −yf ‖ ≤ ε, i = 0, . . . ,n.
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Lemma 7.9. Let ε ∈ (0,1) and let M be a positive number. Then there exists an integer
n0 ≥ 4 such that for each (f

(X)
r ,X,M)-good sequence {xi}n0

i=0 ⊂ X satisfying

x0 = xf , xn0 = xf (7.14)

there is j ∈ {1, . . . ,n0 −1} for which

‖xj −xf ‖ ≤ ε. (7.15)

Proof. Choose a natural number

n0 > 8+8M(rε)−1. (7.16)

Assume that {xi}n0
i=0 ⊂ X is an (f

(X)
r ,X,M)-good sequence and (7.14) is valid. It is

easy to see that

M+n0f
(
xf ,xf ,yf ,yf

)= n0fr
(
xf ,xf ,yf ,yf

)+M

≥
n0−1∑
i=0

fr
(
xi,xi+1,yf ,yf

)

= r

n0−1∑
i=0

‖xi −xf ‖+
n0−1∑
i=0

f
(
xi,xi+1,yf ,yf

)

≥ r

n0−1∑
i=0

‖xi −xf ‖+n0f


n−1

0

n0−1∑
i=0

xi,n
−1
0

n0−1∑
i=0

xi,yf ,yf




≥ r

n0−1∑
i=0

‖xi −xf ‖+n0f
(
xf ,xf ,yf ,yf

)
.

(7.17)

Together with (7.16) this implies that there is j ∈ {1, . . . ,n0 − 1} for which (7.15) is
valid. This completes the proof of the lemma. �

Analogously to Lemma 7.9 we can establish the following lemma.

Lemma 7.10. Let ε ∈ (0,1) and let M be a positive number. Then there exists an integer
n0 ≥ 4 such that for each (f

(Y )
r ,Y,M)-good sequence {yi}n0

i=0 ⊂ Y satisfying y0 = yf ,

yn0 = yf there is j ∈ {1, . . . ,n0 −1} for which ‖yj −yf ‖ ≤ ε.

Choose a number D0 ≥ sup{|fr(x1,x2,y1,y2)| : x1,x2 ∈ X, y1,y2 ∈ Y }. We can
easily prove the following lemma.

Lemma 7.11. (1) Assume that n ≥ 2 is an integer, M is a positive number, a sequence
{xi}ni=0 ⊂ X is (f

(X)
r ,X,M)-good and x̄0 = xf , x̄n = xf , x̄i = xi, i = 1, . . . ,n−1.

Then the sequence {x̄i}ni=0 is (f
(X)
r ,X,M+8D0)-good.
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(2) Assume that n ≥ 2 is an integer, M is a positive number, a sequence {yi}ni=0 ⊂ Y

is (f
(Y )
r ,Y,M)-good and ȳ0 = yf , ȳn = yf , ȳi = yi, i = 1, . . . ,n − 1. Then the

sequence {ȳi}ni=0 is (f
(Y )
r ,Y,M+8D0)-good.

Lemmas 7.9, 7.10, and 7.11 imply the following two results.

Lemma 7.12. Let ε ∈ (0,1) and let M be a positive number. Then there exists an
integer n0 ≥ 4 such that for each (f

(X)
r ,X,M)-good sequence {xi}n0

i=0 ⊂ X there is
j ∈ {1, . . . ,n0 −1} for which ‖xj −xf ‖ ≤ ε.

Lemma 7.13. Let ε ∈ (0,1) and let M be a positive number. Then there exists an
integer n0 ≥ 4 such that for each (f

(Y )
r ,Y,M)-good sequence {yi}n0

i=0 ⊂ Y there is
j ∈ {1, . . . ,n0 −1} for which ‖yj −yf ‖ ≤ ε.

By using Lemmas 7.12 and 7.13, analogously to the proof of Lemma 7.12, we can
establish the following two results.

Lemma 7.14. Let ε ∈ (0,1), M ∈ (0,∞). Then there exists an integer n0 ≥ 4 and
a neighborhood U of f

(X)
r in C(X ×X) such that for each {gi}n0−1

i=0 ⊂ U and each

({gi}n0−1
i=0 ,X,M)-good sequence {xi}n0

i=0 ⊂ X there is j ∈ {1, . . . ,n0 − 1} for which
‖xf −xj‖ ≤ ε.

Lemma 7.15. Let ε ∈ (0,1), M ∈ (0,∞). Then there exists an integer n0 ≥ 4 and
a neighborhood U of f

(Y )
r in C(Y × Y ) such that for each {gi}n0−1

i=0 ⊂ U and each

({gi}n0−1
i=0 ,Y,M)-good sequence {yi}n0

i=0 ⊂ Y there is j ∈ {1, . . . ,n0 − 1} for which
‖yf −yj‖ ≤ ε.

Lemma 7.16. Let ε ∈ (0,1). Then there exist a neighborhood U of f (X)
r in C(X×X),

a number δ ∈ (0,ε), and an integer n1 ≥ 4 such that for each integer n ≥ 2n1, each
{gi}n−1

i=0 ⊂ U and each ({gi}n−1
i=0 ,X,δ)-good sequence {xi}ni=0 ⊂ X the relation

‖xi −xf ‖ ≤ ε (7.18)

holds for all integers i ∈ [n1,n−n1]. Moreover, if ‖x0 −xf ‖ ≤ δ, then (7.18) holds for
all integers i ∈ [0,n−n1], and if ‖xn − xf ‖ ≤ δ, then (7.18) is valid for all integers
i ∈ [n1,n].

Proof. By Lemma 7.7 there exists δ0 ∈ (0,ε) such that for each integer n ≥ 2 and each
(f

(X)
r ,X,δ0)-good sequence {xi}ni=0 ⊂ X satisfying ‖x0 − xf ‖,‖xn − xf ‖ ≤ δ0, the

relation (7.18) is valid for i = 0, . . . ,n. By Lemma 7.14 there exist an integer n0 ≥ 4
and a neighborhood U0 of f

(X)
r in C(X ×X) such that for each {gi}n0−1

i=0 ⊂ U0 and

each ({gi}n0−1
i=0 ,X,8)-good sequence {xi}ni=0 ⊂ X there is j ∈ {1, . . . ,n0 −1} for which

‖xj −xf ‖ ≤ δ0.
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Choose an integer n1 ≥ 4n0 and a number δ ∈ (0,4−1δ0). Define

U = U0 ∩{g ∈ C(X×X) : ∥∥g−f (X)
r

∥∥≤ (16n1
)−1

δ
}
. (7.19)

Assume that an integer n ≥ 2n1, {gi}n−1
i=0 ⊂ U and a sequence {xi}ni=0 ⊂ X is

({gi}n−1
i=0 ,X,δ)-good. Arguing as in the proof of Lemma 6.9, we can show that (7.18)

is valid for all integers i ∈ [n1,n−n1] and, moreover, if ‖x0 −xf ‖ ≤ δ, then (7.18),
holds for all integers i ∈ [0,n−n1], and if ‖xn −xf ‖ ≤ δ, then (7.18) is valid for all
integers i ∈ [n1,n]. The lemma is thus proved. �

Analogously to Lemma 7.16 we can prove the following lemma.

Lemma 7.17. Let ε ∈ (0,1). Then there exist a neighborhood U of f (Y )
r in C(Y ×Y ),

a number δ ∈ (0,ε), and an integer n1 ≥ 4 such that for each integer n ≥ 2n1, each
{gi}n−1

i=0 ⊂ U , and each ({gi}n−1
i=0 ,Y,δ)-good sequence {yi}ni=0 ⊂ Y the relation

‖yi −yf ‖ ≤ ε (7.20)

holds for all integers i ∈ [n1,n−n1]. Moreover, if ‖y0 −yf ‖ ≤ δ, then (7.20) holds for
all integers i ∈ [0,n−n1], and if ‖yn − yf ‖ ≤ δ, then (7.20) is valid for all integers
i ∈ [n1,n].

8. Proofs of Theorems 2.1 and 2.2

We use the notation from Sections 1, 2, 3, 4, 5, 6, and 7.
Let f ∈ M. There exists a pair (xf ,yf ) ∈ X×Y such that (6.1) holds. Let r ∈ (0,1)

and let i ≥ 1 be an integer. Consider the function fr : X×X×Y ×Y defined by (6.2).
Clearly all lemmas from Sections 6 and 7 are valid for fr .

By Lemma 7.16 there exist a number

γ1(f,r, i) ∈ (0,2−i
)
, (8.1)

a number
δ1(f,r, i) ∈ (0,2−i

)
, (8.2)

and an integer n1(f,r, i) ≥ 4 such that the following property holds:
(a) for each integer n ≥ 2n1(f,r, i), each {gj }n−1

j=0 ⊂ C(X×X) satisfying

∥∥gj −f (X)
r

∥∥≤ γ1(f,r, i), j = 0, . . . ,n−1, (8.3)

and each ({gj }n−1
j=0,X,δ1(f,r, i))-good sequence {xj }nj=0 ⊂ X the following relation

holds:
‖xj −xf ‖ ≤ 2−i , j ∈ [n1(f,r, i),n−n1(f,r, i)]. (8.4)

By Lemma 7.17 there exist numbers

δ2(f,r, i), γ2(f,r, i) ∈ (0,2−i
)
, (8.5)
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and an integer n2(f,r, i) ≥ 4 such that the following property holds:
(b) for each integer n ≥ 2n2(f,r, i), each {gj }n−1

j=0 ⊂ C(Y ×Y ) satisfying

∥∥gj −f (Y )
r

∥∥≤ γ2(f,r, i), j = 0, . . . ,n−1 (8.6)

and each ({gj }n−1
j=0,Y,δ2(f,r, i))-good sequence {yj }nj=0 ⊂ Y the following relation

holds:
‖yj −yf ‖ ≤ 2−i , j ∈ [n2(f,r, i),n−n2(f,r, i)

]
. (8.7)

Set

n3(f,r, i) = n1(f,r, i)+n2(f,r, i),

δ3(f,r, i) = min{δ1(f,r, i),δ2(f,r, i)},
γ3(f,r, i) = min{γ1(f,r, i),γ2(f,r, i)}.

(8.8)

It follows from the uniform continuity of the function fr that there exists a number

δ4(f,r, i) ∈ (0,δ3(f,r, i)
)

(8.9)

such that for each x1,x2, x̄1, x̄2 ∈ X, y1,y2, ȳ1, ȳ2 ∈ Y satisfying

‖xj − x̄j‖, ‖yj − ȳj‖ ≤ δ4(f,r, i), j = 1,2, (8.10)

the following relation holds:∣∣fr(x1,x2,y1,y2
)−fr

(
x̄1, x̄2, ȳ1, ȳ2

)∣∣≤ 16−1γ3(f,r, i). (8.11)

By Lemma 6.9 there exist numbers

γ4(f,r, i) ∈ (0,16−1γ3(f,r, i)
)
, δ5(f,r, i) ∈ (0,8−1δ4(f,r, i)

)
(8.12)

and an integer n4(f,r, i) ≥ 4 such that the following property holds:
(c) for each g ∈ M satisfying ρ(g,fr) ≤ γ4(f,r, i), each integer n ≥ 2n4(f,r, i),

and each (g,δ5(f,r, i))-good pair of sequences

{xj }nj=0 ⊂ X, {yj }nj=0 ⊂ Y, (8.13)

the relation
‖xj −xf ‖,‖yj −yf ‖ ≤ 8−1δ4(f,r, i) (8.14)

holds for all j ∈ [n4(f,r, i),n−n4(f,r, i)]; moreover, if

‖x0 −xf ‖,‖y0 −yf ‖ ≤ δ5(f,r, i), (8.15)

then (8.14) holds for all integers j ∈ [0,n−n4(f,r, i)], and if

‖xn−xf ‖,‖yn−yf ‖ ≤ δ5(f,r, i), (8.16)

then (8.14) is valid for all integers j ∈ [n4(f,r, i),n].
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By Lemma 6.9 there exist numbers

γ (f,r, i) ∈ (0,8−1γ4(f,r, i)
)
, δ(f,r, i) ∈ (0,8−1δ5(f,r, i)

)
, (8.17)

and an integer n5(f,r, i) ≥ 4 such that the following property holds:
(d) for each g ∈ M satisfying ρ(g,fr) ≤ γ (f,r, i), each integer n ≥ 2n5(f,r, i), and

each (g,δ(f,r, i))-good pair of sequences{
xj
}n
j=0 ⊂ X,

{
yj
}n
j=0 ⊂ Y, (8.18)

the inequality
‖xj −xf ‖,‖yj −yf ‖ ≤ 8−1δ5(f,r, i) (8.19)

holds for all j ∈ [n5(f,r, i),n−n5(f,r, i)].
Set

U(f,r, i) = {
g ∈ M : ρ(g,fr)< γ (f,r, i)

}
. (8.20)

Define
F = ∩∞

k=1 ∪{U(f,r, i) : f ∈ M, r ∈ (0,1), i = k,k+1, . . .
}
. (8.21)

It is easy to see that F is a countable intersection of open everywhere dense sets in M.

Proof of Theorem 2.1. Let h ∈ F. There exists a pair (x1,y1) ∈ X×Y such that

sup
y∈Y

h
(
x1,x1,y,y

)= h
(
x1,x1,y1,y1

)= inf
x∈Xh

(
x,x,y1,y1

)
(8.22)

(see (3.1) and (3.2)).
Assume that (x2,y2) ∈ X×Y and

sup
y∈Y

h
(
x2,x2,y,y

)= h
(
x2,x2,y2,y2

)= inf
x∈Xh

(
x,x,y2,y2

)
. (8.23)

We show that
x2 = x1, y2 = y1. (8.24)

Define sequences {x(1)
j }∞j=0, {x(2)

j }∞j=0 ⊂ X, {y(1)
j }∞j=0, {y(2)

j }∞j=0 ⊂ Y by

x
(1)
j = x1, x

(2)
j = x2, y

(1)
j = y1, y

(2)
j = y2, j = 0,1, . . . . (8.25)

It follows from (8.22), (8.25), and Proposition 5.1 that the pairs of sequences({
x
(1)
j

}∞
j=0

,
{
y
(1)
j

}∞
j=0

)
,

({
x
(2)
j

}∞
j=0

,
{
y
(2)
j

}∞
j=0

)
(8.26)

are (h)-minimal. Let ε ∈ (0,1). Choose a natural number k such that

2−k < 64−1ε. (8.27)

There exist f ∈ M, r ∈ (0,1), and an integer i ≥ k such that

h ∈ U(f,r, i). (8.28)
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Since the pairs of sequences ({x(1)
j }∞j=0, {y(1)

j }∞j=0), ({x(2)
j }∞j=0, {y(2)

j }∞j=0) are (h)-minimal,
it follows from (8.25), (8.27), (8.28), property (d), and (8.20) that

‖x1 −xf ‖,‖x2 −xf ‖,‖y1 −yf ‖,‖y2 −yf ‖ ≤ 8−1δ5(f,r, i) < 2−i < ε,

‖x1 −x2‖,‖y1 −y2‖ ≤ 2ε.
(8.29)

Since ε is an arbitrary number in the interval (0,1), we conclude that (8.24) is valid.
Therefore, we have shown that there exists a unique pair (xh,yh) ∈ X×Y such that

sup
y∈Y

h
(
xh,xh,y,y

)= h
(
xh,xh,yh,yh

)= inf
x∈Xh

(
x,x,yh,yh

)
. (8.30)

Let ε > 0. Choose a natural number k for which (8.27) holds. There exist f ∈ M,
r ∈ (0,1) and an integer i ≥ k for which (8.28) is valid. Consider the sequences
{x(h)

j }∞j=0 ⊂ X, {y(h)
j }∞j=0 ⊂ Y defined by

x
(h)
j = xh, y

(h)
j = yh, j = 0,1, . . . . (8.31)

It was shown above that the pair of sequences {x(h)
j }∞j=0, {y(h)

j }∞j=0 is (h)-minimal. It
follows from (8.27), (8.31), (8.20), and property (d) that

‖xh−xf ‖,‖yh−yf ‖ ≤ 8−1δ5(f,r, i). (8.32)

Assume that g ∈ U(f,r, i), an integer n ≥ 2n4(f,r, i), and {xj }nj=0 ⊂ X,
{yj }nj=0 ⊂ Y is a (g,δ5(f,r, i))-good pair of sequences. It follows from property (c),
(8.17), (8.20), and (8.32) that the following properties hold:

(i) ‖xj − xf ‖,‖yj − yf ‖ ≤ 8−1δ4(f,r, i), and ‖xj − xh‖,‖yj − yh‖ ≤ ε for all
integers j ∈ [n4(f,r, i),n−n4(f,r, i)];

(ii) if ‖x0−xf ‖,‖y0−yf ‖ ≤ δ5(f,r, i), then ‖xj −xf ‖,‖yj −yf ‖ ≤ 8−1δ4(f,r, i)

for all integers j ∈ [0,n−n4(f,r, i)];
(iii) if ‖xn−xf ‖,‖yn−yf ‖ ≤ δ5(f,r, i), then ‖xj −xf ‖,‖yj −yf ‖ ≤ 8−1δ4(f,r, i)

for all integers j ∈ [n4(f,r, i),n].
Together with (8.32) this implies that the following properties hold:

(i) if ‖x0 − xh‖,‖y0 − yh‖ ≤ 2−1δ5(f,r, i), then ‖xj − xf ‖,‖yj − yf ‖ ≤
8−1δ4(f,r, i) for all integers j ∈ [0,n−n4(f,r, i)];

(ii) if ‖xn − xh‖,‖yn − yh‖ ≤ 2−1δ5(f,r, i), then ‖xj − xf ‖,‖yj − yf ‖ ≤
8−1δ4(f,r, i) is valid for all integers j ∈ [n4(f,r, i),n].

This completes the proof of the theorem. �

Proof of Theorem 2.2. Let h ∈ F, z ∈ X, ξ ∈ Y . By Theorem 2.1 there exists a unique
pair (xh,yh) ∈ X×Y such that

sup
y∈Y

h
(
xh,xh,y,y

)= h
(
xh,xh,yh,yh

)= inf
x∈Xh

(
x,x,yh,yh

)
. (8.33)

By Proposition 5.3 there is an (h)-minimal pair of sequences {x̄j }∞j=0 ⊂ X,

{ȳj }∞j=0 ⊂ Y for which
x̄0 = z, ȳ0 = ξ. (8.34)
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We show that the pair of sequences ({x̄j }∞j=0, {ȳj }∞j=0) is (h)-overtaking optimal.
Theorem 2.1 implies that

x̄j −→ xh, ȳj −→ yh as j −→ ∞. (8.35)

Let {xi}∞i=0 ⊂ X and x0 = z. We show that

lim sup
T→∞


T−1∑

j=0

h
(
x̄j , x̄j+1, ȳj , ȳj+1

)−T−1∑
j=0

h
(
xj ,xj+1, ȳj , ȳj+1

)≤ 0. (8.36)

Assume the contrary. Then there exists a number -0 > 0 and a strictly increasing
sequence of natural numbers {Tk}∞k=1 such that for all integers k ≥ 1

Tk−1∑
j=0

h
(
x̄j , x̄j+1, ȳj , ȳj+1

)−Tk−1∑
j=0

h
(
xj ,xj+1, ȳj , ȳj+1

)≥ -0. (8.37)

We show that
xj −→ xh as j −→ ∞. (8.38)

For j = 0,1, . . . define a function gj : X×X → R
1 by

gj
(
u1,u2

)= h
(
u1,u2, ȳj , ȳj+1

)
, u1,u1 ∈ X. (8.39)

Clearly gj ∈ C(X×X), j = 0,1, . . . . Let ε > 0. Choose a natural number q such that

2−q < 64−1ε. (8.40)

There exist f ∈ M, r ∈ (0,1), and an integer p ≥ q such that

h ∈ U(f,r,p). (8.41)

Since the pair of sequences ({x̄j }∞j=0, {ȳj }∞j=0) is (h)-minimal, it follows from the
definition of U(f,r,p) (see (8.20)), (8.41), and property (d) that for all integers j ≥
n5(f,r,p)

‖x̄j −xf ‖,‖ȳj −yf ‖ ≤ 8−1δ5(f,r,p). (8.42)

By (8.33), Proposition 5.1, (8.41), and property (d)

‖xh−xf ‖,‖yh−yf ‖ ≤ 8−1δ5(f,r,p). (8.43)

Since the pair of sequences ({x̄j }∞j=0, {ȳj }∞j=0) is (h)-minimal there exists a constant
c0 > 0 such that for each integer T ≥ 1

T−1∑
j=0

h
(
x̄j , x̄j+1, ȳj , ȳj+1

)≤ inf




T−1∑
j=0

h
(
uj ,uj+1, ȳj , ȳj+1

) : {uj }Tj=0 ⊂X, u0 = z


+c0.

(8.44)
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Equations (8.44), (8.39), and (8.37) imply that the following property holds:
(e) for each �> 0 there exists an integer j (�) ≥ 1 such that for each pair of integers

n1 ≥ j (�), n2 > n1 the sequence {xj }n2
j=n1

is ({gj }n2−1
j=n1

,X,�)-good.

Consider the function f
(X)
r : X×X → R

1 defined by (7.3). For j = 0,1, . . . define
a function ḡj : X×X → R

1 by

ḡj
(
u1,u2

)= fr
(
u1,u2, ȳj , ȳj+1

)
, u1,u2 ∈ X. (8.45)

It follows from (7.3), (8.12), (8.42), (8.45), and the definition of δ4(f,r,p) (see (8.9),
(8.11)) that for all integers j ≥ n5(f,r,p)∥∥ḡj −f (X)

r

∥∥≤ 16−1γ3(f,r,p). (8.46)

By (8.12), (8.17), (8.20), (8.39), (8.41), (8.45), and (8.46) for all integers j ≥ n5(f,r,p)∥∥gj −f (X)
r

∥∥≤ 16−1γ3(f,r,p)+γ (f,r,p) < γ3(f,r,p). (8.47)

It follows from (8.47), properties (e) and (a), and (8.8) that there exists an integer
m0 ≥ 1 such that ‖xj − xf ‖ ≤ 2−p for all integers j ≥ m0. Together with (8.40) and
(8.43) this implies that for all integers j ≥ m0, the relation ‖xj −xh‖ ≤ 2−p +2−p < ε

is true. Since ε is an arbitrary positive number, we conclude that

lim
j→∞xj = xh. (8.48)

There exists a number ε0 > 0 such that for each z1,z2, z̄1, z̄2 ∈ X and each ξ1,ξ2, ξ̄1,

ξ̄2 ∈ Y which satisfy ∥∥zj − z̄j
∥∥,∥∥ξj − ξ̄j

∥∥≤ 2ε0, j = 1,2, (8.49)

the following relation holds:∣∣h(z1,z2,ξ1,ξ2
)−h

(
z̄1, z̄2, ξ̄1, ξ̄2

)∣∣≤ 8−1-0. (8.50)

By (8.35) and (8.48) there exists an integer j0 ≥ 8 such that for all integers j ≥ j0

‖xj −xh‖ ≤ 2−1ε0, ‖x̄j −xh‖ ≤ 2−1ε0. (8.51)

There exists an integer s ≥ 1 such that

Ts > j0. (8.52)

Define a sequence {x∗
j }sj=0 ⊂ X by

x∗
j = xj , j = 0, . . . ,Ts −1, x∗

Ts
= x̄Ts . (8.53)

Since the pair of sequences ({x̄j }∞j=0, {ȳj }∞j=0) is (h)-minimal, we conclude that by
(8.53)

Ts−1∑
j=0

h
(
x̄j , x̄j+1, ȳj , ȳj+1

)−Ts−1∑
j=0

h
(
x∗
j ,x

∗
j+1, ȳj , ȳj+1

)≤ 0. (8.54)
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On the other hand, it follows from (8.37), (8.51), (8.52), (8.53), and the definition of
ε0 (see (8.49),(8.50)) that

Ts−1∑
j=0

h
(
x̄j , x̄j+1, ȳj , ȳj+1

)−Ts−1∑
j=0

h
(
x∗
j ,x

∗
j+1, ȳj , ȳj+1

)

=
Ts−1∑
j=0

h
(
x̄j , x̄j+1, ȳj , ȳj+1

)−Ts−1∑
j=0

h
(
xj ,xj+1, ȳj , ȳj+1

)
+h
(
xTs−1,xTs , ȳTs−1, ȳTs

)−h
(
x∗
Ts−1,x

∗
Ts
, ȳTs−1, ȳTs

)
≥ -0 +h

(
xTs−1,xTs , ȳTs−1, ȳTs

)−h
(
xTs−1, x̄Ts , ȳTs−1, ȳTs

)
≥ -0 −8−1-0.

This is contradictory to (8.54). The obtained contradiction proves that (8.36) holds.
Analogously we can show that for each sequence {yj }∞j=0 ⊂ Y satisfying y0 = ξ

lim sup
T→∞


T−1∑

j=0

h
(
x̄j , x̄j+1,yj ,yj+1

)−T−1∑
j=0

h
(
x̄j , x̄j+1, ȳj , ȳj+1

)≤ 0. (8.55)

This implies that the pair of sequences ({x̄j }∞j=0, {ȳj }∞j=0) is (h)-overtaking optimal.
This completes the proof of the theorem. �
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