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We prove the exponential decay in the case n > 2, as time goes to infinity, of regular so-
lutions for the nonlinear beam equation with memory and weak damping u; + A%u—

A
M(IIVuII%Z(QI))Au + fotg(t — s)Au(s)ds + au; = 0in Q in a noncylindrical domain of
R™1 (n > 1) under suitable hypothesis on the scalar functions M and g, and where «
is a positive constant. We establish existence and uniqueness of regular solutions for any
nx=1.

1. Introduction

Let Q be an open bounded domain of R” containing the origin and having C? boundary.
Let y: [0,00[— R be a continuously differentiable function. See hypotheses (1.24), (1.25),
and (1.26) on y. Consider the family of subdomains {Q;}<t<. of R” given by

0 =T(Q), T:yeQ—x=yp()y, (1.1)

A
whose boundaries are denoted by I, and let Q be the noncylindrical domain of R™*!
given by

Q= U axis (12)

0<t<eo
with lateral boundary
A
> = | Iex{t}. (1.3)
0<t<oco

We consider the Hilbert space L?(Q) endowed with the inner product
(u,v) = J u(x)v(x)dx (1.4)
Q
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and corresponding norm
lullfaq) = (5u). (1.5)
We also consider the Sobolev space H!'(Q)) endowed with the scalar product
(V) = (u,v) +(Vu, Vv). (1.6)

We define the subspace of H!(Q), denoted by Hj(Q), as the closure of C(Q) in the
strong topology of H'(Q). By H~!(Q), we denote the dual space of Hj(Q). This space
endowed with the norm induced by the scalar product

() gy = (Vi, Vv) (1.7)
is, owing to the Poincaré inequality
”uH%Z(Q) =< C||v”||%2(g)y (1.8)

a Hilbert space. We define forall 1 < p < oo,

Il = [ 1) P, (19)
and if p = o,
llullL=q) = supess | u(x)]. (1.10)
X€Q

In this work, we study the existence and uniqueness of strong solutions as well as the
exponential decay of the energy to the nonlinear beam equation with memory given by

t
utt+A2u—M(||Vu|\f2(0t)>Au+J'Og(t—s)Au(s)dsﬂxut =0 in (A), (1.11)
u—%—o oni (1.12)
T oy ’ :
u(-x)o) = MQ(X), ut(x)o) = M](x) in QO: (113)

A A
where v = v(0,t) is the unit normal at (o,t) € > directed towards the exterior of Q. If we
denote by # the outer unit normal to the boundary I' of (), we have, using a parametriza-
tion of T,

(n(E), =y (DE - n(©)), &= (1.14)

v(0,t) = "

1
v
where

1/2

v=(1+y & 7)) (1.15)



M. L. Santos et al. 903

A
Indeed, fix (0,t) € .. Let ¢ = 0 be a parametrization of a part {J of I, J containing

A
& = 0/y(t). The parametrization of a part |J of > is w(o,t) = ¢(a/y(t)) = (&) = 0. We
have

L

" (Vo(&),—y ()& - Ve(¥)). (1.16)

VV/(Ua t) =

From this and observing that #(&) = V(&)/|Ve(&)], expression (1.14) follows. Let ¥(-, )
be the x-component of unit normal v(-, ), |7| < 1. Then by relation (1.14), one has

o, 1) = 17(%) (1.17)

In this paper, we deal with the nonlinear beam equation with memory in domains with
moving boundary. We show the existence and uniqueness of strong solutions to the initial
boundary value problem (1.11)—(1.13). The method we use to prove the result of exis-
tence and uniqueness is based on transforming our problem into another initial bound-
ary value problem defined over a cylindrical domain whose sections are not time depen-
dent. This is done using a suitable change of variable. Then we show the existence and
uniqueness for this new problem. Our existence result on domains with moving bound-
ary will follow by using the inverse transformation, that is, by using the diffeomorfism

1:0—Q (%) e — (n)= (%t) (1.18)

and77':Q— é defined by
T (3, 0) = (x1) = (y(0),1). (1.19)
Denoting by v the function
viy,t) =uot (y,t) = u(y(t) y,t), (1.20)
the initial boundary value problem (1.11)—(1.13) becomes

t
viety A2 =y My 2 VvId ) ) Av+ L g(t—s)y~2(s)Av(s)ds

+av; — A(t)v+a; - Vov+a, - Vvy=0 inQ,
(1.21)

=0,
T

vir= =

v

V=0 = vo, Velmo=v1 InQ,
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where
A(t)V = Z ay,‘ (aijaij)) (122)
ij=1
aij(p) =y )Vyy Gj=1...,n)
ai(y,t) = —y'y 'y, (1.23)

a(y,t) = =y y(y'y+y (ay + (n = 1)y")).

To show the existence of strong solution, we will use the following hypotheses:

y' <0 n>2, y' >0 ifn<2, (1.24)

y €L7(0,00),  inf y(t)=y0>0, (1.25)
=<f<o

Yy € W>*(0,00) N W>1(0, 0). (1.26)

Note that assumption (1.24) means that Q is decreasing if n > 2 and increasing if n < 2
in the sense that when ¢ > ¢" and » > 2, then the projection of QO on the subspace t =
0 contains the projection of ), on the same subspace and contrary in the case n < 2.
The above method was introduced by Dal Passo and Ughi [4] to study certain class of
parabolic equations in noncylindrical domains. Concerning the function M € C'[0, o],
we assume that

M(1) = —my, M()r=M(r) Vr3>0, (1.27)
where ]AVI(T) = [, M(s)ds and

0 < mg < Mllyllg2, (1.28)

where A, is the first eigenvalue of the spectral Dirichlet problem

A*w=)Mw inQ, w= (—;—: =0 inT. (1.29)
We recall also the classical inequality
1AWl ) = Ml VWi, (1.30)

Remark 1.1. The hypotheses (1.27) and (1.30) are classic, as one can see, for instance, in
[9, 20, 21] without the term of memory fot g(t —s)Au(s)ds in fixed domain. In fact, the
hypothesis (1.28) was introduced by the second author with some modifications, due to
the complexity of working in noncylindrical domains in [1].

Unlike the existing papers on stability for hyperbolic equations in noncylindrical do-
main, we do not use the penalty method introduced by Lions [16], but work directly in
our noncylindrical domain Q. To see the dissipative properties of the system, we have
to construct a suitable functional whose derivative is negative and is equivalent to the
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first-order energy. This functional is obtained using the multiplicative technique follow-
ing Komornik [10] or Rivera [18]. We only obtained the exponential decay of solution for
our problem for the case # > 2. The main difficult to obtain the decay for n < 2 is due to
the geometry of the noncylindrical domain because it affects substantially the problem,

since we work directly in (A) Therefore the case n < 2 is an important open problem. From
the physics point of view, the system (1.11)—(1.13) describes the transverse deflection of
a streched viscoelastic beam fixed in a moving boundary device. The viscoelasticity prop-
erty of the material is characterized by the memory term

fg(t—s)Au(s)ds. (1.31)
0

The uniform stabilization of plates equations with linear or nonlinear boundary feed-
back was investigated by several authors, see for example [8, 9, 11, 13, 14, 15]. In a fixed
domain, it is well known that if the relaxation function g decays to zero, then the en-
ergy of the system also decays to zero, see [3, 12, 19, 22]. But in a moving domain, the
transverse deflection u(x,t) of a beam which changes its configuration at each instant of
time increases its deformation, and hence increases its tension. Moreover, the horizon-
tal movement of the boundary yields nonlinear terms involving derivatives in the space
variable. To control these nonlinearities, we add in the system a frictional damping, char-
acterized by u;. This term will play an important role in the dissipative nature of the
problem. In [1, 6], a quite complete discussion about the model of transverse deflection
and transverse vibrations can be found, respectively, for the nonlinear beam equation and
elastic membranes. This model was proposed by Woinowsky-Krieger [23] for the case of
cylindrical domains, without the dissipative term and f(f g(t —s)Au(s)ds. See also Eisley
[5] and Burgreen [2] for physics justification and background of the model. Our results
in this paper were more difficult to obtain than the results in [7], due to the introduction
of the terms corresponding to the biharmonic operator A% and to the nonlinear function
of Kirchhoff type M(|| Vulliz(g)), which generated nontrivial problems that were solved
thanks to the hypotheses (1.27), (1.28), and (1.30) and to the hypothesis regarding the
“dilation function” Besides, in [7], we made only two estimates, while here we had to
make four estimates that introduce some technical ideas with regard to the existence,
uniqueness, and regularity. Regarding the solution decay, we used a similar technical of
[7] but we introduced Lemmas 3.3 and 3.4 to control the terms of energy and to use
with success the technique of multipliers. We use the standard notations which can be
found in Lion’s and Magenes’ books [16, 17]. In the sequel by C (sometimes C;,C,...),
we denote various positive constants which do not depend on ¢ or on the initial data. This
paper is organized as follows. In Section 2, we prove a basic result on existence, regular-
ity, and uniqueness of regular solutions. We use Galerkin approximation, Aubin-Lions
theorem, energy method introduced by Lions [16], and some technical ideas to show ex-
istence regularity and uniqueness of regular solution for problem (1.11)—(1.13). Finally,
in Section 3, we establish a result on the exponential decay of the regular solution to the
problem (1.11)—(1.13). We use the technique of the multipliers introduced by Komornik
[10], Lions [16], and Rivera [18] coupled with some technical lemmas and some technical
ideas.
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2. Existence and regularity

In this section, we will study the existence and regularity of solutions for the system
(1.11)—(1.13). For this, we assume that the kernel g : R — Ry is in W>!(0, o), and satis-
fies

g-g =0, - L g(s)y2(s)ds = p1 >0, (2.1)

mi
Iyl2.

mp = (A—lz — I’I’Io) > 0. (2.2)
llyllz=

To simplify our analysis, we define the binary operator

where

ﬂti = JQ Lg(t—S)y’2(s)|q)(t) —<p(s)|2d5dx. (2.3)

With this notation, we have the following statement.

LeEmMMA 2.1. Forv e C'(0,T: H3(Q)),

JQ Ltg(t —9)y () V(s) - Vwi(t)dsdx

_ 1gt)J 2 v__li Vv r J 2
= 2,20 Vv |dx+ g o gDy 2(5 |Vv|2dx |,

t
J Jg(tfs))/*z(S)AvAvtdsdx
alJo

_ lg(t)J 2 l'&_li Jg J 2
=37%0) Q|AV| dx+2gDy S s) |Av|2dx |.

(2.4)

The proof of this lemma follows by differentiating the terms gCI(Vu(t)/y(t)) and
gO(Au(t)/y(t)). The well posedness of system (1.21) is given by the following theorem.

TueOREM 2.2. Take vy € H(Q) N HY(Q), vi € H{(Q), and suppose that assumptions
(1.24), (1.25), (1.26), (1.27), (1.28), (1.30), and (2.1) hold. Then there exists a unique solu-
tion v of the problem (1.21) satisfying
ve L™ (0,00 : H(Q) N H*(Q)),
vy € L* (0,00 : HH(Q)), (2.5)
Vi € L> (0, 0o : Lz(Q))
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Proof. We denote by B the operator
Bw = A’w, D(B) = H}(Q) n H*(Q). (2.6)

It is well known that B is a positive selfadjoint operator in the Hilbert space L*(Q) for
which there exist sequences {wy} ,en and {1, } nen of eigenfunctions and eigenvalues of B
such that the set of linear combinations of {w,},cn is dense in D(B) and A; <A, < - - - <
Ap — o0 as n — oo, We denote by

Vo'

M=z

m
(VO)Wj)Wj) Z Vlawj (27)
1 j=1

-.
Il

Note that for any (vo,v;) € D(B) X H3(Q)), we have v’ — v; strong in D(B) and v{" — v,
strong in HZ(Q).

We denote by V,, the space generated by w,...,w,,. Standard results on ordinary dif-
ferential equations imply the existence of a local solution v of the form

V() = > gim()wj, (2.8)

j=1

to the system
I vff‘wjdy+ocj v{”wjdy+J y A w;dy
Q Q Q

_ _ 2
—y M) | aviwidy

(2.9)
t
+J J g(t=s)y2(s)Vv"(s)ds - ijdy+J A()v™w;dy
aJo Q
+J a - Vv{”wjdy+J a - Vv"w;dy =0, (j=1,...,m)
Q Q
v™(x,0) = v, v (x,0) = v (2.10)

The extension of these solutions to the interval [0, co[ is a consequence of the first estimate
which we are going to prove below.

A priori estimate I. Multiplying (2.9) by g7,,(t), summing up the resulting product in
j =1,2,...,m, and after some calculations using Lemma 2.1, we get

1d_, (n—2)y
—— g (t, " +oc||v HL2 _Tﬂy

2dt™!
n— m||2 n— m||2 ¢ n— m||2
[y 219w M (y 21V oy ) = M (219" oy ) |
+J A(t)vmv{”derJ a - Vv?“v{”dy+J a - Vv™vi'dy
Q Q Q
1 vy

2 ,
VVmHLz(Q)*'ig N

(2.11)

1 g(®)
2y(0)

! 2
f%HMHW
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where

£ (6v") = 1+ (- [ 86 20ds) 1997 g

. . (2.12)
4 m||2 -n n—2 m||?
+y AV [ 2 Y M()’ Vv ||L2(Q))
From (1.27), (1.28), and (1.30), it follows that
y’4||Av’”||Lz +Y7nM< " 2||v"m||L2 ) Iy ”2 v m||L2 (L (2.13)

Taking into account (1.24), (1.27), the last inequality, and (2.1), it follows that the equality
(2.11) can be written as

1 d 4 rr
Eaim(f v +“||Vzm||22(o) <C(ly' |+ |y" Der@). (2.14)

Integrating the inequality (2.14), using Gronwall’s lemma, and taking into account (1.26),
we get

t
£ (t,v™) +J Hvs”’(s)Hiz(Q)ds <C, VmeN, Vtelo,T]. (2.15)
0

A priori estimate II. Now, if we multiply (2.9) by @g}m(t) and summing up in j =
1,...,m, we get after some calculations

1d

m N n— m 2 d m 2
5 19 e+l V¥ iy + S My 219" [gy) 118v"

-4
*%g”m V"I J Jg £ =)y 2(s) AV (s)Av}'dsdy (2.16)
J AtV AV dy+J ap - VV{”AV{”d)H—J a, - V" AvI*dy = 0.

Q
Using Lemma 2.1, we obtain

t
JQ Lg(tf )y (M (s)Av"dy

a0y O+ g O 2.17)

;jt [gD (J gy~ 2(5)d5)||Avm||L2 ]
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Substituting (2.17) into (2.16), we get

1 d 2
14y +a||w:"||Lzm
1 g o 1, Av" 2y )
= +-¢0—— VAY"
||L2 Q) 2g y ¥ I ||L2(Q) (2.18)
+ (A(t)v SAVI) + (ay - VYL AV + (ap - VYT, AV
1d/ _ _ 2 2
52 M9 ) 1AV g
where
2
50 = 1997 o +20°2 = ] 9002 0s)l1ar 1o
—4 m||2 -2 n-2 m||2 ml)2 '
+y7|vay |>m)+y M(y" 219"z 0 AY"
From (1.27), (1.28), and (1.30), we have
_ 2 _ _ 2
Y 4||VAVmHL2(Q)+)’ 2M(V” 2||V"m||L2(Q))||A ||L2(Q Iy ”z ||Av m||L2 . (220
Using relation (2.18) and taking into account (2.20), we get
t t
0 +(xL 1997(5) oy ds < C1 + C L Uy’ |+ 1y ) £2(s)ds. (2.21)
Using Gronwall’s and taking into account (1.24), we get
t
(1) +aL [992(5)|oyds <C V€ [0,T], ¥meN, (2.22)

A priori estimate III. Differentiating (2.9) with respect to the time, multiplying by g,,(¢),
and using similar arguments as (2.22), we obtain, after some calculations and taking into
account (2.22),

1 d i ’ m
S 8O+ allvE Ol = CUY T+ [y DIV Oz

2 dt (2.23)
+C(ly' |+ 1y"])e5 (@), Vtel0,T], VmeEN,
where
£5(t) = [[vif ||L2 ot Y_ZM( n_2||vvm||i2(o))||VVzm||EZ(Q)
g0 (| gt s 19 Y

Using Gronwall’s lemma and relations (2.15), (2.22), we get

t
£§”(t)+(xJ [av7(9)[Pyds <, VEe [0,T], VmeN. (2.25)
0
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It easy to see from (2.9) that
" 2
[V (0)][2qy = C VmeEN. (2.26)
A priori estimate IV. Setting w = v™(¢) in (2.9), we deduce that

1d 2 _ 2
5 Eiim)(t) — ") + AV 20

+y72M (" 29" 120 )1V [
t (2.27)
+ Lg(t—s)Av’”(s)v’"(s)ds <C(ly'I+1y"1])
X (||Vm||i2(n)+||Avm||i2(n)+||V;n||i2(n))’
where

£1(t) = ZJQ v'”vlmdy+oc||v’”||iz(0). (2.28)

From (1.27), (1.28), and (1.30), we have

m 2
lz Vv HLZ(Q)’ (2.29)
llyllze

_ ml|2 7n/\ n— m||2
y~ Ay 2ty M(Y vy HLZ(Q)>Z

where m; = (A1/l|yll7~ — mg) > 0. Moreover, it is easy to see that choosing k > 2/« (see
also (2.29)), we obtain

2
ker0+£20) > (k= 2 ) (I + 117 )
(2.30)
2 _ m -n v n m
(k= 2) (18 B+ S (997 ) 0

Now, multiplying (2.11) by k and combining with (2.27), we get, taking into account
(2.29),

1d m m m||2 _ m2
5 g RET () +£71(8)) + (ke - DIz + v~ N1Av™ 20 (2.31)
<C(>ly' [+ 1y"]) (ke (1) + ££(1)).
From (2.31), using Gronwall’s lemma, we obtain the following estimate:
n m ! m 2 m 2
REEO+ 20+ | (0711 + 1897 ) s
0 (2.32)

= C<||V1||i2(n) + ||AV0||i2(Q)) exp (CLOO (y'(6) + )’”(t))dt)-
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In virtue of (2.29) and (1.26), it follows from (2.32) that

t

2 2 2 2

i +||Av™ +J 74 + || Av™ ds
21 187 i+ [ (I + 187 ) .
2 2

< C(|mill2q) * 1Avoll2(q))-
From estimates (2.15), (2.22), (2.25), and (2.33), it follows that v converges strongly in
L*(0,00 : H'(Q)) to some v € L*(0, : H'(Q)). Moreover, since M € C'[0, ) and Vv
is bounded in L (0,00 : L2(Q)) N L*(0, 00 : L?(€})), we have

t t
L ‘M(y”””Vv”’Hiz(Q)) —M(y"”IIVVII%Z(Q)) ‘ds < CL [|[v™ — v||§{1(mds, (2.34)
where C is a positive constant independent of m and ¢ so that
n—2 m||2 m n—2 2
My 2V [Fagy ) (A7, wj) — M (y" 2V vI2 ) ) (Av, w)). (2.35)

Therefore, we have that v satisfies

ve L (0,00 : H}(Q)) NL*(0,00 : H{(Q)),
v, € L™ (0,00 : H} (Q)), (2.36)
Vi € L> (0,00 .Lz(Q))

Letting m — oo in (2.9), we conclude that

t
Vi + y74A2V _ y*2M(yﬂ*2 || V'VH%Z(Q))AV + J;)g(t - S)yiz(S)AV(S)dS

(2.37)
+avi—A(t)v+a; - Vov+a, - Vv=0
in L® (0,00 : L>(Q)). Therefore, we have
ve L™ (0,00 : HZ(Q) N H(Q)). (2.38)

To prove the uniqueness of solutions of the problem (1.21), we use the method of the
energy introduced by Lions [16], coupled with Gronwall’s inequality and the hypotheses
introduced in the paper about the functions M, g, and the obtained estimates. O

To show the existence in noncylindrical domains, we return to our original problem in
the noncylindrical domains by using the change variable given in (1.18) by (y,t) = 7(x, 1),
(x,t) € Q. Let v be the solution obtained from Theorem 2.2 and u defined by (1.20), then
u belongs to the classes

uel” (0,00 .Hg(Qt) ﬂH4(Qt));

ur € L (0,00 : HY (Q)), (2.39)
Uy € L* (0,00 Lz(Qg))
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Denoting that
u(x,t) =v(y,t) = (vor)(x,1), (2.40)
then from (1.20) follows that
g+ A= M(IVull} g, ) Au+ Ltg(t — $)Au(s)ds+au; =0 (2.41)

in L* (0,00 : L2(€))). If uy, u, are two solutions obtained through the diffeomorphism 7
given by (1.18), then vy, v, are the solutions to (1.20). By uniqueness result of Theorem
2.2, we have v; = v, so u; = up. Therefore, we have the following result.

TaroREM 2.3. Take uy € H3(Qo) N H*(Qyp), uy € HZ(Qy), and suppose that assumptions
(1.24), (1.25), (1.26), (1.27), (1.28), (1.30), and (2.1) hold. Then there exists a unique solu-
tion u of the problem (1.11)—(1.13) satisfying (2.39) and the equation

t
Uy + ANu— M(II Vull%z(gt))Au + Jo g(t—=s)Au(s)ds+au; =0 (2.42)

in L*(0,00 : L2(Qy)).

3. Exponential decay

In this section, we show that the solution of system (1.11)—(1.13) decays exponentially.
To this end, we will assume that the memory g satisfies

g'(t) = —Cig(t), (3.1)
(mo _ J: g(s)ds) B, >0, (3.2)

for all t = 0 with positive constants C;. Additionally, we assume that the function y(-)
satisfies the conditions

y' <0, t>0, n>2, (3.3)

/ 1
O<0r2tzi)oco [y ()] < 7 (3.4)

where d = diam(Q). The condition (3.4) (see also (1.17)) implies that our domain are
“time-like” in the sense that

lvl <[], (3.5)

where v and ¥ denote the t-component and x-component of the outer unit normal of .
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Remark 3.1. Tt is important to observe that to prove the main theorem of this section,
that is, Theorem 3.8 as well as Lemma 3.6, we use the following substantial hypothesis:

M(s) >my>0, Vse[0,00]. (3.6)

This is because we worked directly in our domain with moving boundary, where the ge-
ometry of our domain influences directly the problem, which generated several technical
difficulties in limiting some terms in Lemma 3.6, and consequently in proving Theorem
3.8. To facilitate our calculations, we introduce the following notation:

(gOVu)(t J Jg t—s)| Vu(t) Vu(s)|2dsdx. (3.7)

First of all, we will prove the following three lemmas that will be used in the sequel.

LemMa 3.2. Let F(-,-) be the smooth function defined in Qy X [0, 00[. Then,

ij F(x,t)dx:J L N T (3.8)
dt Q Q dt Y T

where  is the x-component of the unit normal exterior v.

For the proof, see for example [7].

Lemma 3.3. Letv € HX(Q) N H}(Q). Then foralli=1,...,n,

v ov
FI i (3.9)
Proof. We consider r € C?(Q,R") such that
r=v onl. (3.10)

(It is possible to choose such a field 7(-) if we consider that the boundary I is sufficiently
smooth.) Let 8 € U(I') and ¢ € H™(Q) with m > max(n/2,2) such that ¢|r = 6. Since
%(T) c H™ V2(T), such function ¢ exists and we have

0? .
J;) 313y, (vrig)dy = [ v]a (vrj@)dl = J Hv, (i,j=1,...,n). (3.11)

Note that Q is regular, we also obtain

32
JQ 3,97, (vrip)dy = J v]a (vrjp)dl = J 0v; ayldl“ J G—dF (3.12)
It follows that
ov
J 02V ar — J ( )dr v e B(D), (3.13)
ayz r ayz

which implies (3.9). g
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From Lemma 3.3, it is easy to see that

_ du

Vu-T/—% on I},

and for u € H3(Q,) N H*(Q;) (see Komornik [10, page 26]), we have

2
ou =Au7%diV§=Au onT;.

v = OJ ) —
|Vl Fr o

Lemma 3.4. For any function g € C'(R.) and u € C'(0,00 : H3 (Q) N H*(Qy)),

j rg(t—s)Vu(s) V() dsdx
O, JOo

1 2 1,
- —Eg(t)L)[ | Vu(t)|“dx + 28 OVu

oo (w0 ]

Proof. Differentiating the term gl1Vu and applying Lemma 3.2, we obtain

d d t
a0V [ [ g9 |Vt - vuts)dsds
! y;, Jrf Jotg(t =) [ Vu(t) = Vu(s)| *(x - 9)dsdT,.

Using (3.15), we have

t
igDVuzJ Ig'(t—s)|Vu(t)—Vu(s)|2dsdx
dt . Jo
t
‘ZJ j g(t— ) V(1) - Vuuls)dsdx
o Jo
! d 2
" (Lg(t—s)ds) th | vu(n*dx
from where it follows that
t
2J j g(t— ) V() - Vuuls)dsdx
o Jo
__i{ DVu—Jt (t—s)dsJ |Vu(t)|2dx}
“Tatlf og o}

+JQ Jog'(t—s)Wu(t) —Vu(s)|*dsdx — g(1) JQ | Vu(e) | 2dx.

The proof is now complete.

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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We introduce the functional
2 A
E() = |[ur] o) + 180l 2 g, + M (1 Vul2iq,))

z (3.20)
_ (Iog(s)ds) VUl +gO0V .

We observe that E(t) > 0 since the hypotheses (2.1), (3.2), and (3.6) are satisfied.

LemMMA 3.5. Take uy € H3(Qo) N H*(Q), uy € HZ(Q), and suppose that assumptions
(1.24), (1.25), (1.26), (1.27), (1.28), (1.30), (2.1), and (3.6) hold. Then there exists a unique
strong global solution of (1.11)—(1.13) satisfying

%E(t) +2“||”t||22(0,) < —J g Vul?dx+g'0Vu. (3.21)
Q

Proof. Multiplying (1.11) by u;, performing an integration by parts over (), and using
Lemma 3.2, we obtain

1d 1d
zdt”ut”LZ zdt”vu”Lz 2dt||A”||L2(Q
1d
+ EEM<HVM||%2(Q‘)> +a||ut||L2(Qr) - JQ[ Jog(t—s)Vu(s) . Vutdsdx

-3 M(I9ul,) [ 1vure-n-| 360w+ laul)ar, =0
(3.22)

Using (3.3), we obtain

’

Y 2 2(= Y - 2 2

—5M<||Vullp(m) L[ [Vul*?(@- x) — th Z(V . x)( |u|”+ |Aul )drt >0. (3.23)
Taking into account the above inequality and (3.14) and Lemma 3.4, we obtain the con-
clusion of the lemma. O

We consider the following functional:

y(t) = ZI wudx + allullf> g, (3.24)
LEMMA 3.6. Take uy € H3(Qo) N H*(Q), uy € HZ(Q), and suppose that assumptions

(1.24), (1.25), (1.26), (1.27), (1.28), (1.30), (2.1), and (3.6) hold. Then there exists a unique
strong global solution of (1.11)—(1.13) satisfying

1d t
50 < Nl ~ M1Vl ) 1Vl + [ 26)ds)1Vulqo,
(3.25)

1/2
Al + 1 Vallzy (jg(s )ds) OV
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Proof. Multiplying (1.11) by u and integrating over ), we obtain

1d
S 2 VO =l = 18ul g, = M(IVulF0,) 1 Vulli,
t (3.26)
+J J g(t—5)Vu(s) - Vudsdx.
aJo
Noting that
t t

J J g(t—=s)Vu(s) - Vudsdx = J J g(t=s)(Vu(s) — Vu(t)) - Vudsdx
070 o0 (3.27)

+ —[Of ( Jotg(s)ds) |Vul?dx,

and taking into account that

‘ Jﬂt Ltg(t_s)(vu(s) - Vu(t)) - Vudsdx’ < ||Vu||L2(Q[)<ng(s)ds> l/z(gmvu)l/z’
(3.28)

there follows the conclusion of lemma. O

Remark 3.7. We used the hypotheses (1.24), (1.25), (1.26), (1.27), (1.28), (1.30), (2.1),
and (3.6) because we are interested in strong global solution for our problem (1.11)-
(1.13), which was obtained by the existence and uniqueness in Section 2.

We introduce the functional

$L(t) = NE(t) + y(t), (3.29)
with N > 0. It is not difficult to see that £(t) verifies
koE(t) < £(t) < ki E(t), (3.30)

for ko and k; positive constants. Now we are in a position to show the main result of this
paper.

Tureorem 3.8. Take uy € H(Qo) N H*(Qp), u1 € HZ(Qy), and suppose that assumptions
(1.24), (1.25), (1.26), (1.27), (1.28), (1.30), (2.1), (3.1), (3.2), (3.4), and (3.6) hold. Also,
suppose that g € W12(0, ). Then the strong solution of the system (1.11)—(1.13) satisfies

E(t) < Ce *E(0), Vt=>0, (3.31)

where C and & are positive constants.
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Proof. Using Lemmas 3.5 and 3.6, we get
d 2 2
$$(t) < —2Nallu[ 12, — CINGOVu+||uel 12,
t
~ 18l = M1V ull,) + ( | g(ds) 19ulo, (3.32)
t 1/2
#IValia (| g0)ds) @OV,

Using (3.1) and Young inequality, we obtain for € > 0 that

d
—&L(t) < —2N“||”t||i2(o,) - CNgUVu+ ||”t||i2(ot)

dt
e t
~ 18630y = M (1Vullqy) + ( | g0ds)IVulhg, (339
€ 2 ||g||L1(o,oo)
+£”vu”LZ(Q,)+ 726 gDVu

Choosing N large enough, € small, and using hypothesis (3.6), we obtain
d
aﬂf(t) < —AoE(t), (3.34)
where Ay is a positive constant independent of t. From (3.30) and (3.34), it follows that
P(t) < L(0)e Wkt gt >, (3.35)

From equivalence relation (3.30) our conclusion follows. The proof now is completed.
O

Remark 3.9. The techniques in this paper may be used to study the problem (1.11)—
(1.13) without the term weak dissipative au;. In this case, we define other appropriate
functionals to prove the exponential and polynomial decay rates of the energy of regular
solutions for the nonlinear beam equations with memory

t
e+ A2y M(||Vu||§)Au+J g(t—$)Au(s)ds =0 in O, (3.36)
0

where the functions M, g, and y satisfy some appropriate conditions. Results concerning
the above equations in domains with moving boundary will appear in a forthcoming

paper.

Acknowledgments

This research was started while the second author was visiting the Federal University of
Pard (UFPA)(Par4, Brazil), during March 2003 and the Federal University of Sdo Jodo del
Rei (UFS])(Minas Gerais, Brazil) during July 2003. He was partially supported by CNPq-
Brasilia under Grant no. 301025/2003-7. The authors are thankful to the referee of this
paper for valuable suggestions which improved this paper. Also, the authors would like to



918  Uniform decay for a nonlinear beam equation

thank Professor Dr. Djairo G. de Figueiredo for his valuable attention to our paper. The
authors would like to express their gratitude to Professor Dr. Jaime E. Muifioz Rivera for
the fruitful discussions concerning this paper.

References

[1] R. Benabidallah and J. Ferreira, Asymptotic behaviour for the nonlinear beam equation in non-
cylindrical domains, Commun. Appl. Anal. 6 (2002), no. 2, 219-234.
[2] D. Burgreen, Free vibrations of a pinended column with constant distance between pinendes, J.
Appl. Mech. 18 (1951), 135-139.
[3] M. M. Cavalcanti, Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with
nonlocal boundary dissipation, Discrete Contin. Dyn. Syst. 8 (2002), no. 3, 675-695.
[4] R. Dal Passo and M. Ughi, Probleme de Dirichlet pour une classe d’équations paraboliques non
linéaires dégénérées dans des ouverts non cylindriques, C. R. Acad. Sci. Paris Sér. I Math. 308
(1989), no. 19, 555-558 (French).
[5] J. G. Eisley, Nonlinear vibration of beams and rectangular plates, Z. Angew. Math. Phys. 15
(1964), 167-175.
[6] J. Ferreira, R. Benabidallah, and J. E. Mufoz Rivera, Asymptotic behaviour for the nonlinear
beam equation in a time-dependent domain, Rend. Mat. Appl. (7) 19 (1999), no. 2, 177—
193.
[7] J. Ferreira and M. L. Santos, Asymptotic behaviour for wave equations with memory in a non-
cylindrical domains, Commun. Pure Appl. Anal. 2 (2003), no. 4, 511-520.
[8] M. A. Horn, Uniform decay rates for the solutions to the Euler-Bernoulli plate equation with
boundary feedback acting via bending moments, Differential Integral Equations 5 (1992),
no. 5, 1121-1150.
[9] G.Jiand I Lasiecka, Nonlinear boundary feedback stabilization for a semilinear Kirchhoff plate
with dissipation acting only via moments-limiting behavior, J. Math. Anal. Appl. 229 (1999),
no. 2, 452—479.
[10] V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in
Applied Mathematics, Masson, Paris, 1994.
, On the nonlinear boundary stabilization of Kirchhoff plates, NoDEA Nonlinear Differ-
ential Equations Appl. 1 (1994), no. 4, 323-337.
[12] J. E. Lagnese, Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic damp-
ing, Control and Estimation of Distributed Parameter Systems (Vorau, 1988), Internat. Ser.
Numer. Math., vol. 91, Birkhduser, Basel, 1989, pp. 211-236.
, Boundary Stabilization of Thin Plates, SIAM Studies in Applied Mathematics, vol. 10,
Society for Industrial and Applied Mathematics (STAM), Pennsylvania, 1989.
[14] 1. Lasiecka, Exponential decay rates for the solutions of Euler-Bernoulli equations with boundary
dissipation occurring in the moments only, J. Differential Equations 95 (1992), no. 1, 169—
182.
[15] 1. Lasiecka and R. Triggiani, Sharp trace estimates of solutions of Kirchhoff and Euler-Bernoulli
equations, Appl. Math. Optim. 28 (1993), no. 3, 277-306.
[16] J.-L. Lions, Quelques Méthodes de Résolution des Problemes aux Limites non Linéaires, Dunod,
Paris, 1969 (French).
[17] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol.
I, Springer-Verlag, New York, 1972.
[18] J. E. Mufioz Rivera, Energy decay rates in linear thermoelasticity, Funkcial. Ekvac. 35 (1992),
no. 1, 19-30.
[19] J. E. Muifioz Rivera, E. C. Lapa, and R. Barreto, Decay rates for viscoelastic plates with memory,
J. Elasticity 44 (1996), no. 1, 61-87.

[13]



M. L. Santos etal. 919

[20] D. C. Pereira, Existence, uniqueness and asymptotic behavior for solutions of the nonlinear beam
equation, Nonlinear Anal. 14 (1990), no. 8, 613-623.

[21] O. Ramos Ch., Regularity property for the nonlinear beam operator, An. Acad. Brasil. Ciénc. 61
(1989), no. 1, 15-25.

[22] M. L. Santos and E Junior, A boundary condition with memory for Kirchhoff plates equations,
Appl. Math. Comput. 148 (2004), no. 2, 475-496.

[23] S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars, J. Appl. Mech.
17 (1950), 35-36.

M. L. Santos: Departamento de Matematica, Universidade Federal do Pard, Campus Universitario
do Guama, Rua Augusto Corréa 01, CEP 66075-110, Pard, Brazil
E-mail address: ls@ufpa.br

J. Ferreira: Departamento de Matemadtica, Estatistica e Ciéncias da Computagdo, Universidade Fed-
eral de Sdo Jodo del-Rei (UFSJ), Praga Frei Orlando 170, CEP 36300-000, Sdo Jodo del-Rei, Minas
Gerais, Brazil

E-mail address: jf@ufsj.edu.br

C. A. Raposo: Departamento de Matemética, Estatistica e Ciéncias da Computagdo, Universidade
Federal de Sao Joao del-Rei (UFS]), Praga Frei Orlando 170, CEP 36300-000, Sao Joao del-Rei, Minas
Gerais, Brazil

E-mail address: raposo@ufsj.edu.br


mailto:ls@ufpa.br
mailto:jf@ufsj.edu.br
mailto:raposo@ufsj.edu.br

Journal of Applied Mathematics and Decision Sciences

Special Issue on

Intelligent Computational Methods for

Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becom-
ing increasingly important in today’s economic and financial
world, especially in areas such as portfolio management, as-
set valuation and prediction, fraud detection, and credit risk
management. For example, in a credit risk context, the re-
cently approved Basel II guidelines advise financial institu-
tions to build comprehensible credit risk models in order
to optimize their capital allocation policy. Computational
methods are being intensively studied and applied to im-
prove the quality of the financial decisions that need to be
made. Until now, computational methods and models are
central to the analysis of economic and financial decisions.

However, more and more researchers have found that the
financial environment is not ruled by mathematical distribu-
tions or statistical models. In such situations, some attempts
have also been made to develop financial engineering mod-
els using intelligent computing approaches. For example, an
artificial neural network (ANN) is a nonparametric estima-
tion technique which does not make any distributional as-
sumptions regarding the underlying asset. Instead, ANN ap-
proach develops a model using sets of unknown parameters
and lets the optimization routine seek the best fitting pa-
rameters to obtain the desired results. The main aim of this
special issue is not to merely illustrate the superior perfor-
mance of a new intelligent computational method, but also
to demonstrate how it can be used effectively in a financial
engineering environment to improve and facilitate financial
decision making. In this sense, the submissions should es-
pecially address how the results of estimated computational
models (e.g., ANN, support vector machines, evolutionary
algorithm, and fuzzy models) can be used to develop intelli-
gent, easy-to-use, and/or comprehensible computational sys-
tems (e.g., decision support systems, agent-based system, and
web-based systems)

This special issue will include (but not be limited to) the
following topics:

e Computational methods: artificial intelligence, neu-
ral networks, evolutionary algorithms, fuzzy inference,
hybrid learning, ensemble learning, cooperative learn-
ing, multiagent learning

o Application fields: asset valuation and prediction, as-
set allocation and portfolio selection, bankruptcy pre-
diction, fraud detection, credit risk management

e Implementation aspects: decision support systems,

expert systems, information systems, intelligent
agents, web service, monitoring, deployment, imple-
mentation

Authors should follow the Journal of Applied Mathemat-
ics and Decision Sciences manuscript format described at
the journal site http://www.hindawi.com/journals/jamds/.
Prospective authors should submit an electronic copy of their
complete manuscript through the journal Manuscript Track-
ing System at http://mts.hindawi.com/, according to the fol-
lowing timetable:

December 1, 2008
March 1, 2009

Manuscript Due

First Round of Reviews

Publication Date June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, China;
Department of Management Sciences, City University of
Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong;
yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems
Science, Chinese Academy of Sciences, Beijing 100190,
China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City
University of Hong Kong, Tat Chee Avenue, Kowloon,
Hong Kong; mskklai@cityu.edu.hk

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/jamds/
http://mts.hindawi.com/

	1Call for Papers
	Guest Editors

