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We will investigate the nonexistence of positive solutions for the following nonlinear
parabolic partial differential equation: du/ot = Lu+ V(w)uP~! in Q x (0,T), 1 < p <
2, u(w,0) = up(w) = 0 in Q, u(w,t) =0 on dQ X (0,T) where & is the subelliptic p-
Laplacian and V € L}, (Q).

1. Introduction

This paper deals with the nonexistence of positive solutions to the following nonlinear
parabolic equation:

%ziﬁLﬁV(u/)uP*1 inQx(0,T),1<p<2,
u(w,0) = ug(w) =0 in Q, (L.1)
u(w,t) =0 on 0Q x (0,T),

where Q is a Carnot-Carathéodory metric ball in R?"*! and V € L] (Q). The nonlinear
operator & is the subelliptic p-Laplacian:

2n
Pu=> X;(IXul”2X;u), (1.2)
j=1

where

._i ) 2k72§ ._i_ ' 2k72§ .
X] = axj +2ky]‘2‘ al: Xn+] = ay] 2ka|Z| al, ] = 1,...,n. (13)

are the smooth vector fields and satisfy Hormander condition [25] for any k € N. Here
Xu = (Xiu,...,Xz,u) is the subelliptic gradient of a function u. Observe that

2n
-2
FPu= ZXj(IXuIP Xju) =0 (1.4)
j=1
Copyright © 2005 Hindawi Publishing Corporation

Abstract and Applied Analysis 2005:6 (2005) 607617
DOI: 10.1155/AAA.2005.607


http://dx.doi.org/10.1155/S1085337504408070

608 Nonlinear degenerate parabolic equations

is the Euler-Lagrange equation of the variational integral

1
Jﬂm=—JMME (1.5)
p
where
2n p/2
|XW=[ZX&W1 , p>L (1.6)
j=1
The subelliptic p-Laplacian
Lu= > X;(IXul"?Xu) =0 (1.7)

i=1

was studied by Capogna et al. [7] for more general systems of C* vector fields which sat-
isfy Hormander condition. They established sharp Sobolev embedding associated to the
functional ], and the Harnack inequality for positive solutions of (1.7). The fundamen-
tal solution of the subelliptic p-Laplacian (1.2) at the origin has been found by Zhang
and Niu [36]. In that paper they established Hardy-type inequalities and Pohozaev-type
identities associated with vector fields (1.3).

If p = 2 then subelliptic p-Laplacian (1.2) reduces to sub-Laplacian

2n
Ap =D X7 (1.8)
j=1

which arise in a diverse area of mathematics including boundary value problems in sev-
eral complex variables, harmonic analysis, quantum mechanics of anharmonic oscillators
and electromagnetic fields. The hypoellipticity of Ax follows from the famous paper of
Hormander [25]. The fundamental solution of A has been studied extensively by Greiner
[24] and Beals et al. [2, 3, 4]. In a recent paper, Kombe [32] studied nonlinear parabolic
equations and found sharp Hardy-type inequality associated with Ag.

Note that if k = 1 then Ax becomes Kohn-Laplacian Ay on the Heisenberg group H"
and today there is a large literature about partial differential equations on the Heisenberg
group (see [9, 10, 12, 13, 16, 17, 21, 22, 23, 26, 27, 28] and references therein).

Problem (1.1) has been studied on the Euclidean space and Heisenberg group by Gold-
stein and Kombe [20, 21] and for the nonsmooth vector fields by Kombe [30, 31]. It turn
outs that nonexistence of positive solutions that kind of problems largely depends on the
size of bottom of the normalized p-energy forms

o 1X¢lPdw — [ VIglPdw
HV) = [olgl2dw ’ (1.9)

where ¢ € C*(Q) and V € L{,_(Q). Clearly, in the case k = 1, our results recovers the
results of Goldstein and Kombe [21]. The following is the main result of this paper.
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TueoreM 1.1. Let (4n+4k)/(2n+2k+1) < p<2and V € L} (Q\ ), where X is a
closed Lebesgue null subset of Q. If

[o|X¢IPdw - [o(1 - €)VIlPdw _
0£peC (Q\F) Jo1p1Pdw

Eine((1-€)V) := (1.10)

for some € >0, then the problem (1.1) has no general positive local solution off of J.

The outline of this paper is the following. In Section 2, we introduce notations, spher-
ical transformation, basic lemma and Hardy-type inequality. In Section 3, we prove our
main Theorem and two corollary.

2. Preliminary and notations

The generic pointis w = (z,1) = (x, y,1) € R*"*1. For wy € R***!and r >0, Q = By (wo,7) =
{w e R*™1 | d.(w,wpy) < r} denotes the d.-metric ball in R**"! with center wy and radius
r. Here, d, is the Carnot-Carathéodory distance (or control distance) generated by the
vector fields (1.3) (see [11, 34]). We define the distance from the origin on R?"*! by

p=pw) = (lz|*+2)"* (2.1)
which is homogeneous of degree one with respect to the natural dilation
8:(z,1) = (12,7%]), 1>0, (z,]) € R (2.2)

The function p is related to the fundamental solution of subelliptic p-Laplacian and sub-
Laplacian Ay at the origin (see, [2, 3, 4, 36]).
The sub-elliptic gradient is the 2n dimensional vector field given by

X = (X15.., Xon), (2.3)

where X; and X, are the smooth vector fields which is defined by (1.3). If ¢ is a smooth
radial function then we have the following lemma.

LemMa 2.1. Let ¢ = ¢(p) be a smooth radial function (i.e., ¢ only depends on the function
pin (2.1)). Then

|Z|2k—1

[ X¢l = P [¢"(p)]. (2.4)

Proof. The proof is an easy computation (see [32]). O
Let

Br(0):={(z,)) eR*" xR:p < R}. (2.5)

be the ball with respect to p centered at the origin (0,0) € R*" x R with radius R. Let
D = Bg,(0) \ Bg,(0) be an annulus with 0 < R; < R, < o and ¢ € L!(D). In order to com-
pute [, ¢(w)dw, we use the following transformation which is a modification of spherical
transformation in [5]
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Letw = (z,1) = (x,y,]) and

)I/Zk

= p(sing)"“* cosy, cos O,

_ p(sin(p)mk

cosy sinf,

V2ksiny, - - - sin g, cos ¥y, cos B, 1,

Xp-1 = p(sing)
Yn-1 = p(sing)
Xp = p(sing)

= p(sing)"?**siny, - - - siny,_,siny,_sin6,,

(2.6)

V2ksiny, - - - siny,_, cos 1 sin6,_1,

V2ksiny, - - - siny,_,siny,_; cosO,,

1= p*cosg,

for Ri<p<Ry 0<¢@<mO0O<y;j<n/2,j=1,...,n-1,and 0<0; <27, j=1,...,n
Then the volume element satisfies

n—1 n
dw = dxdydl = p?~'dp(sing)" *de| | [cotw] sml//J dt//J] n (2.7)
j=1 j=1
where
Q=2k+2n (2.8)

is the homogeneous dimension.

Hardy-type inequalities. The prominent role of Hardy’s inequality in partial differential
equation has been known since the pioneering paper of Baras and Goldstein [1]. Their
results stimulated several interesting results in the study of linear and nonlinear parabolic
equations with singular potential (see [6, 14, 19, 20, 21, 18, 22, 23, 28, 29, 30, 31, 32]).

We should also mention that there has been great interest in the study of sharp Hardy-
type inequalities on the sub-Riemanian space (see [8, 15, 16, 22, 32, 35, 36]). The fol-
lowing Hardy-type inequality associated with the vector fields (1.3) has been proved by
Zhang and Niu [36]

TueOREM 2.2. Let ¢ € C(R*1\ {(0,0)}), k > 1 and 1 < p < 2k+2n. Then

|z|(2k 1p

Tyl = J X dzd] (2.9)
z

where cy(k,n) = ((2k +2n— p)/p)?P.

¢ (k,n) J

Singular potentials. In this paper, we will focus on some singular potentials (since they
are critical). As a concrete example, we will treat positive singular potential

\|z|(2k=Dp

Viz,)) = —
(Iz|4% + 2) "

(2.10)
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and highly singular, oscillatory potential

/\|Z|(2k—1)p ﬁ|Z| (2k-1)p

V(zl) = ot sin(( ! M), (2.11)

(|Z|4k+l2 (‘Z‘4k+12) |Z|4k+l2)

where k € N, A >0, « >0 and S € R\ {0}. We prove that the nonexistence of positive
solutions is intimately related with the Hardy’s inequality.

We are concerned with the general positive local solution of problem (1.1) and we
define the general positive local solution in the following sense.

Definition 2.3. By a positive local solution continuous off of K, we mean

(i) K is a closed Lebesgue null subset of Q,

(ii) u: [0,T) — LY(Q) is continuous for some T > 0,

(iii) (w,t) — u(w,t) € C((Q\JH) x(0,T)),

(iv) u(w,t) >0 0on (Q\ H) x (0,T),

(v) lim;_q u( ,1) = 1 in the sense of distributions,

(vi) Xu e Lloc( Q) and u is a solution in the sense of distributions of the PDE.

Remark 2.4. 1f0<a<b< T and K, is a compact subset of Q \ K, then u(w,t) > €; >0
for (w,t) € K, X [a,b] for some €; > 0. We can weaken (iii), (iv) to be

(iii)" u(w,t) is positive and locally bounded on (Q\ ) x (0, T),

(iv)" 1/u(w,t) is locally bounded on (Q \ K) x (0, T).
If a solution satisfies (i), (ii), (iii)’, (iv)’, (v), and (vi) then we call it a “general positive
local solution off of K. This is more general than a positive local solution continuous off
of K. If K = &, we simply call u “general positive local solution.”

3. Proof of Theorem 1.1

We argue by contradiction. Given any T >0, let u: [0,T) — L'(Q) be a general positive
local solution to (1.1) in (Q\ K) x (0,T) with uy > 0 but not identically zero. Multiply
both sides of (1.1) by the test function [¢|?/uP~! where ¢ € CZ(Q\ K), and integrate
over (), to get

1 d

It follows from the integration by parts that

617 ) 617
Jﬂiu<ﬁ>dw=—JQ|Xulp 2Xu-X<F>dW. (3.2)
Since
|Xu|P*2Xu-X(' 'p) plxuir2 180 O e X1g - (p—1)|¢| Xul?,

(3.3)

ng (i:ﬁ“i)d I)J |Xu\P—dw ‘DJ |XulP- 2¢




612  Nonlinear degenerate parabolic equations

and then we have

lp1? lp|? _ Pl
Lgu(%)d‘wz(P—I)JQIXMIPZ—pdw—pL)IXuIP1|X¢|¢—_1dw. (3.4)

ub

Here we can use the following elementary inequality: Let p > 1 and s; # s; be two positive
real numbers. Then

st —sb —ps§71(51 —5) >0; (3.5)
it follows that
(p—1)s5 = psh s> —sf. (3.6)

We can take s, = [(¢/u)Xul, s; = | X¢|; then we have

(p— 1)J xulr 18 dw—pj a1 x 1 12 g —f XplPdw.  (3.7)
Q ub Q ub~1 ~ Ja ' '
Therefore
1917 _J P
| tu( 55 )aw= - | 1xpiraw (3.8)

Substituting (3.8) into (3.1) and integrating from #, to t,, where 0 < t; < t, < T, we obtain

1
Viw de—J Xo|Pdw < —J WP (w,ty) — ut P (w,t Pdw.
[ voogledw [ Xgiraw = st | )~ () Ig)
(3.9)
Using Jensen’s inequality for concave functions, we obtain
(2k+2n)/p (2-p)(2k+2n)/p
J (u(Z_P)(w,ti)) dw < C(|Q]) J u(w,t;)dw < 0. (3.10)
Q Q
Here we use the fact that Q is bounded, whence |Q| is finite. Therefore
ur P (w,t;) € LEF2P(Q). (3.11)

We now use the following a priori inequality which is a consequence of the Sobolev-
Poincaré inequality [7, 33]. For every € > 0 there exists C(€) such that

1

(3.12)
< JQ X[Pdw+ C(e) Jﬂ |p1Pdw,
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Substituting (3.12) into (3.9), we obtain

JQ V(w)|$lPdw — JQ XglPdw < -5 JQ IX|Pdw +Ce) L} GlPdw.  (3.13)

Therefore

o1 X¢12dw — [(1 =€)V (w)|p|Pdw
0£peC (Q\F) Jo 1@1Pdw

> —(1-¢€)C(€) > —o0. (3.14)

This contradicts our assumption. The proof of Theorem 1.1 is now complete.

CoroLLARY 3.1. Let 0 € Q, cp(k,n) = ((2k+2n — p)/p)P and V (z,1) = A|z|®~Dp/(|z|* +
I2)P’2. Then problem (1.1) has no general positive local solution off of K if A > c,(k,n) and
(4k+4n)/2k+2n+1) < p<2.

Proof. Given € >0, we define the radial function, ¢ € C}(Q) WH*(Q), by

e~ (Gke2n=p)/p) if0 < p <,
p*((2k+2”*P)/P) ife < p< 1,

d(p) = (3.15)

2-p ifl<p=<2,
0 ifp=2.

We are assuming that 0 € Q. Without loss of generality we assume that B,(0) = {(z,]) €
R2 X R :p <2} C Q;if not, we simply redefine ¢, replacing 2 by R where Br(0) C Q. This
only results in notational changes in the proof that follows. Then we assume (without loss
of generality) that ¢ € CZ(Q)).

We want to show that

[o1X¢|Pdzd] — o (MzI D2/ (|21 + 2)?) g 2dzd]

3.16
0£6€C (O\H) JolplPdw (3.16)
Using Lemma 2.1, we get, for ¢ as in (3.15),
(0 ifo<p<e,
_ (2k-1)p
(2k+§)n p) 2"*”(%') ife<p<l,
P _ ]

|X¢(p)|” = 2|y @ Dp (3.17)

(?> ifl<p<2,

L0 ifp>2.
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)1/2k

Using |z| = p(sing then we obtain

I I Xp|Pdw = #[J (M)Pdp Jp2k+2n 1dp}

b (3.18)
B _<2k+2n—p)l €+22’<+2“—1
—# P BT okvon |
where
a/2n—1 ) 2 N
yzj (sin )" k(2= I)P/deq)xj 1_[ coty; sml//]) ])dwj]xj []46
0 0
j=1
(3.19)
Since
_ MG A (k—1)p/2k
Viz,l) = (e[ s Byo2 = o7 (sing) , (3.20)
we write
Mz|(2k p
). 7(|z|4k+lz)P/2|¢| dw

€ 1 2
_ ’W[EP_M_M JO p2k+2n—p—1dp+ Je /l)dp-f— L (2 _p)pP2k+2n—p—1dp:| (3‘21)

1 £2k+2n—p_1
=Ay<—loge+2k+2n_p+ 2k+2n—p)

where & € (1,2). Note that we applied the Generalized Second Mean Value Theorem for
integrals to the last integral above.
Next,

- c . 5
J |¢|P(W)dw =y epfzkunJ’ p2k+2n—1dp+J Ppildp-l-J’ (2*p)Pp2k+2”71dp]
Q L 0 . .

4 1—¢? ,12k+2n ~1
=7 + + ]
L 2k +2n p 2k +2n
M ’12k+2n _
:)’_;+W](1+0(1)) as€ — 0,
(3.22)
where # € (1,2) and
o ' /2 n—1 . 2nmi) o 1
Y= L (sing)" Kdg x Jo I [cotwj(smu/j) dl//j] X JO []46;. (3.23)
j=1 j=1
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Substituting (3.18), (3.21) and (3.22) into the Rayleigh quotient,

IXo|Pdzdl — [, AP 610 dzdl
olX¢ o o ¢

(Izl%+ )
Jo |9lPdzdl
2k+2n—p\ P Q2k+2n_ | gkenp_q
‘”[ - ( » ) loge + S _’1( loge + 55, » ¥ k2 )

5 + e |0+ o) .

ﬂ[<’\ - (MTH))?) loge + 2221232;1 - ’\<2k+21n—p * 522;3:—; >]
o[+ S 0ot |

Therefore taking limits as € — 0%, we find that the right-hand side of (3.24) can become
negative and arbitrarily large in magnitude, that is,

o IX¢Pdzdl — [o, (Mzl@5-V2/(1z1% + 2)P?) | P dzdl
0£6E(0\%0) INDZE

= —00 (3.25)

The proof of Corollary 3.1 is now complete. O

CoroLLARY 3.2. Let 0 € Q, cp(k,n) = ((2k +2n — p)/p)P and V(z,1) defined by (2.11).
Then problem (1.1) has no general positive local solution off of J if A > c,(k,n) and (4k +
4n)/(2k+2n+1) < p<2.

Proof. The proof of Corollary 3.2 is similar and we omit the details. Although oscillating
part of V(z,1) is so singular at the origin, nonexistence of positive solutions only depends
on the size of A. The point is that oscillating part of the potential has very large positive
and negative parts, in particular, it oscillates wildly, but important cancellations occur
between the positive and the negative parts in the quadratic form. O
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