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We study the best constant involving the L2 norm of the p-derivative solution of Wente’s
problem in R2p. We prove that this best constant is achieved by the choice of some func-
tion u. We give also explicitly the expression of this constant in the special case p = 2.

1. Introduction and statement of the results

The Wente problem arises in the study of constant mean curvature immersions (see [6]).
Let Ω be a smooth and bounded domain in R2. Given u= (a,b) be function defined on
Ω. Consider the following problem:

−∆ψ = det∇u= ax1bx2 − ax2bx1 in Ω,

ψ = 0 on ∂Ω,
(1.1)

where x = (x1,x2) and axi denote the partial derivative with respect to the variable xi, for
i = 1,2. If Ω = R2, we consider the limit condition lim|x|→+∞ψ(x) = 0, where |x| = r =
(x2

1 + x2
2)1/2. When u= (a,b)∈H1(Ω,R2), it is proven in [7] and [3] that ψ, the solution

of (1.1) is in L∞(Ω). In particular, this provides control of∇ψ in L2(Ω) and continuity of
ψ by simple arguments. We also have

‖ψ‖∞ +‖∇ψ‖2 ≤ C0(Ω)‖∇a‖2‖∇b‖2. (1.2)

Denote

C∞(Ω)= sup
∇a,∇b �=0

‖ψ‖∞
‖∇a‖2‖∇b‖2

,

C1(Ω)= sup
∇a,∇b �=0

‖∇ψ‖2

‖∇a‖2‖∇b‖2
.

(1.3)

It is proved in [1, 5, 7] that C∞(Ω)= 1/2π and in [4] that C1(Ω)= √(3/16π).
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Here, we are interested to study a generalization of problem (1.1) in higher dimen-
sions. More precisely, let p ∈N∗ and u∈W1,2p(R2p,R2p). Consider the following prob-
lem:

(−∆)pϕ= det∇u in R2p,

lim
|x|→+∞

ϕ(x)= 0. (1.4)

It was proved in [2] that the solution ϕ of (1.4) is in L∞(R2p) and ∆̃k/2ϕ is in L2p/k(R2p)
for 1≤ k ≤ p, with the following estimates:

‖ϕ‖∞ +
∥∥∆̃k/2ϕ∥∥2p/k ≤ C‖∇u‖

2p
2p, (1.5)

where

∥∥∆̃k/2ϕ∥∥2p/k =


∥∥∆k/2ϕ∥∥2p/k if k is even,∥∥∇(∆(k−1)/2

)
ϕ
∥∥

2p/k if k is odd.
(1.6)

Moreover, the best constant involving the L∞ norm was determined. Here, we will focus
our attention to the quantity ‖∆̃p/2ϕ‖2. We will introduce some notations, denote by B2p

the unit ball in R2p, S2p the unit sphere in R2p+1 and σ2p+1 = vol(S2p). Denote Ψ the
function defined on (0,+∞) by

Ψ(s)= 1
sp

(∫
R2p

(
s|∇ϕ|2 + |∇u|2)p

)2p+1

= 1
sp


 p∑
k=0

Ckp
∥∥|∇ϕ|k|∇u|p−k∥∥2

2s
k




2p+1

.

(1.7)

Then, there exists a unique α= α(∇ϕ,∇u)∈ (0,+∞) such that

Ψ(α)= inf
s∈(0,+∞)

Ψ(s) (1.8)

satisfying

p∑
k=0

[
(2p+ 1)k− p

]
Ckp
∥∥|∇ϕ|k|∇u|p−k∥∥2

2α
k = 0. (1.9)

Finally, let

Cp = sup
∇u�≡0

∥∥∆̃p/2ϕ
∥∥2

2

Ψ1/(2p)(α)
. (1.10)

Our main result is the following theorem.
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Theorem 1.1. There exists

Cp = 1

(2p+ 1)(2p)(2p+1)/2σ
1/(2p)
2p+1

. (1.11)

Moreover, the best constant Cp is achieved by a family of one parameter of functions ϕ̄ and ū
given by

ϕ̄(x)= 2
(2p)!(1 + cr2)

, ū= 2
√
cx

1 + cr2
, (1.12)

where c > 0 is some arbitrary positive constant.

We can give for example more explicit expression of the best constant in the case where
p = 2. Let u∈W1,4(R4,R4) and ξ is the solution of

∆2ξ = det∇u in R4,

lim
|x|→+∞

ξ(x)= 0. (1.13)

We get that

Ψ(α)=
55‖∇u‖12

4

(
5
∥∥|∇ξ||∇u|∥∥2

2 +
(

9
∥∥|∇ξ||∇u|∥∥4

2 + 16‖∇ξ‖4
4‖∇u‖4

4

)1/2
)5

84

(
3
∥∥|∇ξ||∇u|∥∥2

2 +
(

9
∥∥|∇ξ||∇u|∥∥4

2 + 16‖∇ξ‖4
4‖∇u‖4

4

)1/2
)3 .

(1.14)

Corollary 1.2. Let ξ be a solution of (1.13), then

sup
∇u�≡0

‖∆ξ‖2
2

(
3
∥∥|∇ξ||∇u|∥∥2

2 +
(

9
∥∥|∇ξ||∇u|∥∥4

2 + 16‖∇ξ‖4
4‖∇u‖4

4

)1/2
)3/4

‖∇u‖3
4

(
5
∥∥|∇ξ||∇u|∥∥2

2 +
(

9
∥∥|∇ξ||∇u|∥∥4

2 + 16‖∇ξ‖4
4‖∇u‖4

4

)1/2
)5/4

= 1
28

(
15

8π2

)1/4

,

(1.15)

and the supremum is achieved by ξ̄ and ū given by

ξ̄(x)= 1
12
(
1 + cr2

) , ū(x)= 2
√
cx

1 + cr2
, (1.16)

where c is some arbitrary positive constant.



602 The L2 norm in the higher-order Wente problem

2. Proof of results

First, we introduce some notations which we will use later. Let Ω be a bounded subset
of Rn and let W : Ω→Rn+1 be a regular function. Denote W = (w1,w2, . . . ,wn,wn+1) and
Wi = (w1, . . . ,wi−1,wi+1, . . . ,wn,wn+1), for i= 1, . . . ,n+ 1. Let V be the algebric volume of
the image ofW inRn+1 and denote by A the volume of the boundary of V . Then, we have

V = 1
n+ 1

∫
Ω
W ·Wx1 ×Wx2 ×···×Wxn , (2.1)

A=
∫
Ω

∣∣Wx1 ×Wx2 ×···×Wxn

∣∣, (2.2)

where Wx1 ×Wx2 ×···×Wxn is some vector of Rn+1 given by

Wx1 ×Wx2 ×···×Wxn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 w1
x1

··· w1
xn

e2 w2
x1

··· w2
xn

· · ··· ·
· · ··· ·
· · ··· ·

en+1 wn+1
x1

··· wn+1
xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

n+1∑
i=1

(−1)i−1 det(∇Wi)ei.

(2.3)

Here (ei)1≤i≤n+1 is the canonic base of Rn+1. We need the following Lemma.

Lemma 2.1. Let W : Ω→ Rn+1 defined as above. Suppose that there exist 1 ≤ i0 ≤ n such
that wi0 = 0 on ∂Ω, then

∫
Ω
widet

(∇Wi
)= (−1)n

∫
Ω
wj det

(∇Wj
)
, (2.4)

for 1≤ i < j ≤ n.

2.1. Proof of Theorem 1.1. We will suppose that u ∈ C∞(R2p,R2p)∩W1,2p(R2p,R2p).
The general case can be obtained by approximating u by regular functions. Then we de-
fine W in R2p+1 as follows:

W(x)= (u(x), tϕ(x)
)
, (2.5)

where t is a reel parameter which will be chosen later. Using (2.4) the algebric volume
closed by the image of W in R2p+1 is

V =
∫
R2p

w2p+1 det
(∇W2p+1

)
dx = t

∫
R2p

ϕdet∇udx = t
∫
R2p

ϕ(−∆)pϕdx. (2.6)

Then we have

V = t∥∥∆̃p/2ϕ
∥∥2

2. (2.7)
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Next, we will estimate A. We have by (2.2)

A≤
∫
R2p

∣∣Wx1

∣∣∣∣Wx2

∣∣···∣∣Wx2p

∣∣dx =
∫
R2p

2p∏
i=1

(∣∣uxi∣∣2
+ t2ϕ2

xi

)1/2
. (2.8)

As (
∏n

i=1αi)
1/n ≤ 1/n

∑n
i=1αi, we have

A≤ 1
(2p)p

∫
R2p

( 2p∑
i=1

(∣∣uxi∣∣2
+ t2ϕ2

xi

))p

= 1
(2p)p

∫
R2p

(|∇u|2 + t2|∇ϕ|2)p. (2.9)

Recall the isoperimetric inequality on a domains Ω of R2p+1. Denote by V = Vol(Ω)
and A=Vol(∂Ω), respectively, the volume of Ω and ∂Ω, then

(2p+ 1)2pσ2p+1V
2p ≤A2p+1. (2.10)

By (2.7) and (2.9), we have

(2p+ 1)2pσ2p+1t
2p
∥∥∆̃p/2ϕ

∥∥4p
2 ≤ 1

(2p)p(2p+1)

(∫
R2p

(
|∇u|2 + t2|∇ϕ|2

)p)2p+1

. (2.11)

We conclude that

∥∥∆̃p/2ϕ
∥∥2

2 ≤
1

(2p+ 1)(2p)(2p+1)/2σ
1/2p
2p+1

Ψ(t2)1/2p. (2.12)

Then we obtain

Cp ≤ 1

(2p+ 1)(2p)(2p+1)/2σ
1/(2p)
2p+1

. (2.13)

Next, we will show that Cp is achieved. We will consider a special case

u(x)= g(|x|)x, (2.14)

where g :R+ →R is a regular function which will be chosen later. Since

det∇u= 1
2pr2p−1

d

dr

(
r2pg2p(r)

)
, (2.15)

then, the solution ϕ of (1.4) is a radial function. Let χ a general radial function on R2p

and W(x)= (g(|x|)x, tχ(|x|)). After a computation, we can show easily that in this case

∣∣Wx1 ×Wx2 ×···×Wx2p

∣∣2 = g4p−2(r)
[
g2(r) + 2rg(r)g′(r) + r2g′2(r) + t2χ′2(r)

]
(2.16)
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and for 1≤ i≤ 2p,

∣∣Wxi

∣∣2 = g2(r) +
[
2rg(r)g′(r) + r2g′2(r) + t2χ′2(r)

]x2
i

r2
. (2.17)

Next, we will suppose that χ and g satisfy

2rg(r)g′(r) + r2g′2(r) + t2χ′2(r)= 0. (2.18)

If we chose χ as the solution ϕ of (1.4) when u= g(|x|)x, then by (2.16), (2.17) and under
the hypothesis (2.18), the inequality (2.9) becomes an equality. Let now

ū(x)= ḡ(|x|)x with ḡ(r)= 2
√
c

1 + cr2
, (2.19)

where c > 0 is some positive constant. Then the solution ϕ̄ of (1.4) is given by

ϕ̄(x)= 1
(2p)!

2
1 + cr2

. (2.20)

Indeed, the expression of ∆kϕ, for 1≤ k ≤ p is

∆kϕ̄(r)= 22k+1(−1)kk!ck

(2p)!
(
1 + cr2

)2k+1

×

k−1∏
l=0

(p+ l) +
k−1∏
l=0

(p− 2− l)ckr2k +
k−1∑
j=1

C
j
k

k−1∏
l= j

(p+ l)
k−1∏
q=k− j

(p− 2− q)c jr2 j


 .

(2.21)

Remark that all the coefficients of r2 j for 2≤ j ≤ k in the expression of ∆kϕ̄ have the term
(p− k). Also, since

det∇ū= 1
2pr2p−1

d

dr

(
r2pḡ2p(r)

)= 22pcp
1− cr2(

1 + cr2
)2p+1 , (2.22)

so, we have

(−∆)pϕ̄= det∇ū on R2p. (2.23)

If we choose t̄ = (2p)! and χ̄(r)= ϕ̄(r)− 1/(2p)!, we remark that t̄, χ̄ and ḡ satisfy (2.18).
Since W̄ = (ū, t̄χ̄) :R2p → S2p and that the isoperimetric inequality (2.10) becomes equal-
ity, then we have

∥∥∆̃p/2ϕ̄
∥∥2

2

Ψ
(
t̄2
)1/(2p) =

1

(2p+ 1)(2p)(2p+1)/2σ
1/(2p)
2p+1

. (2.24)

We conclude that ᾱ= α(∇ϕ̄,∇ū) defined by (1.8) in this case is just ᾱ= ((2p)!
)2
.



S. Baraket and M. Dammak 605

2.2. Proof of Corollary 1.2. Following step by step the proof of Theorem 1.1, we have

A=
∫
R4

∣∣Wx1 ×Wx2 ···Wx4

∣∣≤ 1
16

(
t4‖∇ξ‖4

4 + 2t2
∥∥|∇ξ||∇u|∥∥2

2 +‖∇u‖4
4

)
. (2.25)

Choosing

t2 = α= 2‖∇u‖4
4

3
∥∥|∇ξ||∇u|∥∥2

2 +
(

9
∥∥|∇ξ||∇u|∥∥4

2 + 16‖∇ξ‖4
4‖∇u‖4

4

)1/2 , (2.26)

and using the fact that

4‖∇ξ‖4
4α

2 + 3
∥∥|∇ξ||∇u|∥∥2

2α−‖∇u‖4
4 = 0, (2.27)

we have

Ψ(α)=
55‖∇u‖12

4

(
5
∥∥|∇ξ||∇u|∥∥2

2 +
(

9
∥∥|∇ξ||∇u|∥∥4

2 + 16‖∇ξ‖4
4‖∇u‖4

4

)1/2
)5

84

(
3
∥∥|∇ξ||∇u|∥∥2

2 +
(

9
∥∥|∇ξ||∇u|∥∥4

2 + 16‖∇ξ‖4
4‖∇u‖4

4

)1/2
)3 ,

(2.28)

and then

sup
∇u�≡0

‖∆ξ‖2
2

(
3
∥∥|∇ξ||∇u|∥∥2

2 +
(

9
∥∥|∇ξ||∇u|∥∥4

2 + 16‖∇ξ‖4
4‖∇u‖4

4

)1/2
)3/4

‖∇u‖3
4

(
5
∥∥|∇ξ||∇u|∥∥2

2 +
(

9
∥∥|∇ξ||∇u|∥∥4

2 + 16‖∇ξ‖4
4‖∇u‖4

4

)1/2
)5/4 ≤

1
28

(
15

8π2

)1/4

.

(2.29)

By taking

ξ̄(x)= 1
12
(
1 + cr2

) , ū(x)= 2
√
cx

1 + cr2
, (2.30)

we find

‖∇ū‖4
4 =

26× 3×π2

7
,

‖∆ξ̄‖2
2 =

π2

32× 5
, ‖∇ξ̄‖4

4 =
π2

26× 34× 5× 7
,

∥∥|∇ξ̄||∇ū|∥∥2
2 =

11π2

33× 5× 7
.

(2.31)

Finally (1.15) follows.
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