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For a nonempty separable convex subset X of a Hilbert space H(Q), it is typical (in the
sense of Baire category) that a bounded closed convex set C C H(Q) defines an m-valued
metric antiprojection (farthest point mapping) at the points of a dense subset of X, when-
ever m is a positive integer such that m < dimX + 1.

1. Introduction

Baire category techniques are known to be a powerful tool in the investigation of the
convex sets. Their use, which goes back to the fundamental contribution of Klee [17], has
permitted to discover several interesting unexpected properties of convex sets (see Gruber
[14], Schneider [23], Zamfirescu [25]). A survey of this area of research and additional
bibliography can be found in [15, 27].

In the present paper, we consider some geometric properties of typical (in the sense
of the Baire categories) nonempty bounded closed convex sets contained in a separable
real Hilbert space. It will be shown in the typical case, for a closed convex and bounded
set C and an integer m, that there is a dense subset D of the Hilbert space H such that
the farthest point mapping generated by C is precisely m-valued at the points of D. A
result of this type was recently obtained in [5], for typical nonempty compact convex sets.
However, the approach of [5] cannot be adopted here for, in absence of compactness, the
antiprojection mapping could have empty images. To overcome this difficulty we will use
some ideas from [28], developed in the framework of the metric projections.

Throughout, H(Q) is a Hilbert space over the field of real numbers R whose ele-
ments are mappings x : Q) — R with countably many nonzero values and convergent sums
> weaXxt. We often prefer to denote H(Q) by H. It is assumed always in the paper that
dimH(Q) = 2. As usual, the inner product and the norm are denoted by (-,-) and | - |.

For a nonempty bounded set M C H, the function f(x,M) =sup{|x —z|:z€ M} is
the farthest distance function, and the set-valued mapping

QM) ={yeM:|x—yl = f(x,M)} (L.1)
is called metric antiprojection or farthest point mapping.
Copyright © 2005 Hindawi Publishing Corporation
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Let € be the complete metric space of all nonempty bounded closed convex subsets
of H, endowed with the Hausdorff metric y for sets. The cardinal number of a set I is
denoted by cardI and N stands for the set of the natural numbers.

With every m in N and every C C H associate the sets

L™(C) = {x € H:card Q(x,C) = m}, (1.2)

which are called m-locus of the metric antiprojection generated by C.
For X ¢ H and C € 6, the following sets are the loci generated by C in X:

LY (C)=XnNnL"(C). (1.3)

We will also make use of the metric projection (or the nearest point mapping) defined
for nonempty M C H by

P(x,M)=1{yeM:|x—yl=dx,M)}, (1.4)

with distance function d(x,M) = inf{|x — z| : z € M}.

Investigations on typical properties of antiprojections’ loci reflect the research done for
metric projections (see, e.g., [3, 18, 20, 24, 26]). In [2, 12], results of the following type are
proved: for any bounded and closed subset M of a uniformly convex or locally uniformly
convex Banach space X, the set L'(M) is residual in X, and Q(-,M) is continuous at
x € LY(M). Zamfirescu [26] proved for metric projections that typically the complement
of L'(M) is dense. Further development for either metric projections or antiprojections
is to be found in, for example, [6, 7, 8, 9, 14, 28, 29, 30, 31].

A set C C H is called everywhere continual in the set X C H if card(Cn X N U) = ¢ for
every open set U C H such that X n U # @. The letter ¢ denotes the cardinal number of
the continuum.

The following main result is to be established.

THEOREM 1.1. Let X be a nonempty separable convex subset of the Hilbert space H(Q) and
let m € N satisfy dimX > m — 1. Then there exists a residual subset R of € such that for
every C € R the locus LY (C) is dense in X. Moreover, if dimX > m, then there exists a
residual set R C € such that for C € R the set L (C) contains an everywhere continual in
X subset at each point of which Q(-,C) is upper semicontinuous.

2. Notation

A topological space X is called Baire space if the intersection of every countable family
of open and dense subsets of X is dense in X. A set R C X is residual if it contains some
dense G subset of X. If R is residual in X, we say with some abuse of the formal logic that
any element x € R is a typical element of X.

A point-to-set mapping F: X — Y, where X and Y are topological spaces, is upper
semicontinuous (u.s.c.) (resp., lower semicontinuous (l.s.c.)) at xy € X provided for every
open set U D F(xg) (resp., UN F(xo) # @), there exists an open set V C X, xo € V, such
that F(x) C U (resp., F(x) N U # &) whenever x € V.
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For a subset M of H, int M, M, span M, co M, and diam M stand for the interior, clo-
sure, span, convex hull, and diameter of M, respectively, The set uscQu consists of all
points x € H at which Q(x, M) is upper semicontinuous. In some cases, for an arbitrary
set-valued mapping F, we write usc F and IscF to denote the sets of upper semicontinuity
and lower semicontinuity, respectively, of F.

Let 6 be the origin of H. The closed line segment with end-points x,y € H is de-
noted by [x, y]. If M; C H and A; € R for i = 1,2, then A; M) + A, M, = {d1x1 +Aaxp 11 €
My, x, € Mz}

Blx,r] is the closed ball centered at x € H with radius » > 0, while B(x,r) (resp., S(x,r))
is the open ball (resp., the sphere) with the same center and radius. B is the closed unit
ball of H and S is the unit sphere.

The balls in other metric spaces are denoted in a different way, that is, by B with a
subscript indicating the space or without a subscript whenever there is no ambiguity. For
instance, B(C,r) (resp., B[C,r]) stands for the open (resp., closed) ball, centered at C € €
with radius r > 0.

Suppose Mj,...,M,, are nonempty subsets. Denote the set of equidistant points from
all M; with respect to the farthest distance by

(M), ={xeH: f(x, M) = f(x, M), i,j = 1,...,m}. (2.1)

Obviously 7(M;)!, is a closed set in H and whenever nonempty, it is a complete metric
space under the metric induced by | - |.

In the sequel by Hausdorff topology (of €) we mean the topology of € generated by
the Hausdorff distance y. It is well known that (‘6,y) is a complete metric space [16].

3. Topological facts

This small section contains some auxiliary results which are possibly not formulated in
full generality but in a most suitable way for our purposes. The following are well-known
theorems of Fort, Kuratowski and Ulam, Alexandroff and Urysohn, and Brouwer and
Miranda.

TraeoreM 3.1 (Fort [13]). Suppose X and Y are complete metric spaces, Y is separable, and
F: X — Y is an upper semicontinuous set-valued mapping with nonempty compact images.
Then F is lower semicontinuous on a dense G5 subset of X.

THEOREM 3.2 (Kuratowski and Ulam, see [22]). Suppose X and Y are complete metric
spaces, Y is separable, and R is a dense Gy subset of the product space X X Y. Then there
exists a dense Gg subset Rx of X such that for every x € Rx, theset {y € Y : (x,y) €R} is
dense Gy subset of Y.

TaeoreM 3.3 (Alexandroff and Urysohn, see [1]). Let A be a dense Gs subset of a nonempty
metrizable compactum K, and assume K has no isolated points. Then cardA > c.

THEOREM 3.4 (Brouwer and Miranda, see [4, 21]). Let I, C R" be a bounded polyhedron of
the form {x € R": [{vi,x)| <r,i=1,...,n} wherer >0, and v,...,v, are linearly indepen-
dent vectors. Fori=1,...,n,let A = {x € L, : (v;,x) = r} and let g : I, — R be continuous
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functions such that gi(x) <0 if x € A7, gi(x) >0 if x € Af. Then there exists a point % € I,
such that gi(%) =0 foralli=1,...,n.

There are also several topological lemmas.

LemMA 3.5 ([19], cf. [9]). Suppose X is a complete metric space and R C X satisfies the
following property: for every x € X and every n >0 there are y € X and x > 0 such that
Bly,«x] C B(x,1) and R N B[y, «] is residual in B[y, k] with respect to the relative topology.
Then R is a residual subset of X.

LemMA 3.6 [28]. Let X and Y be complete metric spaces and let F: X — Y be an upper
semicontinuous set-valued mapping with nonempty compact images. Then the set

AN ={(x,y) €XXY:y€F(x), Fisls.c. at x} (3.1)

is a Baire space with respect to the relative topology induced by the topology of X X Y.

A topological phenomenon allows us to project orthogonally residual subsets of the
graph of an Ls.c. mapping onto residual subsets of its domain. The following lemma can
be derived from results in [11]. A detailed proof is contained in [28].

LemMA 3.7. Under the assumptions of the previous lemma, let also T be a residual subset of
A’ in the relative topology of A'. Then the orthogonal projection m along Y maps X onto a
residual subset of X.

4. Lemmas

Lemma 4.1. LetCyp € 6,5,y € R,0<s<r,anda € R. Let Cy C Bla,s], and let Y = {yi,...,
Ym} be a nonempty subset of S(a,r). Put C' = co(Y U Cy). Then for every e € (0,1 —s) there
exists & > 0 such that d(x,Y) < ¢ whenever x € C" and |x —a| >r — 0.

Proof. With no loss of generality assume a = 6 and r = 1. Put & = ¢?/8 and take x €

C’\ (1 — 6)B. Denote u = x/|x| and consider the slice Sls(u) = {z€ B: (u,z) >1 - 6}.

In order to complete the proof it suffices to show that d(x,Y) > ¢ implies C" C B\ Sls(u).
For z € Sls(u),

2
|u—z|2:1—2(u,z)+|2|2<28:EZ, (4.1)
thatis, |u — z| < &/2. Hence

d(z,Y)zd(x,Y)—lx—ul—Iu—zl>§—8>0, (4.2)

which entails Sls(u) N'Y = &. Since Sls(u) N B = &, by the choice of §, then Sls(u) N
(CoUY) = @. However, the set B\ Sls(u) is closed and convex, so it contains C’. The
proof is completed. 0

LEMMA 4.2. Under the assumptions of the previous lemma for every € € (0,r —s) there
exists 8 € (0,&/2) such that for every § € (0,8¢], every C € B(C',§), and every x € B(0,0),
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the following hold:
C\B(x, f(x,C) —48) c |B[y).¢l, (4.3)
j=1
Vj (Blyj,el nC)\B(x, f(x,C) —49) + @, (4.4)

which actually means that for j = 1,...,m there are nonempty closed sets M;(x,C) C B[y,
] such that

C\B(x, f(x,C) —40) = Lanj(x,C). (4.5)
=1

Proof. There is no loss of generality in assuming a = 0. Take ¢ € (0,7 —s). As a conse-
quence of Lemma 4.1, there exists §" > 0 such that

C\(r—8)Bc QB(yj,;). (4.6)
j=
Let now & = min{d'/8,&/2}. Take § € (0,8], C € B(C',6), x € B(6,6), and suppose
z € C\B(x, f(x,C) — 49). There is u € C’ satistying |u — z| < §. It is easy to check
r—20< f(x,C) <r+26. (4.7)
Then
r—60< f(x,C)—46 < lz—x| < |z—ul + |u| +|x| < [u| +26, (4.8)

thatis, [u| >r — 88y = r — §" and (4.6) implies d(u,Y) < &/2.
Further,

d(z,Y)s|z—u|+d(u,Y)<a+§se, (4.9)
which verifies (4.3).
Concerning (4.4), for each j = 1,...,m there exists z; € C such that |z; — y;[ <d <e.
Then by (4.7),

fx,C)=28<r=|yj| < |yj—zj| +|zj —x| + x| < |zj — x| +26, (4.10)

whence f(x,C) — 40 < |z; — x| for j = 1,...,m. The proof is completed. O

LemMA 4.3. Under the assumptions of Lemma 4.1, there exists 8y > 0 such that for & €
(0,00], C € B(C',0), x € B(a,8y), and j € {1,...,m} the following inequality holds:

| f(x,CnB[y;,8]) = [x—y;| | <x(C,C'). (4.11)
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Proof. Assume without any loss of generality a = 8 and r = 1. Let ¢ > 0 be chosen so that
the sets sB and B[y;,&’] for j = 1,...,m be pairwise disjoint. Find y > 0 such that

Sl, (yj) ={z€B:(yj,z) =1 -y} CB(y)¢). (4.12)

Find next, £ > 0 so that in turn B(y;,2¢) C SL,(y;), j = 1,...,m.
According to Lemma 4.2 there exists dy € (0,&/3) such that (4.3) and (4.4) hold when-
ever § € (0,09), C € B(C',0), and x € B(0,8). Now, the inequality

|x—y;j| < f(x,CnB[y;,8]) +x(C,C"), j=1,...,m (4.13)
is obviously fulfilled. In order to verify
f(x,CnB[y;,0]) < |x—y;| +x(C,C), j=1,...,m, (4.14)

fix j and take y € C N B[y;,d]. For every o € (0,&/3) there exists y, € co(Cy U Y) with
|y = yol < x(C,C") + 0. Obviously, y, € B(yj,e).
Our next goal is to prove

|x—yo| < [x—yjl. (4.15)

If y, # yj and y, is given in the form

yU:AOyO-f_ZAiyi) y0€C0, Z/li: 1, X4,=0,i=0,...,m, (4.16)
i=0

i=1

then for y; = (1—A;) " (Aoyo + X121 2, Aiyi) we have y, € [y, y;]. 1f yy & B(x, f(x,C') -
46) then, according to Lemma 4.2 for the case C = C', y,, € U B[ y;,¢]. However, y., ¢
B[y;,&] because this ball is strongly separated from co(Co U Y \ {y;}) by a hyperplane
orthogonal to y;. Hence, there is unique i, i # j, such that y; € B[y;,¢]. In that case there
exists y, € G = {z € B: (y;,z) = p} satisfying y, € [y}, y, ]. The hyperplane segment G N
C’ which is contained in B(y;,¢") is also a subset of B(x, f (x,C’) — 46), due to Lemma 4.2,
since it does not meet the set Y +¢B.

Thus, either y,; € B(x, f(x,C’) —46) or there is another point y from that ball such
that y, € [y;,y,]. In both cases y, belongs to a line segment with one end-point in
B(x, f (x,C") — 46) and the other one being y;. On the other hand, it is easy to check

B(x, f (x,C") —46) C B(x, [x—y;|), (4.17)

whence (4.15) follows.
Therefore,

x—yl<|x=yo| +|yo—y| <|x—yj| +x(C,C") +0o (4.18)

for arbitrary o € (0,&/2), which implies (4.14). The proof is completed. O
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LemMa 4.4. Suppose (C,) is a sequence in 6, lim C,, = Cy, and for some y € H and r >0,
C.NB(y,r) # D forn=0,1,.... Then,

limy(C, nB(y,r),Co N B(y,r)) = 0. (4.19)

Proof. Let € >0 be arbitrary, and ¢ > 0 is chosen so that both ¢ and (02 + 2ro)"/? are
smaller than &/2. There is ny € N such that for every n > ny and every x € Cy N B(y,r)
there exists x, € C, with |x — x,| < 0. If x, is not already in B(y,r), then there are z, €
C.NB(y,r) and v, € (xn,2,) N S(y,7).

It is easy to check |x — v,| < 0+ (62 +2r0)"? < &, and to find another point w, €
(xXn>2n) N B(y,r) which is sufficiently close to v, such that |x — w,| < €. Certainly, w, € C,.

Thus C, N B(y,7) +B(60,¢) D Cy N B(y,r), whenever n > ny. Similarly, one proves Cy N
B(y,r)+B(0,¢) O C, N B(y,r) for n = ny, whence

x(CunB(y,r),CoNB(y,r)) <&, n=ny. (4.20)
O

5. Main construction

ProrosITION 5.1. Suppose X is a nonempty separable convex subset of H, and let m € N be
such that

dimX > m. (5.1)
Given Cy € 6,ac X, € >0, thereare C' € 6, x>0,
B[C',x] c B(Cy,¢), (5.2)

and a residual subset R(a,e) C B[C',«] with respect to the relative topology in B[C’,«]
induced by the Hausdorff metric y such that

card (L¥(C) nB(a,e) NuscQc) = ¢ (5.3)

whenever C € R(a,¢), that is, the m-locus of C € R(a,e) meets the set X N B(a,e) at con-
tinuum points at which Q(-,C) is upper semicontinuous.

Proof. Tt is no loss of generality to assume that a = 6, f(6,Cy) > 2¢, and that there exists
an m-dimensional subspace H such that 6 belongs to the relative interior of the set X’ =
H n X, that is, for some ¢’ > 0 the following inclusion holds:

HnB(A,e') cX'. (5.4)

In case m = 1, the proof is more simple and follows the scheme of the general case.
Assume m > 1.
Put fy = f(6,Cy) and find points y1, ¥2,..., ¥m € H such that

ijS<0,f0+§>, d(yj,C0)<§, j=1...,m (5.5)
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Certainly,

d(}’])CO) = > _]: l)---)m- (56)

W m

Denote by 7 the orthogonal projection onto H.Let Y = {y1,..., ym} and v; = n(y;j1 — y1)
for j=1,...,m—1.Take vy € H \ span V and designate

V=1{vi,...,¥m-1}, \N/z{vo}UV. (5.7)

It is assumed also, which is no loss of generality, that the elements of Y have already been
chosen in such a way that the elements of V are linearly independent, that is, span V = H.
Put

C' = E(Co U Y) (5.8)
According to Lemma 4.3 there exists ¢’ > 0 such that for every § € (0,¢”], CeB[C’, 6],

x € B(6,6), and every j = 1,...,m the inequality (4.11) holds.
Denote ¢’ = 4’1min{|yi -yl j=1,...,m, i#j}and

. 4 144 rrr s
eozmlnis,s € ’6}' (5.9)
In view of Lemma 4.2 there exists a number 8, from now on it is fixed,

0<6<%°, (5.10)

such that for every C € B(C’,8) and x € B(6,0) there are nonempty closed sets M;(x,C)
for j = 1,...,m such that

k
C\B(x, f(x,C) —48) =  JM;(x,C), M;(x,C) C B[yj,&]. (5.11)
j=1

Now for r >0 define INr ={x€H:|(nx)| <r, ve V}. Since V is a basis for H, then
for each r > 0 the set I, is bounded and limdiam I, = 0. Having also in mind (5.4), fix
r € R such that

I, C XN B(6,9). (5.12)

The following functions are defined on H:

yi(x) = |x=y| = |x=yjul, j=1...,m—-1L (5.13)

Denoting

A*z{xefr:(vj,x)zir}, j=1,...,m—1, (5.14)
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observe that for any j = 1,...,m — 1 the sign of y;(-) is equal to the sign of the inner
product (v;, ). This is a consequence of the equalities

=y 12 =[x =y | = 20y = y1.x) = (vjox), (5.15)
since
(yis1—y1—vjpx) =0 forxeH, j=1,..,m-1 (5.16)
Thus y;(-) take opposite sign values on the corresponding faces A; and A].
Since A}—' are compact, y;(x) attains minimal and maximal values on them for each
j=1,...,m—1.Denote for j = 1,...,m—1,
—aj=max{y;(x):x € A7}, Bj =min{y;(x):x € Aj}, (5.17)
Choose x > 0 such that
k<9, (5.18)
Ks%min{(xj,ﬁj:j=1,...,m—l}. (5.19)
By (5.8), (5.5), (5.10), and (5.18), for C € B[C’, ] we have
1(C,Co) < x(C,C) +x(C',Cy) <K+§ <e, (5.20)
thus verifying the inclusion (5.2).
For every C € B[C',x] and j = 1,...,m, define N;(C) = C n B[yj,&]. Notice that
(4.11) can be rewritten in the following way:
| f(6N;(O) = |x—yil| =%, j=1...,m (5.21)
Consider the following functions defined on H N B(6,6):
yj(%,C) = f(x,N1(C)) = f(x,N;z1(C)), j=1,....,m—1 (5.22)
Lett € [—r,r] be fixed. Denoting L; = {x € H : (vp,x) = t}, and L;(t) = IN, N L¢, we ap-
ply the Brouwer-Miranda theorem to the set I,(t) and the functions defined by (5.22). In
order to verify the boundary, conditions take, for instance, x € A]T NLforj=1,...,m—
1, and then, having in mind (5.19) and (5.21),
yi(x,C) < |x—=y1| — |x— yin1 | +2K < —a; + 2K < 0. (5.23)

Analogously, for x € A7 N L,

yi(x,C) = |x—y1| = |x— yir1 | =2 = fi —2x>0. (5.24)



432 Properties of typical convex sets

Therefore, for every t € [—r,r] there exists at least one point %; € I,(¢) at which all
functions in (5.22) vanish, that is, X; € T(Nj(C));”:l. Now, according to (5.11) and (5.18)
for every x € B(6,6) and C € B[C',«], we have M;(x,C) C N;(C), j = 1,...,m, and then

Q(x,C) c [ JN;(0), (5.25)
j=1

Thus for every C € B[C',«k] and t € [—r,r] there is %; € I,(¢) such that for j = 1,...,m,
f(%,C) = f(2:,N;(C)). (5.26)

In order to prove that the antiprojections Q(-,C) are actually m-valued and u.s.c. at
“many points around 6,” we make further considerations involving topological lemmas
from Section 3. Introduce complete metric spaces J = B[C',k] X [-r,r] and F = T X I,
with the box metric p on the products, that is, for (C,t,x),(D,s,y) € &,

p((C,t,x),(D,s,y)) = max {x(C,D), |t —s|,|x - y|}. (5.27)
Define a set-valued mapping G: J — I, by
G(C,t) = L) nT(N;(O) L. (5.28)

The images of G are nonempty, and by the continuity of the farthest distance function
they are closed, hence compact as I, is compact.

Also, in view of Lemma 4.4, G is upper semicontinuous. To verify this, it is sufficient
to notice that if (C,,t,) is a sequence in J convergent to some (C,t) € J, then the se-
quences (N;(C,)) converge to N;(C) for j = 1,...,m with respect to the distance y, while
I.(t,) obviously converges to I,(t). Having in mind the continuity of the farthest distance
f(-,-) with respect to both the arguments and the compactness of I, it is possible for any
sequence (u,), un € G(Cy, t,) to find a cluster point in G(C, ¢).

The theorem of Fort implies that Isc G is a residual subset of J. Denote by A the graph
of G

A={(C,t,x) e F:x € G(C, 1)}, (5.29)

and by A’ the “graph of lower semicontinuity”

A ={(Ct,x) € A:(C,t) €1scG}. (5.30)
According to Lemma 3.6, A’ is a Baire space in the relative topology induced by the prod-
uct topology of I X I,..
Letforn € N,

A, = {(C,t,x) € A" : s, 0 <5< 46,

diam (N;(C) \ B(x, f (x,N;(C)) —s)) <n”", j=1,...,m}. (5.31)
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Claim. Uy contains open dense set in A".

Take arbitrary (D°,ty,x9) € A’ and ¢ > 0. It has to be proved that By ((Dy, t,X0),0) N
U, contains an open subset of A’. Assume without any loss of generality that Dy €
B(C',x). Indeed, due to the l.s.c. of G at (Do, tp) and, by [13], the fact that IscG is residual
in the open dense subset B(C’,x) X [—r,r] of I, one can conclude that arbitrary close to
(Do, to,xo) there are points (D, t,x) from A" with D € B(C’, ). Hence there is A € (0,«),
A < 0/2, such that x(Dy,C’) <k — A.

Denoting K; = (H \ B(xo, f (x0,D0)]) N B(yj,€0), j = 1,...,m, we have K; + @. Cer-
tainly, there are y € B(y;,&) satisfying |y| > lyjl +3e0/4 and if we assume |xo — y| <
f(x0,Dy) for all y € B(y;,&), then (also having in mind (5.10) and (5.18))

3¢
Iyl < |y—xo| + |x0| < f(x0,D0) +8< | yj| +x+28< | yj] +TO (5.32)
gives a contradiction.

Since
inf {d(z,Nj(Dy)):z€K;} =0, j=1,..,m, (5.33)
it is a matter of routine to find points z; € Kj, j = 1,...,m, and & >0 such that
d(zj,N;j(Do)) <A, zj€S(xo,f(x0,D0) +&), j=1,...,m. (5.34)

Consider the set D" = co(Dy U {z1,...,2m}). Obviously, Q(xo,D") = {z1,...,2m}.

Now, let 4 >0, g < min{&,A,(2n)"!} be chosen so that B(zj,u) C B(yj,¢&) for all j =
1,...,m. Apply Lemma 4.2 with respect to the sets Dy, D" and the point x (instead of Cy,
C’ and 0, resp.). There is # € (0,4/2) such that for every D € B[D',#] and x € B(xo,%)
there are nonempty closed sets M;(x,D) C Bzj,u], j = 1,...,m, satisfying

Cs

D\ B(x, f (x,D) —41) = |_JM;(x,D). (5.35)

j=1

Notice that diam M;(x,D) < 2u < n~! and then for s = 4n,
diam (N;(D)\ B(x, f (x,N;(D)) —=s)) <n”!, j=1,..,m. (5.36)

Also B[D',n] c B[C', ], and the claim easily follows from the lower semicontinuity of G
applied for xy € G(Dy, ty).

Finally, put U = N;_;UW,,. The set U is residual in A" and by Lemma 3.7 is orthogonally
projected on a residual subset V" of J. Thus for every (C,t) € V" there is x(t) € G(C,t)

such that

x(t) € () nT(N;(O) L), (5.37)
and all mappings Q(-,N;(C)) for j = 1,...,m are single-valued and upper semicontinu-
ous at x(t). Apply the Kuratowski-Ulam theorem to the product space J to show the ex-

istence of a residual subset R (6, ¢) of B[C’,«] such that, in view of Alexandroff-Urysohn
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theorem, (5.37) is satisfied for a continuum of reals t € [—r,r], whenever C € R(6,¢).
Thus (5.3) is verified and the proof is completed. O

ProrosiTioN 5.2. Ifin Proposition 5.1 the condition (5.1) is replaced by the following one:
dimX=m-1, (5.38)

then in the conclusion (5.3) is to be replaced by
C¥(C)nB(a,e) nuscQc # @ for C € R(a,e). (5.39)

Proof. In case m = 1, the set X is a singleton and it is a matter of routine to have a direct
proof of the fact that there exists a residual subset of a ball B[C’, k] C € such that both
(5.2) and (5.39) are fulfilled.

The proof in the general case differs slightly from the proof of the previous propo-
sition. For instance, the theorem of Brouwer-Miranda is applied with respect to the set
I, ={xeH:|{(v,x)| <r, v V} instead ofINr, and H = spanV. O

6. Proof of Theorem 1.1

Suppose dimH = m. By Proposition 5.1 and by Lemma 3.5 for every a € X and every
&> 0, there is a residual subset R(a,e) of B such that

card (C¥"(C) nB(a,e) NuscQc) = ¢ for C € R(a,e). (6.1)

Let {ai,a,...} be a countable dense set in X. Put

R = ﬁ@i(an,n_l). (6.2)

n=1

For every C € R the locus L (C) intersects an arbitrary nonempty open subset U of
X at a set containing at least continuum points of upper semicontinuity of Q(-,C), that
is, the set LY (C) N usc Q¢ is everywhere continual in X.

If dimH = m — 1, then by Proposition 5.2 and Lemma 3.5 again, for typical C € € the
set LY¥(C) NnuscQc is dense in X. The theorem is proved.

CoROLLARY 6.1. If X is a nonempty convex subset of H(Q) and Q is a finite set, that is,
H(Q) = R, k € N, then for a typical convex compact K of R the loci L} (K) in X partition
X into a finite sequence of dense sets such that
(i) LY(K) is dense G,
(ii) LY (K) are everywhere continual, for 1 <m < dimX,
(iii) LY (K) are dense, whenever m = dim X + 1.

Proof. (i) If m = 1 and dimX > 1, then the mapping Q(-,M) is u.s.c. with nonempty
images, and it is single-valued on a dense subset of X. It follows from a known result, for
instance [29], that it is single-valued on a dense Gy subset of X.

To prove (ii) and (iii), recall a result from [14], proved in another setting but adaptable
for the present purpose, which states that LY (K) = @ for typical K € € whenever m >
dim X + 1. Apply Proposition 5.1 for establishing (ii), and Proposition 5.2 for (iii). ]
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COROLLARY 6.2. Suppose Q) is a countable set, that is, H(Q) is a separable Hilbert space.
Then for every m € N there exists a residual subset R™ of € such that L™ (C) is dense in
H(Q) whenever C € R™.
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