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The Tonelli existence theorem in the calculus of variations and its subsequent modifica-
tions were established for integrands f which satisty convexity and growth conditions.
In 1996, the author obtained a generic existence and uniqueness result (with respect to
variations of the integrand of the integral functional) without the convexity condition for
a class of optimal control problems satisfying the Cesari growth condition. In this paper,
we survey this result and its recent extensions, and establish several new results in this
direction.

1. Introduction

The Tonelli existence theorem in the calculus of variations [17, 18] and its subsequent
generalizations and extensions (e.g., [5, 11, 14, 16]) are based on two fundamental hy-
potheses concerning the behavior of the integrand as a function of the last argument
(derivative): one is that the integrand should grow superlinearly at infinity and the other
is that it should be convex (or exhibit a more special convexity property in case of a mul-
tiple integral with vector-valued functions) with respect to the last variable. Moreover,
certain convexity assumptions are also necessary for properties of lower semicontinuity
of integral functionals which are crucial in most of the existence proofs, although there
are some interesting theorems without convexity (see [5, Chapter 16] and [2, 4, 13]).

In 1996, the author showed that the convexity condition is not needed generically,
and not only for the existence but also for the uniqueness of a solution and even for
well-posedness of the problem (with respect to some natural topology in the space of
integrands). This result was published in [22]. Instead of considering the existence of a
solution for a single integrand f, we investigated it for a space of integrands and showed
that a unique solution exists for most of the integrands in the space. This approach has
already been successfully applied in the theory of dynamical systems (see [6, 7, 15]), as
well as in the calculus of variations (see, e.g., [1, 19, 21]). Interesting generic existence
results were obtained for particular cases of variational problems [3, 12]. In [3, 12] were
studied integrands of the form L(x,v) = g(x) + h(v) where h is nonconvex and x is scalar-
valued. It was shown in [3] that the set & of all continuous functions g such that for any
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h the corresponding variational problem has a solution is an everywhere dense subset
of C(R!) equipped with the topology of uniform convergence on bounded subsets. In
[12] it was established that the set 9 is of the first category in C(R!). In [22] the same
approach allowed us to establish the generic existence of solutions for a large class of
optimal control problems without convexity assumptions.

More precisely, in [22] we considered a class of optimal control problems (with the
same system of differential equations, the same functional constraints, and the same
boundary conditions) which is identified with the corresponding complete metric space
of cost functions (integrands), say . We did not impose any convexity assumptions.
These integrands are only assumed to satisfy the Cesari growth condition. The main re-
sult in [22] establishes the existence of an everywhere dense Gs-set F C & such that for
each integrand in &', the corresponding optimal control problem has a unique solution.

The next step in this area of research was done in [10]. There we introduced a general
variational principle having its prototype in the variational principle of Deville et al. [8].
A generic existence result in the calculus of variations without convexity assumptions was
then obtained as a realization of this variational principle. It was also shown in [10] that
some other generic well-posedness results in optimization theory known in the literature
and their modifications are obtained as a realization of this variational principle. Note
that the generic existence result in [10] was established for variational problems but not
for optimal control problems and that the topologies in the spaces of integrands in [10,
22] are different.

In [20] we suggested a modification of the variational principle in [10] and applied
it to classes of optimal control problems with various topologies in the corresponding
spaces of integrands. As a realization of this principle, we established, generic existence
results for classes of optimal control problems in which constraint maps are also subject
to variations as well as the cost functions. More precisely, we established generic exis-
tence results for classes of optimal control problems (with the same system of differential
equations, the same boundary conditions, and without convexity assumptions) which are
identified with the corresponding complete metric spaces of pairs (f,U) (where f is an
integrand satisfying the Cesari growth condition and U is a constraint map) endowed
with some natural topology. We showed that for a generic pair (f,U) the corresponding
optimal control problem has a unique solution.

In this paper, we discuss the results of [20, 22] and establish extensions of the main
result of [20].

2. Bolza problems of optimal control

Let —o0 < Ty < Ty < 0, let A C [T}, T>] X R” be a closed subset of the fx-space R"*!, and
let A(t) denote its sections, that is,

At)={xeR":(t,x) €A}, te€[T,Ts]. (2.1)

For every (t,x) € A, let U(t,x) be a given subset of the u-space R™, x = (x1,...,X), U =
(ula-'-aum)°
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Let M denote the set of all (t,x,u) with (t,x) € A, u € U(t,x), and let By,B, C R"
be closed. We assume that the set M is closed and A(t) # @ for every t € [T}, T]. Let
H(t,x,u) = (H,...,H,) be a given continuous function defined on M.

We say that a pair x : [T}, T2] — R, u: [T}, T2] — R™ is admissible if x = (x1,...,%,) is
an absolutely continuous (a.c.) function, u = (uy,...,u,) is a measurable function, and
the following relations hold:

x(t) € A(t), te [Tl,Tz], x(Ti) €B;, i=12,

2.2
u(t) e U(t,x(1)), «x'(t)=H(t,x(t),u(t)), te[T,T,]ae. (22)
Denote by Q the set of all admissible pairs (x, u). We suppose that Q # &.

In this section, we are concerned with the existence of the minimum in Q of the func-
tional

T,
. f(t,x(t),u(t))dt + h(x(T1),x(T2)), (2.3)

where h: By X B, — R! is a lower semicontinuous bounded below function, and f be-
longs to a space of functions described below.

Denote by Ci(B; X B) the set of all lower semicontinuous bounded below functions
h:Bj X B, — R!, and denote by C(B; X B,) the set of all continuous functions h € C;(B; X
B,). For the set C;(B; X B,), we consider, the uniformity which is determined by the base

Eo(G) = {(hl,hz) S Cl(B1 XBz) X C[(Bl XBz) : |h1(Z) —h2(2)| <E€, ZGBl XBz},
(2.4)

where € > 0. It is easy to verify that the uniform space C;(B; X B) is metrizable and com-
plete, and C(B; X B,) is a closed subset of C;(B; X B,). We consider the topological space
C(B) X By) C Ci(B; x By) which has the relative topology.

Denote by 901; the set of all lower semicontinuous functions f : M — R! which satisfy
the following growth condition.

For each € > 0, there exists an integrable scalar function y(t) = 0, t € [T}, T3], such
that [H(t,x,u)| < yc(t) + € f(t,x,u) for each (t,x,u) € M.

This growth condition proposed by Cesari (see [5]) and its equivalents and modifica-
tions are rather common in the literature.

Denote by 91, the set of all continuous functions f € 97;. For N, € > 0, we set

E(N,€) = {(f,g) € M xM;: | f(t,x,u) —g(t,x,u)| <€e((t,x,u) €M, |x|,|lul <N),

| f(t,x,u) —g(t,x,u)| <e+esupl]| f(t,xu)|,|gt,xu)|} ((x,u) € M)}
(2.5)

We can show in a straightforward manner that for the set 9% there exists the unifor-
mity which is determined by the base E(N, €), N, € > 0. It is easy to verify that the uniform
space 9 is metrizable and complete. Clearly 91, is a closed subset of 9. We consider
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the topological space M. C M1; which has the relative topology, and the spaces
A = My x C (B XBz), A, =M. x C(B; X By) (2.6)

which have the product topology.
We consider the functionals of the form

T,
U (3, 10) = J Flx(@u(®)dt+h(e(T)),x(T)), 2.7)
T
where (x,u) € Q, f € M and h € Ci(B; X By).
For each f € 9, and each h € Cj(B; X B;), we consider the problem of the absolute
minimum

1M (x,u) — min, (x,u) € Q, (2.8)
and set
u(f h) =inf {IVM (x,u) : (x,u) € Q}. (2.9)
It is easy to see that
u(f,h) >—co foreach f € M, each h € C;(B; X By). (2.10)

Denote by mes(E) the Lebesgue measure of a measurable set E C R* and denote by | - |
the Euclidean norm in R¥. Define

Q*[l,reg: {(f,h)egllllu(f,h)<00}, Qlc,regZQ[l,reng[c- (211)

Denote by Q_ll,reg the closure of 2 ¢ in 2, and by Q_lc,reg the closure of 2l g in 2. For
each h € C)(B; X B,), we define

Mo = f EMzu(fh) <o}, M, = {f €Mz pu(f,h) < oo} (2.12)
Denote by 9, the closure of M7, in My, and by MY ., the closure of ML, in M,.

We showed in [22] that 2} g is an open subset of 2, A ¢ is an open subset of 2, and
for each h € C;(B; X By), imffreg is an open subset of M, and zmﬁreg is an open subset of
.. We consider the topological subspaces 2 req C e, Apreg C A, ifﬂffreg cm, SI_)Iﬁ‘Jeg C
M. (h € Ci(By X By)) with the relative topology.

In [22] we established the following results which show that generically the optimal

control problem considered in this section has a unique solution.

THEOREM 2.1. There exist a set §; C Q_ll,reg which is a countable intersection of open every-
where dense subsets of Ujreg, and a set Fo C U reg N F1 Which is a countable intersection of
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open everywhere dense subsets of U eq, such that for each (f,h) € § the following assertions
hold:
(1) u(f,h) < oo and there exists a unique (xS, ul>M) € Q for which

TR () (Fh)y = u(fh). (2.13)

(2) for each € >0, there exist a neighborhood U of (f,h) in 2; and a number § > 0 such
that for each (g,§) € U and each (x,u) € Q satisfying I1€8) (x,u) < w(g, &) +9, the
following relation holds:

mes{t € [Ty, To]: |x(t) —xW ()| + |u(t) —uPP(t)| =€} <e. (2.14)
Note that by the Baire category theorem, the set §; is nonempty and in fact everywhere
dense in Q_lz,reg.

THEOREM 2.2. Let 1§ € Ci(B) X By) be fixed and let F1, §¢ be as guaranteed in Theorem 2.1.
Then there exist a set §| C mﬁreg which is a countable intersection of open everywhere dense
subsets of ‘fﬁzreg, and a set F! C Mdreg N ] which is a countable intersection of open every-
where dense subsets of M reg, such that

3 x {n} C S (2.15)

3. Optimal control problems with multiple integrals

Let & be a bounded domain in R where m > 1, let

1,1 _ 1 ﬂ 1 s
Whl(R) = {uEL (®): 5o LR, j = lm} (3.1)

and let W(} ''(R) be the closure of Cy (R) in WHL(R), where C5° (8) is the space of smooth
functions u : & — R! with compact support in £.
For a function u = (u1,...,u,), where u; € WHI(RK),i=1,...,n, we set

8u- " . n
Vu; = <$]l'>j1’ i=1,...,n Vu=(Vu),_;. (3.2)

Assume that A C & X R", for each w € &,
Alw) = {x €R": (w,x) € A} # T, (3.3)

and for every (w,x) € A, U(w,x) is a given subset of u-space RN.

Let M denote the set of all (w,x, u) with (w,x) € A, u € U(w,x). We assume that the set
M is a closed subset of the space & X R" x RN with the product topology. Let H(w,x,u)
be a given continuous function defined on M such that

m

H(w)xau) = (Hi):l:]) Hi = (Hi,j)j:]) i= I,...,n, (34)

and let 6* = ()", € (WP(R))" be fixed.
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We say that a pair x = (x1,...,%,) € (WP(R))", u = (up,...,un) : & — RN is admissible
if u is measurable and the following relations hold:

x(w) € A(w), we€ Ra.e, u(w) € U(w,x(w)), € Ka.e,

Vx(w) = H(w,x(w),u(w)), we Rae., x—0* € (WP (R)". (3:5)

Denote by Q the set of all admissible pairs (x, u). We suppose that Q # &.

Denote by 91; the set of all lower semicontinuous functions f : M — R! which satisfy
the following growth condition.

For each € > 0 there exists an integrable scalar function ¥ (w) = 0, w € &, such that
|H(w,x,u)| < ye(w)+ € f(w,x,u) for all (w,x,u) € M.

Denote by 91, the set of all continuous functions f € 9. For N, € > 0, we set

E(N,e)={(f,g) €M xM;: | f(w,x,u) — g(w,x,u)| <€e((w,x,u) €M, |xl|,|ul <N),
| flw,x,u) —glw,x,u)| <e+esup{|f(w,xu)|,|g(wx,u)|} (w,xu)e M}
(3.6)

We can show in a straightforward manner that for the set 91 there exists the unifor-
mity which is determined by the base E(N, €), N,€ > 0. It is easy to verify that the uniform
space M is metrizable and complete. Clearly 91, is a closed subset of ;. We consider
the topological space 9. € 91; which has the relative topology.

We consider the functionals of the form

ﬂm%m=hfmmmxmmm@ (3.7)

where (x,u) € Q, f € M.
For each f € 9, we consider the problem of the absolute minimum

ID(x,u) — min, (x,u) € Q, (3.8)
and set
u(f) =inf {19 (x,u) : (x,u) € Q}. (3.9)
It is easy to see that
u(f)>—o foreach f € M. (3.10)
Define
Mireg = {f €My u(f) < oo}, M reg = Mireg N M. (3.11)

Denote by Efﬂl,reg the closure of Mg in MYy, and by E)ijeg the closure of M reg in M.
The set 91 ¢ is an open subset of My, and a set M 1, is an open subset of M. (see [22,
Lemma 7.2]). We consider the topological subspaces i)fm)reg, immg which have the relative
topology.

In [22] we established the following result which shows that generically the optimal
control problem considered in this section has a unique solution.
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THEOREM 3.1. There exist a set §; C 95?1,reg which is a countable intersection of open every-
where dense subsets of Sﬁl)reg, and a set . C ifftc,reg N §1 which is a countable intersection of
open everywhere dense subsets of M req, such that for each f € Fi, the following assertions
hold:
(1) u(f) < o0 and there is a unique (x'1,u')) € Q for which I'V) (x\D),u) = u(f),
(2) for each € >0, there exist a neighborhood U of f in 9 and a number § > 0 such
that for each g € U and each (x,u) € Q satisfying I®) (x,u) < u(g) + 6, the following
relation holds:

mes{w € R: |x(w) —x(w)| + |u(w) - u(w)| =€} <e. (3.12)

4. Generic well-posedness in nonconvex optimal control

We use the following notations and definitions. Let k > 1 be an integer. We again denote
by mes(E) the Lebesgue measure of a measurable set E C RF and by | - | the Euclidean
norm in R¥. Denote by (-, -) the scalar product in R¥. We use the convention that co —
o = 0. For any f € C1(RF), we set

Il fllca = 1l fllcaqrey
B""'f(z)

{ (4.1)
= su S0 A %
Zeug oxy - - oxt

ta; > 0 s an integer, i = 1,...,k, |« Sq},

where || = Zf;loc,-.

For each function f : X — [—o0,00] where X is nonempty, we set inf(f) = inf{ f(x):
x € X}. Por each set-valued mapping U : X — 2¥ \ {@} where X and Y are nonempty,
we set

graph(U) = {(x,y) e XX Y:y e U(x)}. (4.2)

We consider topological spaces with two topologies where one is weaker than the other.
(Note that they can coincide.) We refer to them as the weak and the strong topologies,
respectively. If (X,d) is a metric space with a metric d and Y C X, then usually Y is also
endowed with the metric d (unless another metric is introduced in Y). Assume that X;
and X are topological spaces and that each of them is endowed with a weak and a strong
topology. Then for the product X; X X;, we also introduce a pair of topologies: a weak
topology which is the product of the weak topologies of X; and X; and a strong topology
which is the product of the strong topologies of X; and X5. If Y C X, then we consider
the topological subspace Y with the relative weak and strong topologies (unless other
topologies are introduced). If (Xj,d;), i = 1,2, are metric spaces with the metrics d; and
d,, respectively, then the space X; X X; is endowed with the metric d defined by

d((x1,x2), (y1,92)) = di (x1, 1) + da (2, ¥2), (xiyi) X XY, i=12 - (43)

Let m,n,N > 1 be integers. We assume that Q is a fixed bounded domain in R",
H(t,x,u) is a fixed continuous function defined on Q x R” X RN with values in R™"
such that H(t,x,u) = (H;)!., and H; = (H,-j);":l, i=1,...,n, B; and B, are fixed nonempty
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closed subsets of R” and 6* = (67)"_, € (WL1(Q))" is also fixed. Here

WM(Q):{ueLl(Q):%eLl(Q),jzl,...,m} (4.4)

and WJ’I(Q) is the closure of C3°(€)) in WH1(Q), where C§*(Q) is the space of smooth
functions u : Q — R! with compact support in Q.

If m = 1, then we assume that Q = (T, T,), where T} and T, are fixed real numbers
for which T} < T5.

For a function u = (u1,...,u,), where uy; € WH(Q),i=1,...,n, we set

du;

m
v,-=( ) , i=1,..,m Vu=(Vu), . 4.5
u ox;) 1 i n, Vu=(Vu;),_, (4.5)

Define set-valued mappings A: Q-2 \{@tand U: Qx R" — 28"\ {&} by
A()=R", teQ, Ut,x) =RN, (t,x) € QX R". (4.6)

For each A : Q — 28"\ {@} and each U : graph(A) — 28" \ {@} for which graph(U)
is a closed subset of the space Q x R” x RN with the product topology, we denote by
X(A,U) the set of all pairs of functions (x,u), where x = (x1,...,x,) € (WL Q)", u =
(t1,...,un) : Q — RN is measurable and the following relations hold:

x(t) € A(t), t € Q almost everywhere (a.e.), u(t) e U(t,x(t)), teQa.e,
(4.7a)
Vx(t) = H(t,x(t),u(t)), teQa.e, (4.7b)
ifm=1, thenx(T;) €B;,i=1,2, (4.7¢)
ifm>1, thenx—6*e (Wy'(Q))". (4.7d)

Note that in the definition of the space X(A,U) we use the boundary condition (4.7¢)
in the case m = 1 while in the case m > 1 we use the boundary condition (4.7d). Both of
them are common in the literature. We do this to provide a unified treatment for both
cases. Note that the main result of the section is valid in the case m = 1 for a class of Bolza
problems (with the same boundary condition (4.7c)) while in the case m > 1 it holds for
a class of Lagrange problems (with the same boundary condition (4.7d)).

To be more precise, we have to define elements of X (A, U) as classes of pairs equivalent
in the sense that (x,u;) and (x2,u,) are equivalent if and only if x, () = x;(£), ux(t) =
ui(t), t € Q ae. If m = 1, then by an appropriate choice of representatives, Wb (Ty, T;)
can be identified with the set of absolutely continuous functions x : [Ty, T>] — R!, and we
will henceforth assume that this has been done.

Let A: Q — 28"\ {@}, U : graph(A) — 28" \ {@} and let graph(U) be a closed subset
of the space Q X R" x RN with the product topology.



Alexander J. Zaslavski 383

For the set X(A, U) defined above, we consider the uniformity which is determined by
the following base:

Ex(€) = {((x1,u1), (x2,u2)) € X(A,U) x X(A,U):

mes{t€ Q: |x;(t) —x(t) | + |u(t) —up(t) | = €} <€}, (48)

where € > 0. It is easy to see that the uniform space X (A, U) is metrizable (by a metric p).
In the space X(A, U) we consider the topology induced by the metric p.
Next we define spaces of integrands associated with the maps A and U. By JlL(A,U) we
denote the set of all functions f : graph(U) — R! U {oo} with the following properties:
(i) f is measurable with respect to the o-algebra generated by products of Lebesgue
measurable subsets of Q and Borel subsets of R” x RN;
(i) f(t,-,-) is lower semicontinuous for a.e. t € Q;
(iii) for each € > 0, there exists an integrable scalar function . (t) = 0, t € Q, such
that [H(t,x,u)| < we(t) +€f(t,x,u) for all (t,x,u) € graph(U).

Due to the property (i) for every f € M(A,U) and every (x,u) € X (A, U), the function
f(t,x(1),u(t)), t € Q, is measurable.

Denote by M!(A, U) (resp., M<(A, U)) the set of all lower semicontinuous (resp., finite-
valued continuous) functions f : graph(U) — R! U {eo} in JM(A, U). Now we equip the
set M (A, U) with the strong and weak topologies. For the space AL(A, U), we consider the
uniformity determined by the following base:

Euw(e) ={(f,g) € M(A,U) x M(A,U):

| f(t,x,u) — g(t,x,u)| <€, (t,x,u) € graph(U)}, (4.9)

where € > 0. It is easy to see that the uniform space A (A,U) with this uniformity is
metrizable (by a metric dy) and complete. This uniformity generates in JM(A,U) the
strong topology. Clearly J(!(A, U) and J(A, U) are closed subsets of (A, U) with this
topology.

For each € > 0, we set

Euw(e) = SL(f,g) € M(A,U) x M(A,U) : there exists a nonnegative

¢ € L'(Q) such that J ¢(t)dt <1, and fora.e. t € Q,
Q (4.10)

| f(t,x,u) —g(t,x,u)| <e+emax{]| f(t,x,u)l|,|gt,x,u)|}+ep(t)

for each x € A(t), eachu € U(t,x)}.

Using the following simple lemma, we can easily show that for the set M (A, U) there
exists the uniformity which is determined by the base E,,(€), € > 0. This uniformity
induces in JL(A, U) the weak topology.

LEMMA 4.1. Leta,b e R!, € € (0,1), A= 0, and

la—b| < (1+A)e+emax{lal,|bl}. (4.11)
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Then
la—bl<(1+A)(e+€*(1—€)')+e(1—€) 'min{lal,|bl}. (4.12)

Denote by Cj(B; X B,) the set of all lower semicontinuous functions & : By X B, —
R! U {0} bounded from below. We also equip the set C;(B; X B,) with strong and weak
topologies. For the set C;(B; X B,), we consider the uniformity determined by the follow-
ing base:

={(&,h) € C/(B1 X By) X C/(By X By) : |&(z) —h(z)| <€, z€ By X By}, (4.13)

where € > 0. It is easy to see that the uniform space C;(B; X B,) is metrizable (by a metric
d.) and complete. This metric induces in C;(B; X B) the strong topology.
For any € > 0, we set

E.w(€) = {(&,h) € Ci(B1 X By) X Ci(By X By) :

|&€(z) —h(z)| <€+emax{|&(z)], |h(z)|}, z€ By x B}, (4.14)

where € > 0. By using Lemma 4.1, we can easily show that for the set C;(B; X B,) there
exists a uniformity which is determined by the base E.,(€), € > 0. This uniformity in-
duces in C;(B; X B;) the weak topology. Denote by C(B; X B;) the set of all finite-valued
continuous functions k in C;(B; X B,). Clearly it is a closed subset of C;(B; X B) with the
weak topology.

In the case m > 1 for each f € MM (A, U) we define IV X(A,U) - R U {0} by

1P (x,u) = Jﬂf(t,x(t),u(t))dt, (x,u) € X(A,U). (4.15)

In the case m=1 for each f €M (A, U) and each & € C(B; x B,) we define I/ : X (A, U) —
R' U {0} by

1<f,s>(x,u):J:f(tx() 0)dt+E(x(T1),x(T2)), (xu) EX(A,U).  (4.16)

We showed (see [20, Propositions 4.1 and 4.2]) that in both cases (4.15) and (4.16) define
lower semicontinuous functionals on X (A, U).

From now on in this section, we consider a fixed set-valued mapping A : Q — 28"\
{@} for which graph(A) is a closed subset of the space Q) X R” with the product topology.
Denote by U, the restriction of U (see (4.6)) to the graph(A). Namely,

Uy : graph(A) — 28", Ua(t,x) = RN, (t,x) € graph(A). (4.17)

We consider functionals I/%) with (f,&) e M(A, ﬁA) X Ci(By X By) (inthe case m = 1)
and functionals I'/) with f € JAL(A, [N/'A) (in the case m > 1) defined on the space X (A, ﬁA)
(see (4.7)). The main result of this section is established for several classes of optimal
control problems with different corresponding spaces of the integrands which are sub-
sets of the space ML(A, Uys). The subspaces of lower semicontinuous and continuous inte-
grands (M'(A, Ua) and M(A, Uy)) have already been defined. Now we define subspaces
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of (A, (N]A) which consist of integrands differentiable with respect to the control vari-
able u.

Let k > 1 be an integer. Denote by (A, LN]A) the set of all finite-valued f € (A, LN]A)
such that for each (t,x) € graph(A) the function f(t,x,-) € CX(RN). We consider the
topological subspace Ji (A, [N]A) C M(A, ﬁA) with the relative weak topology. The strong
topology on .Mx(A, Uy) is induced by the uniformity which is determined by the follow-
ing base:

Eui(€) = {(f>g) € My (A, Ug) X Mi (A, Ty) = | f(t,2,u) — gt ,u) | < € ¥V (t,x,1)

€ graph(A) x RN and || f (t,x,-) — g(t,x, k@) < € V(t,x) € graph(A)},
(4.18)

where € > 0. It is easy to see that the space M« (A, lN]A) with this uniformity is metrizable
(by a metric dx) and complete. Define

ME(A, Ta) = Mi (A, Tn) n M (A, Ta),  ME(A,Ua) = My (A, Ua) 0 ME(A, Ta).
(4.19)

Clearly Jl/t,l< (A, [NJA) and JM (A, ﬁA) are closed sets in Jli (A, (7,4) with the strong topology.

Finally we define subspaces of .IL(A, U') which consist of integrands differentiable with
respect to the state variable x and the control variable u. Denote by Jt; (A, U) the set
ofall f:QxR"x RN — R! in (A, ) (see (4.6)) such that for each t € Q the func-
tion f(t,-,-) € CK(R" x RN). We consider the topological subspace M (E, lN]) C JI/L(K, lN])
with the relative weak topology. The strong topology in J;* (A, U) is induced by the uni-
formity which is determined by the following base:

EX, (€)= 1(fog) € MF (A, U) x Mk (A, 0) : | f(tx,u) —g(t,x,u)| <€ V(tx,u) (020)
€ OxR"xRN and [|f(t,-,-) = g(t, )| (o) < € VE € O}, '

where € > 0. It is easy to see that the space L} (A, U) with this uniformity is metrizable
(by a metric dj ;) and complete. Define

MEA, ) = M A, T) n MHA,T),  MEA D) = M (A, 0) n (A, T). (4.21)

Clearly Jl/t;fl(g, ) and Jl/t,fc(g, U) are closed sets in M (A, U) with the strong topology.

Thus we have defined all the spaces of integrands for which we will state our main
result of this section. Now we will define a space of constraint maps % 4. Denote by S(RY)
the set of all nonempty convex closed subsets of RN. For each x € RN and each E C RV,
set dp (x,E) = inf,cg |x — y|. For each pair of sets Cy,C, C RN,

dy (C1,C) = max{ sup du (,Cy), sup dy(x, Cl)} (4.22)
}’ECI xeCy

is the Hausdorff distance between C; and C,. For the space S(RY), we consider the uni-
formity determined by the following base:

Egv(€) = {(C1,Cy) € S(RY) x S(RN) : dy (C1,C,) < €}, (4.23)
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where € > 0. It is well known that the space S(RY) with this uniformity is metrizable and
complete. Denote by P, the set of all set-valued mappings U : graph(A) — S(RY) such
that graph(U) is a closed subset of the space graph(A) x RN with the product topology.
For the space P4, we consider the uniformity determined by the following base:

Eg,(€) = {(U,U) € Py X Py :dy (Ui (t,x), Us(t,x)) < € V(t,x) € graph(A)},
(4.24)

where € > 0. It is easy to see that the space P4 with this uniformity is metrizable and
complete.
We consider the space X (A, Uy) with the metric p (see (4.8)). For each U € P4, define

Su=X(A,U) = {(x,u) € X(A,Uy) :u(t) € U(t,x(1)), t € Qacel. (4.25)

In the case m = 1 for each U € P4 and each (f,&) € JM(A, lNJA) X Cj(B1 X B,) we consider
the optimal control problem

IY9(x,u) — min, (x,u) € X(A,U) (4.26)

and in the case m > 1 for each U € P and each f € M(A, (N/'A) we consider the optimal
control problem

ID(x,u) — min, (x,u) € X(A4,U). (4.27)

We will state the main result of this section, Theorem 4.2, in such a manner that it will be
applicable to the Bolza problem in case # = 1 and to the Lagrange problem in case m > 1,
and also applicable for all the spaces of integrands defined above.

To meet this goal, we set A, = P4 and define a space A; as follows:

ﬂl Zﬂ“ X&g-lz ifm= 1, &g,l Z‘ﬂn ifm>1, (428)

where o1, is either C;(B; X By) or C(B; X B,) or a singleton {¢} € Cj(B; X By), and 41,
is one of the following spaces:
‘/‘/‘“(A) ﬁA)) J‘/U(A: (-N]A)a MC(Aa ﬁA))
My (A, Us), ME(A,Us), ME(A,Uy)  (here k > 1 is an integer), (4.29)
M (A, 0), Jl/t,i‘l(g, ), Jl/L,fC(K, U) (herek>1isan integer and A = A).

For each a = (a1,a;) € A1 X A,, we define J, : X(A, (7,4) — R'U {oo} by
Ja(tou) = I (x,u),  (%,u) € Sayy  Jaldtou) =0, (x,u) € X(A,Ua) \ Say.  (4.30)

In [20], we showed that ], is lower semicontinuous for all a € ${; X A,. Denote by s
the closure of the set {a € od; X o, : inf(J;) < oo} in the space ; X A, with the strong
topology. We assume that s is nonempty. The following theorem established in [20] is
the main result of this section.
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THEOREM 4.2. There exists an everywhere dense (in the strong topology) set B C o which is
a countable intersection of open (in the weak topology) subsets of s such that for any a € B,
the following assertions hold:
(1) inf(J,) is finite and attained at a unique pair (x,u) € X (A, Us),
(2) for each € >0 there are a neighborhood V' of a in s with the weak topology and
0 > 0 such that for each b € V', inf(J,) is finite and if (z,w) € X(A,lN]A) satisfies
Jo(z,w) < inf(Jy) + 8, then p((%,i1),(z,w)) < € and |Jp(z,w) — Jo(%, )| < €.

5. Generic variational principle

Theorem 4.2 is obtained as a realization of a variational principle which was introduced
in [20]. This variational principle is a modification of the variational principle in [10].

We consider a metric space (X,p) which is called the domain space and a complete
metric space (s4,d) which is called the data space. We always consider the set X with the
topology generated by the metric p. For the space 94, we consider the topology generated
by the metric d. This topology will be called the strong topology. In addition to the strong
topology, we also consider a weaker topology on s which is not necessarily Hausdorff.
This topology will be called the weak topology. (Note that these topologies can coincide.)
We assume that with every a € o a lower semicontinuous function f, on X is associated
with values in R = [—o0,0]. In our study, we use the following basic hypotheses about
the functions.

(H1) For any a € 4, any € >0, and any y > 0, there exist a nonempty open set W in s{
with the weak topology, x € X, « € R!, and 7 > 0 such that

Wnibesd:dab)<el+0 (5.1)

and for any b € W,
(i) inf( fy) is finite;
(ii) if z € X is such that f,(z) <inf(fy) +#, then p(z,x) < y and | fo(2) — | < y.

(H2) If a € A, inf(f,) is finite, {x,},;-; C X is a Cauchy sequence, and the sequence
{ fa(xn)} 71 is bounded, then the sequence {x,};_, converges in X.

In [20] we showed (see Theorem 5.1 below) that if (H1) and (H2) hold, then for a
generic a € 9 the minimization problem f,(x) — min, x € X, has a unique solution.
This result generalizes the variational principle in [10, Theorem 2.2] which was obtained
for the complete domain space (X, p). Note that if (X, p) is complete, the weak and strong
topologies on o coincide and for any a € o the function f; is not identically co, then the
variational principles in [10] and in this section are equivalent.

For the classes of optimal control problems considered in this paper, the domain space
is usually the space X (A, (N]A) with the metric p (see (4.8)) which is not complete. Since the
variational principle in [10] was established only for complete domain spaces, it cannot
be applied to these classes of optimal control problems. Fortunately, instead of the com-
pleteness assumption, we can use (H2) and this hypothesis holds for spaces of integrands
(integrand-map pairs) which satisfy the Cesari growth condition. In [20] we established
the following result.
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THEOREM 5.1. Assume that (H1) and (H2) hold. Then there exists an everywhere dense
(in the strong topology) set B C s which is a countable intersection of open (in the weak
topology) subsets of sd such that for any a € B, the following assertions hold:
(1) inf( f,) is finite and attained at a unique point x € X,
(2) foreach € > 0, there are a neighborhood V' of a in A with the weak topology and § > 0
such that for each b € V', inf(f,) is finite and if z € X satisfies f,(z) < inf(f,) + 6,
then p(%,z) < € and | fp(2) — fa(%)| < €.

Following the tradition, we can summarize the theorem by saying that under the as-
sumptions (H1) and (H2) the minimization problem for f, on (X, p) is generically strongly
well-posed with respect to .

The proof of Theorem 4.2 consists in verifying that hypotheses (H1) and (H2) hold
for the space of integrand-map pairs introduced in Section 4. To simplify the verification
of (H1) in [20] we introduced new assumptions (A1)—(A4) and showed that they imply
(H1) (see Proposition 5.3 below).

Let (X,p) be a metric space with the topology generated by the metric p and let
(dy,d1), (d2,d;) be metric spaces. For the space sd; (i = 1,2), we consider the topol-
ogy generated by the metric d;. This topology is called the strong topology. In addition to
the strong topology we consider a weak topology on s4;, i = 1,2.

Assume that with every a € s, a lower semicontinuous function ¢, : X — R U {0}
is associated and with every a € s, a set S, C X is associated. For each a = (a;,a;) €
Ay x sy, define f, : X — R' U {oo} by

fa(x) = ¢a (x) VxES,,  falx)=c0 VxeX\S,. (5.2)

Denote by o the closure of the set {a € 94, X o, :inf(f;) < oo} in the space d; X o, with
the strong topology. We assume that & is nonempty.

We use the following hypotheses.

(A1) For each a; € oy, inf(d,,) > —o0 and for each a € oA, x o, the function f, is
lower semicontinuous.

(A2) For each a € o, and each D, € > 0, there is a neighborhood U of a in 54, with the
weak topology such that for each b € U and each x € X satisfying min{¢,(x),
¢p(x)} < D, the relation |@,(x) — ¢p(x)| < € holds.

(A3) For each y € (0,1), there exist positive numbers €(y) and §(y) such that e(y),
0(y) — 0 as y — 0 and the following property holds.

For each y € (0,1), each a € s, each nonempty set Y C X, and each X € Y for which

$a(x) <inf{pa(2):z€ Y} +8(y) < o, (5.3)
there is a € o, such that the following conditions hold:
di(a,a) < €(y), $a(z) = ¢a(z), z€X, $a(X) < ¢a(x) +8(p); (5.4)
for each y € Y satisfying
da(y) <inf{¢a(z) :z€ Y} +25(y), (5.5)

the inequality p(y,%) < y is valid.



Alexander J. Zaslavski 389

(A4) For each a = (a1,a2) € sy X o, satisfying inf( f,) < o and each €,8 > 0, there
exist @, € A, X € S4,, and an open set U in o, with the weak topology such that

dz(az,c_lz)<€, Ouﬁ{be&dzidz(b,az)<€}9é@,
Ga, (%) <inf{pg (2):2€ Sz} +8 < o, (5.6)
xeSCS; Vbeal.

Remark 5.2. Assume that (A3) holds. In [20] we showed that the numbers €(y) and (y)
can be chosen such that 0 < §(y) < e(y) < y.

The following result was established in [20].
ProposITION 5.3. Assume that (A1)—(A4) hold. Then (H1) holds for the space .

Remark 5.4. In the proof of Proposition 5.3, (see [20, Proposition 3.1]) for any a = (ay,
ay) € Ay X A, satisfying inf( f,) < oo and any € >0, we constructed an open set V" in o,
with the weak topology and an open set U in 54, with the weak topology which satisfy

Wn{beﬂlsdl(b,a1)<e}#®, %ﬂ{bEﬂzidz(b,az)<€}#® (5.7)

and such that inf(f,) < oo for each b = (b;,b,) € V" x AU. This implies that there exists an
open set F in o X o4, with the weak topology such that inf( f,) < o for alla € & and
is the closure of & in the space %, X o, with the strong topology.

6. Preliminary results for hypotheses (A2) and (H2)

In this section, we present several auxiliary results obtained in [20].

Assume that A : Q — 28"\ {@}, U : graph(A) — 28" \ {@} and that graph(U) is a
closed subset of the space Q X R” x RN with the product topology. Consider the spaces
X(A,U), M(A,U), and C;(B; X B,) introduced in Section 4.

ProrosiTioN 6.1. Let f € M(A,U), (x,u) € X(A,U), {(xi,ui)}i2; € X(A,U), and let
p((xi,ui), (x,u)) = 0asi— co. Then

Jf(t,x(t),u(t))dtsliminfj Ftx(0, i) dt. 6.1)
Q im0 Jo

The following proposition is an auxiliary result for hypothesis (H2).

ProOPOSITION 6.2. Assume that f € M(A,U), {(x;,u;)}i2, € X(A,U) is a Cauchy sequence,
and the sequence {[q f(t,x;(t),u;(t))dt};2, is bounded. Then there is (xs,usx) € X(A,U)
such that (x;,u;) converges to (xx,ux) as i — oo in X(A,U) and, moreover, if m = 1, then
xi(t) = x4 (t) as i — oo uniformly on [T, T,].

ProrosITION 6.3. Let h € C(B; X By) and €,D > 0. Then there exists a neighborhood V'
of h in Ci(By X B,) with the weak topology such that for each & € V' and each x € B; X B,
which satisfies min{&(x),h(x)} < D, the relation |£(x) — h(x)| < € holds.
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COROLLARY 6.4. Let h € Ci(B) X By) and € > 0. Then there is a neighborhood V' of h in
Ci(By X By) with the weak topology such that for each & € V', the inequality | inf (&) — inf (h)]
< € holds.

The following proposition is an auxiliary result for assumption (A2).

ProrosITION 6.5. Let f € M(A,U) and € € (0,1), D > 0. Then there exists a neighborhood
V of f in M(A,U) with the weak topology such that for each g € V' and each (x,u) €
X (A, U) satisfying

min { Jﬂf(t,x(t),u(t))dt, Jog(t,x(t),u(t))dt} <D, 6.2)
the following relation holds:

H f(t,x(t),u(t))dt—J g(t,x(t),u(t))dt‘ <e 6.3)
Q Q

CoROLLARY 6.6. Let f € M(A,U) and € > 0. Then there exists a neighborhood V' of f in
M(A, U) with the weak topology such that for all g €V,

mf“ Ftx(),ulD)dt: (o u )eX(A,U)} -
6.4

‘inf“Qg(t x(1),u())dt - (x,u) € X (A, U)H

ProrosritioN 6.7. Letm =1, f € M(A,U), h € Ci(B; X By), and € € (0,1), D > 0. Then
there exist a neighborhood W of f in M(A,U) with the weak topology and a neighborhood
V' of h in C;(By X B,) with the weak topology such that for each (§,g) € V' x WU and each
(x,u) € X (A, U) which satisfies

min {IYM (x,1),1%% (x,u)} < D, (6.5)
the following relations are valid:
|h(x(T1),x(T>)) = &(x(T1),x(T)) | <e,

(6.6)
H f(tx(t),u(t)) —g(t,x(t),u(t))]dt| <e.

7. Preliminary lemma for hypothesis (A3)

Fix a number dj € (0,1). There is a C*-function ¢ : R! — [0,1] such that ¢o(¢) = 1 if
It| < do, 1>o(t) >0 if dy < |t] <1, and ¢o(t) = 0 if [¢t| > 1. Define a C*-function ¢ :
R! — R! by ¢(x) = [; ¢o(t)dt, x € R. Clearly ¢ is monotone increasing, ¢(x) = x if x| <
dy and

d(x)=¢(1) ifx=>1, dx)=¢(-1) ifx<-1,
~ ~ _ (7.1)
do = §(dy) <(x) < (1) <1 Ve (do,1).
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Now we define a set £ € Cj(B; X B,). In the case m = 1 we set £ = C;(B; X B,) and in
the case m > 1 denote by & a singleton {0} where 0 is a function in C;(B; X B,) which is
identical zero. In the case m > 1 for each (f,&) € M(A,U) X £ and each (x,u) € X(A,U)
we set

199 (x,u) = 1YV (x,u) (7.2)

(see (4.15) and (4.16)). For each measurable set E C R™, each measurable set E; C E, and
each h € L'(E), we set

1l ey = L k()| dt. (7.3)
Fix an integer k > 1. It is easy to verify that all partial derivatives of the functions (x, y) —
(/E(Ix - y1%), (x,y) € R x R? with g = n, N up to the order k, are bounded (by some

d>0).
For each y € (0,1), choose €y(y) € (0,y) such that

Ex (8€o(y)) C {((x1,11), (x2,12)) € X(A,U) x X(A,U) : p((x1,11), (x2,12) ) <y}

(7.4)
(see (4.8)) and
coy) <47'y(d+2)" (7.5)
and choose
€1(y) € (0,do€o(y)),
3(y) € (0,167 e1(p)*). 70
The following result was established in [20].
Lemma 7.1. Lety € (0,1), f € M(A,U), E € £, andler Y C X(A,U), (x,01) € Y,
I159(x,@) < inf {IV9) (x,u) : (x,u) € Y} +8(p) < . (7.7)
Then there is g : R™ X R" x RN — R in CK(R™"*N) which satisfies
0<g(tx,u)<y V(txu)€R"xXR"XRN,
s Monenny <7 VEERT 7
such that for a function f € M(A,U) defined by
f(t,x,u) = f(t,x,u) +g(t,x,u), (t,x,u) € graph(U), (7.9)

the following properties hold:



392 Solutions of optimal control problems
for each (y,v) € Y satisfying
199 (y,v) <inf {199 (z,w) : (z,w) € Y} +28(y), (7.11)

the relation p((y,v), (X, 1)) <y is valid.

Moreover, the function g is the sum of two functions, one of them depending only on (t,x)
while the other depending only on (t,u).
8. Auxiliary lemma for hypothesis (A4)

Let p > 1 be an integer and let e; = (1,0,...,0), ..., e, = (0,...,0,1) be the standard basis
in R?. For each set E C R?, denote by conv(E) its convex hull. We have the following
result (see [20, Proposition 6.1]).

ProrosiTION 8.1. Let a finite set E = {h;j:i=1,2,...,p, j = 1,2} C RP? satisfy
|hi1—€,‘|,|h,’2+ei| S(Zp)fl, izl,...,p. (8.1)
Then the relation 0 € conv(E) holds.

Assume that A : Q — 2R\ {} and graph(A) is a closed subset of the space Q) x R”
with the product topology. Let e; = (1,0,...,0), e2 = (0,1,...,0), ..., exy = (0,0,...,1) be a
standard basis in RY. Now we define a set £ € C;(B; X B,). In the case m = 1 we set £ =
Ci(By X By) and in the case m > 1 we denote by & a singleton {0} where 0 is a function in
Ci(B1 X B,) which is identical zero. In the case m > 1 for each (f,§) € JL(A, U4) x £ and
each (x,u) € X(A, (NJA) we set

199 (x,u) = 1YV (x,u) (8.2)

(see (4.15), (4.16), and (4.17)).
The following result was established in [20].

LEmMa 8.2. Let f € M(A, 1), EeP, UecPy,
{(x,u) € X(A,U) : IV (x,u) < o} + @, (8.3)

and let €,8 > 0. Then there are Uy, € P4, (%,1) € X(A, Uy), and an open set W in P 4 such

that

(Us,U) €Eg,(€), Wn{VePy:(UV)eEy,(e)} + O,
8.4
IV (%) <inf {1V (x,u) : (x,u) € X(A,Uy)} +8 < 00 84)

and forall Ve W,
(x,1) € X(A, V) C X(A,Uy). (8.5)

9. Proof of Theorem 4.2 and its extensions

Proof of Theorem 4.2. By Propositions 6.1 and 6.2, (A1) holds and ], is lower semicon-
tinuous for all a € | X HA,. By Theorem 5.1, we need to verify that (H1) and (H2) are
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valid. Hypothesis (H2) follows from Proposition 6.2. Therefore it is sufficient to show
that (H1) holds. By Proposition 5.3, it is sufficient to show that (A2), (A3), and (A4) are
valid. Hypothesis (A2) follows from Propositions 6.5 and 6.7. By Lemma 7.1, (A3) holds.
Hypothesis (A4) follows from Lemma 8.2. This completes the proof of the theorem. [J

Now we present the extension of Theorem 4.2.

Assume that A: Q — 28"\ {@}, U : graph(A) — 2% \ {@} and graph(U) is a closed
subset of QO X R" x RN with the product topology. We consider the metric space X (A, U)
with the metric p (see (4.8)).

Now we define #; as follows:

ﬂl = ﬂ]l X&glz ifm= 1, Slg—] = xﬂll ifm> 1, (91)

where 15 is either C;(B; X By) or C(B; X By) or a singleton {¢} € C;(By X B,), and sy,
is one of the following spaces:

M(A,U), M(A,U), ME(A,U),

~ Lo e (9.2)

M (A, Uy), My (A, Ua), M (A, Uq)
(here k > 1 is an integer, U = Uy, and graph(A) is a closed subset of the space Q x R”
with the product topology),

MEAD),  MEAT),  MEEA,T) (9.3)

(here k > 1 is an integer and A = A, U = D).

Denote by o the closure of the set {a € o, : inf(I!¥) < o} in the space o, with the
strong topology. We assume that s{ is nonempty. The following result is proved analo-
gously to Theorem 4.2.

TaeoreM 9.1. There exists an everywhere dense (in the strong topology) set B C A which is
a countable intersection of open (in the weak topology) subsets of A such that for any a € B,
the following assertions hold:
(1) inf(I'9)) is finite and attained at a unique pair (%,i) € X (A, U),
(2) for each € >0, there are a neighborhood V' of a in s with the weak topology and
8 > 0 such that for each b € V', inf(I")) is finite and if (z,w) € X(A,U) satisfies
10 (z,w) < inf(I®) + 6, then p((%,i1),(z,w)) < € and [IV)(z,w) — 9 (%,7)| < €.

In the sequel, we use the notation and definitions from Sections 4 and 5. Let m,n,N = 1
be integers. We again assume that Q) is a fixed bounded domain in R™, H(¢,x,u) is a fixed
continuous function defined on Q x R” x RN with values in R™" such that H(t,x,u) =
(H),and H; = (H,-j);"zl, i=1,...,n, By and B, are fixed nonempty closed subsets of R”"
and 6* = (6;)1, € (WL1(Q))" is also fixed. If m = 1, then we assume that Q = (T}, T>),
where T} and T, are fixed real numbers for which T} < T5.

Define set-valued mappingsg: Q-2K\{@tand U: Q x R" — 28"\ {D} by

A =R", teQ, Ut,x) =RN, (t,x) € Qx R". (9.4)
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Consider the metric space (X (A, 0), p) (see (4.7)) and the spaces of integrands

~

MA D),  MAD),  MAD),
Me(A,0),  MLAT),  M(A D), (9.5)
M (A, 1), Jl/t;fl(g, ), Jl/t,f“(g, (N]) (here k > 1 is an integer)

defined in Section 4.

Denote by S(R” x RN) the set of all nonempty convex closed subsets of R” x RN =
R™N. For each x € R” X RN and each E C R” X RN, set dy(x,E) = inf,cg [x — y|. For
each pair of sets C;,C, C R" X RN,

dy(C1,C) = max{ sup dy (y,Cy), sup dy (x,Cl)} (9.6)
yeC x€Cy

is the Hausdorff distance between C; and C,. For the space S(R” X RN), we consider the
uniformity determined by the following base:

Epmn (€) = {(Cl,CZ) S S([Rn X [RN) X S(Rn X [RN) ZdH(Cl,Cz) < E}, (9.7)

where € > 0. It is well known that the space S(R" x RYN) with this uniformity is metrizable
and complete (see Section 4). Denote by P the set of all set-valued mappings Q: Q) —
S(R™ x RN) such that the graph(Q) is a closed subset of the space Q x R" x RN with the
product topology. For each Q € P, define Aq: Q — 28"\ {@} by

Aq(t) = {x € R": thereis u € RN such that (t,x,u) € graph(Q)} (9.8)
and a set-valued mapping Ug : graph(Aq) — 2%\ {&} by
Uq(t,x) = {u € RN : (t,x,u) € graph(Q)}, (t,x) € graph (Aq). (9.9)
For the space %, we consider the uniformity determined by the following base:
Ey(€) = {(Q1,Q2) € PXP:dp(Qi(1),Q(t) <€, t€Q}, (9.10)

where € > 0. It is not difficult to verify that the space % with this uniformity is metrizable
and complete. We equip the set % with the topology induced by this uniformity.
For each Q € P, define

So=X(Ag,Ug) = {(x,u) € X(A,U): (x(),u(t)) € Q(1), t € Q (a.e.)]. (9.11)

In the case m = 1 for each Q € P and each (f,¢) Jl/t(fT, [N]) X Ci(By X B,) we consider
the optimal control problem

Y9 (x,u) — min, (x,u) € X(Aq,Ug) (9.12)

and in the case m > 1 for each Q € # and each f € M(A, ) we consider the optimal
control problem

19 (x,u) — min, (x,u) € X(Aq, Ug). (9.13)
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We set o, = P and define a space s, as follows:
ﬂl :ﬂ11Xﬂ12 ifm= 1, &Ql :Sﬁu ifm>1, (914)

where ;5 is either C;(B; X By) or C(B; X B) or a singleton {£} C C;(B; X By), and sy,
is one of the following spaces:

~ ~

MA D),  MAD), M4,
Me(A0),  MLA,T),  M(A D), (9.15)
M A,0), (K 0), C(K U) (herek>1isan integer).

For each a = (a1,a,) € A1 X A,, we define ], :X(K, ﬁ) — R'U {0} by
Jaou) =1 (eu),  (6u) €8sy Jalu) =, (x,u) €X(A,U)\Sa.  (9.16)

By Propositions 6.1 and 6.2, ], is lower semicontinuous for all a € ${; X A,. Denote
by o the closure of the set {a € sy X o, : inf(],) < oo} in the space A; X A, with the
strong topology. We assume that s is nonempty. The following result is an extension of
Theorem 4.2.

THEOREM 9.2. There exists an everywhere dense (in the strong topology) set B C o which is
a countable intersection of open (in the weak topology) subsets of S such that for any a € B,
the following assertions hold:
(1) inf(J,) is finite and attained at a unique pair (%,u) € X(A, D),
(2) for each € >0, there are a neighborhood V" of a in A with the weak topology and § > 0
such that for each b € V', inf(J},) is finite and if (z,w) € X(K, [N]) satisfies Jp(z,w) <
inf(Jy) + 6, then p((%,@),(z,w)) < € and |Jy(z,w) — Jo(%, )| < €.

Proof of Theorem 9.2. By Propositions 6.1 and 6.2 (A1) holds and J, is lower semicontin-
uous for all a € 4, X ;. By Theorem 5.1 we need to verify that (H1) and (H2) are valid.
Hypothesis (H2) follows from Proposition 6.2. Therefore it is sufficient to show that (H1)
holds. By Proposition 5.3 it is sufficient to show that (A2), (A3), and (A4) are valid. Hy-
pothesis (A2) follows from Propositions 6.5 and 6.7. By Lemma 7.1 (A3) holds. It is easy
to see that (A4) follows from Lemma 9.3 proved below. Its proof is a modification of the
proof of Lemma 8.2. O

Let e; = (1,0,...,0), e, = (0,1,0,...,0), ..., exsn = (0,...,0,1) be a standard basis in
R™N_ As in Section 8 we define a set £ C Ci(B; X B,). In the case m = 1 we set £ =
Ci(By X By) and in the case m > 1 we denote by & a singleton {0} where 0 is a function in
Ci(B1 X B,) which is identical zero. In the case m > 1 for each (f,§) Jl/t(fT, (NI) x & and
each (x,u) € X(K, (7) we set

199 (x,u) = I (x,u) (9.17)

(see (4.15), (4.16), and (4.17)).
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LEMMA 9.3. Let f € M(A, D), Ee?,Qe?,

{(x,u) € X(Aq,Ug) : 1YY (x,u) < 0} # @, (9.18)
€,0 >0. Then there are Q« € P, (x,11) € X(Aq,,Uq, ), an open set W in P such that

(Q)Q*)EE@(€)> OWO{PE@:(PrQ)EE@(E)}%Q:

1Y9(%,a) < inf {1V (x,u) : (x,u) € X (Aq,,Uq,)} +8 < o (.19)
and for each P € W,
(%) € X (A,,U,) € X(Aq,,Ug,). (9.20)
Proof. Foreachr € (0,1], define Q, € % by
Q. (t) = {(x,u) € R" X RN :dy ((x,u),Q(t)) <7}, t€Q (9.21)
and define
wu(r) = inf {1V (x,u) : (x,u) € X (Aq,, Ug,) }. (9.22)

Clearly u(r) is finite for all » € (0,1] and the function g is monotone decreasing. There is
ro € (0,87 1€) such that p is continuous at ry. Choose r; € (0,79) such that

|u(ry) —u(ro) | <16716. (9.23)
There is (x,i1) € X(Aq,,, Ug,, ) such that
IY9(%,a) < p(r) +167'4. (9.24)

Relations (9.22), (9.23), and (9.24) imply that

19 (%) < u(ry) +8716. (9.25)
Set
p=RtN (9.26)
2
Clearly
(Qr,') Q) € E@(E)) i= 0’ 172 (927)
Choose a positive number
y<min{4’18, (16(n+N))_1(r0—r1)} (9.28)

and define

W= {PeP:(QnP) € Es(y). (9.29)
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Assume that P € W By (9.29), (9.21), (9.28), and (9.26) for all t € Q,

P(t) C {(x,u) € R* X RN :dy ((x,u),Qy, (1)) < y}

9.30
& () € RY X RN : iy (3,0, Q(0) < 1o} € Qu (8 (930

Therefore X(Ap, U,) C X(Aq,, Uqg,, ). We will show that (x,) € X(A,,Up). Itis sufficient
to show that for a.e. t € Q, (t,%(¢),u(t)) € graph(P).
Since (%,1) € X(Aq,,,Ug,, ) for almostall t € Q,

(t,x(t),u(t)) € Qp, (). (9.31)

Assume that t € Q) and (9.31) is valid. It follows from (9.31), (9.26), and (9.29) that for
i=1,...,n+N,

(x(t),a(t)) +27" (ro — r1)eis (X(2),i(8)) = 27" (ro — 1) e; € Qp, (1), (9.32)
and there are z;;,z;, € R"™Y such that

(x(t),a(t)) +zin, (x(t),4(t)) +zin € P(1),

9.33
|Z,‘1—2_1(7’0_”1)ei|>|Zi2+2_1(70_71)ei| =. ( )

Since P(t) is convex, it follows from these relations, (9.28) and Proposition 8.1 that 0 €
conv{zji,zjp :i = 1,...,n+ N} and therefore (x(¢),i(t)) € P(t). Thus (x,21) € X(Ap, Up).
This completes the proof of the lemma and the proof of Theorem 9.2. O

10. An extension of Theorem 4.2

In this section, we use the notation and definitions from Sections 4 and 5.

Let m = 1 and let n,N > 1 be integers, By, B, = R", Q = (T}, T>), where T} and T, are
fixed real numbers for which T} < T,, and let H(t,x,u) be a fixed continuous function
defined on Q X R" x RN with values in R" such that H(t,x,u) = (H;),

Consider a fixed set-valued mapping A : Q — 2*" \ {@} for which graph(A) is a closed
subset of the space Q X R" with the product topology and a set-valued mapping Uy :
graph(A) — 2*" defined by

Ua(t,x) = RN, (t,x) € graph(A) (10.1)

(see (4.17)). We consider the metric space X (A, (N]A) with the metric p (see (4.8)), the uni-
form space P4, and the space of integrands Jl(A, lNJA) and all its subspaces introduced in
Section 4. Note that all of these spaces are equipped with the corresponding uniformities
and topologies introduced in Section 4.

Denote by S(R") the set of all nonempty convex closed subsets of R". For each x € R”
and each E C R", set dy(x,E) = inf ,cp [x — y|. For each pair of sets C;,C, C R",

dy(C1,Cy) = max{ sup dy (y,Cy), sup dy (x,Cl)} (10.2)
yeC x€Cy
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is the Hausdorft distance between C; and C,. For the space S(R"), we consider the uni-
formity determined by the following base:

Egq(€) = {(C],Cz) S S(IR") XS([R") :dH(Cl,Cz) < E}, (10.3)

where € > 0. It is well known that the space S(R") with this uniformity is metrizable and
complete.
For each (C;,C,,U) € S(R") X S(R?) X P 4, define

Se,cu = {(6u) € X(A,Uq) s u(t) € U(t,x()), t € Qae.and x(T;) € C, i = 1,2}
(10.4)

For each C;,C; € S(R™), each U € P4, and each (f,£) € M(A, (7) x C/(R" x R™), we con-
sider the optimal control problem

199 (x,u) — min, (x,u) € Sc,c,u. (10.5)

We set s, = S(R") X S(R") X P4 and define a space s, as follows.
Ay = Ay X iy where oy, is either Ci(R” X R") or C(R" X R") or a singleton {£} C
Ci(RN x RN), and 1, is one of the following spaces:

‘/‘A’(A>(7A)) ‘/‘/U(A)(-N]A); MC(A)ﬁA);
Mi (A, Ta);  ME(A,Us);  ME(A,Us)  (here k = 1 is an integer); (10.6)
MEA, D) MFHA,T); Mie(A,U)  (here k = 1is an integer and A = A).

For each a = (aj,a,) € Ay X A,, we define ], : X(A, ﬁA) — R!'U {oo} by

Ja(,u) = 1 (x,u),  (x,u) € Sy,

~ (10.7)
Ja(x,u) = 00,  (x,u) € X(A,Ua) \ S,,.

By Propositions 6.1 and 6.2 ], is lower semicontinuous for all a € sd; X ;. Denote by s
the closure of the set {a € sy X A, : inf(J,) < co} in the space o, X sd, with the strong
topology. We assume that o is nonempty. We prove the following result.

TaEOREM 10.1. There exists an everywhere dense (in the strong topology) set B C A which
is a countable intersection of open (in the weak topology) subsets of 9 such that for any
a € B, the following assertions hold:
(1) inf(J,) is finite and attained at a unique pair (x,i) € X (A, [N]A),
(2) for each € >0, there are a neighborhood V' of a in s with the weak topology and
0 > 0 such that for each b € V', inf(J,) is finite and if (z,w) € X(A,ﬁA) satisfies
Jo(z,w) <inf(Jp) + 6, then p((x,11),(z,w)) < € and |Jp(z,w) — Jo(X,01)| < €.

Proof of Theorem 10.1. By Propositions 6.1 and 6.2 (A1) holds and J, is lower semicon-
tinuous for all a € s, X sd,. By Theorem 5.1 we need to verify that (H1) and (H2) are
valid. Hypothesis (H2) follows from Proposition 6.2. Therefore it is sufficient to show
that (H1) holds. By Proposition 5.3 it is sufficient to show that (A2), (A3), and (A4) are
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valid. Hypothesis (A2) follows from Proposition 6.7. By Lemma 7.1 (A3) holds. It is easy
to see that (A4) follows from Lemma 10.2 proved below. Its proof is a modification of the
proof of Lemma 8.2. 0

LemMa 10.2. Let f € M(A,Uy), & € C(R" x R"), U € Py, C1,C, € S(R™),
{(x,u) € Sc,c,u : IVD (x,u) < 0} # @, (10.8)
and let €,8 > 0. Then there are Uy, € P4, Cy1,Cyo € S(R™),
(X,1) € Sc,\CaUss (10.9)
and an open set W in S(R™) X S(R™) X P4 such that

(U*J U) EE@A(E)) (Ciyc*i) EER”(G)) i= 1,2,
Wﬂ {(D11D21 V) : (Di)Ci) € E[R”(e)> i: 1)2) (V) U) € EQPA(G)} :)é ®) (1010)
1V (%,@) < inf {19 (x,u) : (x,u) € S, c.,u, } +6 < 00

and for all (D1,D,,V) € W,
(x,1) € Sp,p,v C Sc,,CouU.- (10.11)

Proof. For each r € (0,1], define U, € P4 by

Ui (t,x) = {ue RY :dy(u,U(t,x)) <r}, (t,x) € graph(A), (10.12)
Chr=1{zeR":dy(z,C) <r},
(10.13)
Cp = {Z cR": dH(Z,Cz) < 1’}
and define
u(r) = inf (I (x,u) : (x,u) € Sc, c,u, }- (10.14)

Clearly p(r) is finite for all r € (0,1] and the function y is monotone decreasing. There is
1o € (0,87 1€) such that y is continuous at r. Choose r; € (0,79) such that

() —p(ro) | <167'6. (10.15)
There is
(x,4) € Sc,,,c,,,U,, (10.16)
such that
199 (x,a) < p(r) +167'4. (10.17)

Relations (10.14), (10.17), and (10.15) imply that

159(x,) < p(rg) +8716. (10.18)
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Set

ro+ 1

) = 5

Clearly

(U,,U) € Ep,(€), i=0,1,2,

(Cl’il)cl))(cr,l)cz) GE[R”(E)) 120)1)2

Choose a positive number
y <min {4_16, (16(n+N))7l (ro — rl)}

and define
W = {(D1,D;,P) € S(R") X S(R") Xx Py :

(Urz,P) EE?PA(Y), (Dlrcrzl)a(D2>Cr22) EE[R”()))}

Assume that

(D],D2, V) e W.

(10.19)

(10.20)

(10.21)

(10.22)

(10.23)

By (10.23), (10.22), (10.21), (10.19), (10.12), and (10.13) for all (¢,x) € graph(A),

V(t) Cc {ue RN :dy(u,U,(t,x)) <y}
}

c{ueRN :dy(u,U(t,x)) <ro} C Uy, (t,x)

and fori= 1,2,

D, C {x e R": dH(x,C,Zi) < ))} C {X e R": dH(X,C,') < 1’0}.

Therefore
SpiD,v C 8Cy1Crpa Uy, -
We will show that (%, %) € Sp,p,v. It is sufficient to show that
x(Tv) € Dy, x(T2) € D,
and that for a.e. t € (T}, T>),
(t,x(1),u(t)) € V(t,x(1)).
By (10.16)

)_C(Tl) S Crlla J_C(Tz) S Crlz.

(10.24)

(10.25)

(10.26)

(10.27)

(10.28)

(10.29)
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Let e = (1,...,0), ..., e" = (0,...,1) be a standard basis in R” and let & = (1,...,0), ...,

eN = (0,...,1) be a standard basis in RN . It follows from (10.29), (10.13), (10.23), (10.22),
and (10.21) thatfori=1,...,n, k=1,2,

(Tk) +2 Y (ro—r)el, x(Tx) =27 (ro—r1)el € Cox (10.30)

(1)

and there are z, ,zf,f ) € R" such that

x(Ty) +23, %(Ty) + 23 € Dy, o)
|z =27 (ro—r1)el |, | zit +27 (ro—r)el' | <.

Since Dy, k = 1,2 are convex, it follows from these relations, (10.21), and Proposition 8.1
that

OECOHV{ZE,:),ZZ%):i= L,....,n}, k=12 (10.32)

and therefore (10.27) holds.
Assume that t € (T, T>) and

(t,x(1),u(t)) € Uy, (t,%(1)). (10.33)
It follows from (10.33), (10.19), (10.12), (10.23), and (10.22) that fori = 1,..., N,
a(t)+27 (ro—r) el u(t) — 27 (ro —r1)el € U, (t,%(t)). (10.34)
and there are z;;,z» € RY such that

a(t) +zin, u(t) +zp € V(£,x(1)), |
10.35
lzin =27 (ro—r)e} |, |za+27 (ro—r)ef | <. (

Since V (t,%(t)) is convex, it follows from these relations, (10.21), and Proposition 8.1 that
0 €convizi,zpn:i=1,...,N} (10.36)
and u(t) € V(t,%(t)). This completes the proof of both the lemma and Theorem 10.1. [

11. A class of nonconvex optimal control problems

In this section, we again use the notation and definitions from Sections 4 and 5. Let
m,n,N = 1 be integers, B; and B, fixed nonempty closed subsets of R”, ) a fixed bounded
domain in R™, H(t,x,u) be a fixed continuous function defined on Q x R” x RN with val-
ues in R™" such that H(t,x,u) = (H;)i-, and H; = (H;;)j~,i=1,...,n,and 0* = (0L, €
(WHH(Q))" also fixed.
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Consider a fixed set-valued mapping A : QO — 2®" \ {@} for which graph(A) is a closed
subset of the space Q x R" with the product topology and a set-valued mapping U :
graph(A) — 2*" defined by

U(t,x) = RN, (t,x) € graph(A), (11.1)

(see (4.17)).

We consider the metric space X(A, LNJA), the uniform space P4, the space of inte-
grands JL(A,Uy,) and its subspaces introduced in Section 4. Note that all these spaces
are equipped with corresponding uniformities and topologies introduced in Section 4.

Denote by 971 the set of all functions f : graph(A) X RN — R! U {oo} with the following
properties:

(a) f is measurable with respect to the o-algebra generated by products of Lebesgue
measurable subsets of Q and Borel subsets of R” x RN;

(b) f(¢,-,-) is lower semicontinuous for a.e. t € ()

(c) there exists an integrable scalar function y/(¢) <0, t € Q, such that f(t,x,u) >
y(t) for all (£,x,u) € graph(A) X RN,

Property (c) implies that for each f € 9t and each (x,u) € X (A, lN]A) the function f (¢,
x(t),u(t)), t € Q, is measurable.

For the space 91, we consider the uniformity determined by the following base:

Eon(€) = {(f,g) € MxM: | f(t,x,u) —g(t,x,u)| <€, (t,x,u) € graph(A) x RV},
(11.2)

where € > 0. It is easy to see that the uniform space 9t with this uniformity is metriz-
able (by a metric dgn) and complete. This uniformity generates in 9t the strong topology.
Denote by 9 (resp., M) the set of all lower semicontinuous (resp., finite-valued contin-
uous) functions f : graph(A) X RN — R! U {co}. Clearly 91, and 901, are closed subsets of
M with the strong topology. It is easy to see that JL(A, Uys) is a closed subset of 90t with
the strong topology.

For each € > 0, we set

Eony(€) = {(f,g) € M x M : there exists a nonnegative ¢ € L'(Q) such that
J ¢(t)dt <1andforae.t € Q,| f(t,x,u)—g(t,x,u)| <€ (11.3)
Q
+emax{| f(t,x,u)|, |gt,x,u)|} +ep(t) Vx € A(t), eachu € [RN}.

Using Lemma 4.1 we can easily show that for the set 97 there exists the uniformity which
is determined by the base Egne (€), € > 0. This uniformity induces in 91 the weak topology.
Analogously to Proposition 6.1 we can prove the following result.

ProposITioN 11.1. Let f € M, (x,u) € X (A, U), {(xiu)}21 € X(A, Ua), and let p((x;,
u;),(x,u)) — 0 asi— oo, Then

JQf(t,x(t),u(t))dt <timinf | £ (b(0),u(0)dr. (11.4)
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Analogously to Proposition 6.5 we can prove the following result.

ProrosiTioN 11.2. Let f € 9 and € € (0,1), D > 0. Then there exists a neighborhood V'
of f in M with the weak topology such that for each g € V' and each (x,u) € X(A,Uy)
satisfying

min 5{ Jﬂf(t,x(t),u(t))dt, L)g(t,x(t),u(t))dt} <D, (11.5)

the following relation holds:

’ L)f(t,x(t),u(t))dt— Lg(t,x(t),u(t))dt‘ <e. (11.6)

Denote by J{ the of all functions & : graph(A) — (—co, c0] such that for a.e. t € Q the
function &(t,-) : A(t) — (— 0, 0] is lower semicontinuous. For the set J{, we consider the
uniformity determined by the following base:

Ey(e)={(&n) € K xIH : |E(t,x) —n(t,x)| <€ V(t,x) € graph(A)}, (11.7)

where € > 0. It is easy to see that the space J with this uniformity is metrizable (by a
metric dy ) and complete. This uniformity generates in X the strong topology.
For each € > 0, we set

Eﬁfw(e) = {(gl)EZ) e W xIH: |£1(t:x) - EZ(tax) | <€

11.8
+emax{|&(tx)], |&(tLx)| ], x € A}, (118)

where € > 0. Using Lemma 4.1 we can easily show that for the set J{ there exists the uni-
formity which is determined by the base Egy,,(€), € > 0. This uniformity induces in ¥ the
weak topology. Denote by H! (resp., H¢) the set of all lower semicontinuous (resp., finite-
valued continuous) functions & € J{. Clearly ' and %¢ are closed subsets of K with the
strong topology.

Let k > 1 be an integer. In the case m = 1 for each (f,§) € AM(A, (N]A) x C;(B1,B,), each
U e Py, each yy,...,yx € M, and each y € K, we consider the optimal control problem

19 (x,u) — min,

(x,u) € X(A,U), v(6x(t) <0, t€Qae, (11.9)

JQ it x(0,u(D)dt <0, i=1,...,k

In the case m > 1 for each f € MM(A, ﬁA), each U € Py, each yy,...,yx € M, and each
v € K, we consider the optimal control problem

1D (x,u) — min,

(ou) €X(4,04),  y(tx(t) <0, teQae, (11.10)

JQ vi(tx(t),u(t))dt <0, i=1,... k.
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Define a space ${; as follows:
&ql :ﬂ11Xﬂ12 ifm=1, &41 =.SZQ11 ifm>1, (11.11)

where ;5 is either C;(B; X By) or C(B; X By) or a singleton {£} C C;(B; X By), and sy,
is one of the following spaces:

M(A, Ty); M(ATa); M4, Ta);
Mi (A, Ua);  ME(A,TUa);  ME(A,Us)  (here k > 1is an integer); (11.12)
M (A, 0); J(/LZ‘I(K, 0); J(/L;:C(ﬁ, U) (herek=>1isan integer and A = A).
Define a space s, as follows:

.&QZZﬂZQX&imX"'X&dsz@A, (11.13)

where sy is either K or H! or K¢ and oy; (i = 1,...,k) is either 9 or M or M, or a
singleton {&} € M.
For each a = (aq,...,ar, U) € A,, define

Sy, = {(x,u) €X(A,U):a9(t,x(t)) <0t € Qa.e. and

(11.14)
J a(t,x(8),u(t))dt < 0, i = 1,...,k}.
Q
For each a = (ay,a,) € A, we define J, : X(A, Uy) — R U {0} by
Ja(x,u) = 19 (x,u) : (x,u) € Sy, (11.15)
Ja,u) =00, (x,u) € X(A,U4) \ Sa. (11.16)

By Propositions 6.1, 6.2, and 11.1 ], is lower semicontinuous function for all a € s, X s4,.

Denote by o the closure of the set {a € s X o, : inf(J,) < oo} in the space sd; X A;
with the strong topology. We assume that & is nonempty. We will establish the following
result.

TueoreM 11.3. There exists an everywhere dense (in the strong topology) set B C A which
is a countable intersection of open (in the weak topology) subsets of S such that for any
a € B, the following assertions hold:
(1) inf(J,) is finite and attained at a unique pair (%,u1) € X (A, ﬁA),
(2) for each € >0, there are a neighborhood V' of a in A with the weak topology and
0 > 0 such that for each b € V, inf(J,) is finite and if (z,w) € X(A, lN]A) satisfies
Jo(z,w) < inf(Jp) + 6, then p((x,11),(z,w)) < € and |Jp(z,w) — Jo(X,01)| < €.

Proof. By Propositions 6.1, 6.2,and 11.1 (A1) holds and ], is lower semicontinuous for all
a € sy X A;,. By Theorem 5.1 we need to verify that (H1) and (H2) are valid. Hypothesis
(H2) follows from Proposition 6.2. Therefore it is sufficient to show that (H1) holds. By
Proposition 5.3 it is sufficient to show that (A2), (A3), and (A4) are valid. Hypothesis
(A2) follows from Propositions 6.5 and 6.7. By Lemma 7.1, (A3) holds. Hypothesis (A4)
will follow from Lemma 11.4 below. [l
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Recall that e; = (1,...,0),..., e, = (0,...,1) is the standard basis in R?. In the case
m =1 we set £ = C;(B; X By) and in the case m > 1 we denote by & a singleton {0}
where 0 is a function in C;(B; X B,) which is identically zero. In the case m > 1 for each

(f,&) e M(A, Us) x £ and each (x,u) € X(A, Uys), we set
199 (xu) =1 (x,u)  (see (4.15) and (4.16)).
LemMma 11.4. Let f € M(A, [N/'A), EeL, UePy,

1//1'69421‘, izo)---)k) aZZ(V/O)---JI//k)U))
{(x,u) €8, I (xu) < w} +£ D

and let €,8 > 0. Then there are
(ax2) = (Wsx05e- o> Wik Uk )
where
Uy € Py, Vyi € Aai, i=0,...,k, (x,71) € Sa,2>
and a nonempty open subset W of sd, with the weak topology such that

(U*)U) EE@A(€)> (V/*oﬂlfo) 6E7{(€)>
(l//,‘,l//*i) EEgm(E), i=1,...,k,
W {(¢oy....d, V) €Ay : (U, V) € Pale),

(¢i>yi) € Eon(€), i =1,...,k, (¢o,¥0) € Ex(€)} + O,
199 (x,2) <inf {19 (x,u) : (x,u) € Sy, } +8 < 00

and for all b, € W,
(x,11) € Sp, C Sa,,-
Proof. For each r € (0,1], define U, € P, by
Uy(t,x) = {ue R":dy(u,U(t,x)) <r}, (t,x) € graph(A),
define y,; € Ay, i =0,...,k by

I//rO(tax) = Wo(t:x) -1, (t)-x) € graPh(A)>
vri(txu) = wi(t,xu) —r,  (tx,u) € graph(A) x RN, i=1,...,k.

Set

ar = (WrOav/rl)- co Yrks Ur)

(11.17)

(11.18)
(11.19)

(11.20)

(11.21)

(11.22)

(11.23)

(11.24)

(11.25)

(11.26)
(11.27)

(11.28)
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and put
u(r) = inf {199 (x,u) : (x,u) € S, ) (11.29)

Clearly u(r) is finite for all » € (0,1] and the function g is monotone decreasing. There is
ro € (0,min{87!,87!€}) such that y is continuous at ry. Choose r; € (0,7o] such that

|u(r1) —u(ro) | <16710. (11.30)
There is
(X,i) € S, , (11.31)
such that
19 (x%,7) < u(r) +16719. (11.32)

Relations (11.30), (11.32) imply that
19z, ) < u(ro) +8716. (11.33)
Set
ry=2"Yro+n). (11.34)
Clearly

(Uf'i’U) EE@A(E)r i:O)I)Z)
(¥ro0,w0) € Exc(€), i=0,1,2, (11.35)
(¥nj>¥;) € Em(e), i=0,1,2, j=1,...,k.

In view of property (c) (see the definition of 90t), there exists an integrable scalar function

¢(t) = 0, t € Q such that
vi(t,x,u) > —¢(t)  V(t,x,u) € graph(A) x RN and alli = 1,...,k. (11.36)
Choose a positive number y, such that
yo<min{4718,1671, (16N) " (ro — 1)}, (11.37)
yo[mes(Q)+1+L2¢_)(t)dt] < (ro — r2) mes(Q) (11.38)
and choose a positive number y < y, such that

y+y(1—y)*l<%. (11.39)
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Let W be the interior of the subset

q
{n € (1,yn0) € Ean(p)} ﬂ &€y : (§yn;) € Emu(y)}

(11.40)
X{VeP4:(V,U,) € Ep,(y)}
of sd, with the weak topology. Set
U*:Urg) llf*j:l//roj, j:0,...,k, (1141)
Ay = (W*O;---aW*k: U*)- (11.42)

By (11.41),(11.31), (11.34), and (11.28) the inclusions (11.21) hold. The choice of W" (see
(11.40)), (11.41), (11.35) imply that (11.22) hold. Relations (11.23) follow from (11.33),
(11.29), (11.28), and (11.41). In order to complete the proof of the lemma, it is sufficient
to show that (11.24) is true for all b, € W'.

Assume that

by = (&,&1,...8,V) €W, (11.43)
where
fjesﬂzj, j=0,...,k, VEQPA. (11.44)

It follows from (11.43), (11.44), the choice of W' (see (11.40)), (11.25), (11.37), (11.39),
and (11.34) that for each (t,x) € graph(A),

V(t,x) C{z€ RN :dy(z,U,(t,x)) <y}
c{zeRY:dy(z,U(t,x)) <10} = Uy, (t,x),
V(t,x) C Uy (t,%). (11.46)

(11.45)

By (11.43), (11.44), the choice of W' (see (11.40)), (11.8) fora.e.t € Q
|£0(t3x)_w}’20(t)x)| <V+)’max{|£0(fax)|) |l//r20(tax)|} VXEA(t) (11'47)
Relations (11.47) and (11.39) and Lemma 4.1 imply that for a.e. t € Q

|&0(t,x) — Yro(6,x) | <8 'yo+8 tyomin{|&(£,x) |, |ymo(t,x) |} Vx € A(1).
(11.48)

We show that the following implication holds.
(i1) for a.e. t, if y € A(t) satisfies & (¢, y) < 0, then

Yro(t,y) < 0. (11.49)
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Assume that t € Q, (11.48) holds, y € A(t), and
(t,y) <0. (11.50)

We show that ,,(t, y) < 0. We assume the converse. Then y,o(, y) > 0. It follows from
this inequality, (11.27), and (11.34) that

Vro(ty) = w(t,y) = =yo(t,y) —rg+ro—n
-1 . ro — 11 (11.51)

— —1’0
- V/rgo(ta)’) + 2 2

Combined with (11.48) and (11.37), relation (11.51) implies that

&t y) = Vno(t,y) — 8 'y0 — 8 Ypoyno(t, y)
> =8 yo+Yno(t,y) (1 -8 1yp) (11.52)
> g ly+ 2T 5 g,
a contradiction. The contradiction we have reached proves the inequality v,,o(t,y) <0
and implication (il).

Now we show that the following implication holds:
(i2) for each j € {1,...,k} and each (x,u) € X(A4, lN]A),

| 165 (taxto,00) = vy ex(0,u0) |
< éyo mes(Q) +4""yo + 2*1yoj o(t)dt (11.53)
4 Q
18y, L} min {&; (£,5(t), 1(8)), i (£,(0), (1)) .

Assume that j € {1,...,k}, (x,u) € X(A4, ﬁA). It follows from (11.43), (11.44), the choice
of W (see (11.40)) and (11.3) that there exists a nonnegative ¢; € L'(Q) such that

[ o< (1154
Q
and fora.e. t € Q,

|&i(t,y,v) =y, j (6, y,v) | <y+ymax{|&i(t,y,v) [, [vnj(ty,v) [} +y;(t)

. (11.55)
for each y € A(t) each v € R™.
By (11.55), (11.39), and Lemma 4.1 for a.e. t € Q,

[&(t,y,v) = Yy (6, y,v) | < (14+6;(£)8  yo+8 Tygmin { | §(t, y,v) [, |y j(t y,v) | }
(11.56)

for each y € A(t) and each v € RV.
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In view of (11.56), (11.27), and (11.36) for a.e. t € Q,

§i(t,9) 2 (6, y,v) = 87 po (1+¢(1)) = 87 yo [ (15 3,v) |
> =87y (1+¢;() +yi(t,y,v) — =27y [y (L, V) | =12 (11.57)
=87 yo(1+¢;(1) — (1) -2

for each y € A(t) and each v € RN,
It follows from (11.56), (11.57), (11.27), and (11.36) that for a.e. t € R!,

[&(t, y,7) = Y (t, y,7) |
< (1+¢j(t))8’1y0+8’1y0min{£j ty,v)+4’1y0(1+¢j (1)) +26(1)
+4,1+y,(y,v) +2¢(1) } (11.58)
<8 yo(1+¢;(1) +8 'yomin {&;(t, y,v), ¥, (£, y,)}
+8 'y [4 7y (1+¢(1)) +2¢(2) +4]

for each y € A(t), each v € RN,
By (11.58) and (11.54),

J | & (t,x(t — Y (6,x(1),u(t)) | dt
<87y JQ (1+¢;(1)dt+8 "y, L)min{fj(t,x(t),u(t)),wnf(t,x(t),u(t))}dt

+32*‘yéj [1+¢j(t)]dt+8*1yoj [28(t)dt +4]dt
Q Q
< 8 'ypmes(Q) +8 'y +327 2 mes(Q) + 327193 + 27 yy mes(Q)

14y JQqS(t)dH 81y, Jnmin 15 (630, 1(8)) Y (£, (0), (1)) ],

(11.59)
In view of (11.59), implication (i2) is true.
Assume that
(x,u) € Sp,. (11.60)
It follows from (11.60), (11.43), (11.44), and (11.14) that for a.e. t € Q),
§o(t,x(1)) <0. (11.61)
Combined with (il), this implies that for a.e. t € Q,
Wy, (1, x(1)) <O0. (11.62)

Let j € {1,...,k}. By (11.60), (11.43), (11.44), and (11.14),

ij(t,x(t),u(t))dt <0. (11.63)
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(11.63) and (i2) imply that

L)V/rzj(f,x(t),u(t))dt
< J §i(tx(t),u(t))dt + Zyomes(ﬂ) +47 1y,
? ) (11.64)
+2’Wof ¢(t)dt+2*1yoj & (t,x(t),u(t)dt
Q Q
< %yomes(ﬂ)+4_1yo+2‘1yo J;)é(t)dt.

In view of (11.64), (11.27), and (11.37),
J Vi (6,(0),u(t)) dt = J [y (£,(0), () — (1o — 12) ]t
Q Q
= —(ro — r2) mes(Q) + JQ Vi (6x(1),u(t))dt (11.65)
< —(ro —r;) mes(Q) +y0[mes(Q) +1 +J ¢(t)dt] <0.
Q
Thus
L} Ui (EX(0,u(D) <0, j=1,....k. (11.66)

It follows from (11.60), (11.43), (11.44), and (11.14) that for a.e. t € Q, u(t) € V(t,x(t)).
Combined with (11.46) this implies that for a.e. t € Q, u(t) € U, (¢,x(t)). Combined with
(11.66), (11.62), (11.43), (11.44), (11.14), and (11.41) this implies that

(x,u) € Sa,2 = Sa, - (11.67)
Therefore, we have shown that
Sb, C Sass- (11.68)
Now we show that
(%,11) € Sp,. (11.69)

Relations (11.31), (11.28), and (11.14) imply that for a.e. t € Q,
u(t) € Uy, (t,x(1)). (11.70)
Assume that t € Q and (11.70) holds. By (11.70), (11.25), and (11.34) fori = 1,...,N,

u(t) +271 (To — rl)e,-,ﬂ(t) +271 (1’0 — 1‘1)6,’ ey, (t,)_C(t)). (11.71)
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In view of (11.71), (11.43), (11.44), the choice of W (see (11.40)), for i = 1,...,N, there
are z;1,zn € RN such that

i(t) +zi,u(t) +zp € V(t,x(t)), (11.72)
|zin =27 (ro—r1)ei|, |zn+27(ro — 1) ei| <y. (11.73)

Since the set V(t,x(t)) is convex, from (11.73), (11.37), (11.39) and Proposition 8.1 it
follows that

0 €conv{zj:i=1,...,N, j=1,2},

_ _ (11.74)
a(t) € V(t,x(1)).

Thus we have shown that

i(t) € V(t,x(t)) forae. te. (11.75)

We show that for a.e. t € Q, & (t,%(t)) < 0.
It follows from (11.31), (11.28), (11.14), (11.18), and (11.34) that fora.e. t € Q

0= yy,0(6,%(1)) = yo (£,%(t)) — 11, (11.76)
Vo (6%(1)) = wo (6,x(1)) — 12 = Yo (£,x(8)) =11 +11 — 12
_ _ Tto—T11 < to—11 (1177)
= Yro (LX) - —5— < =75

Relations (11.77), (11.48), and (11.37) imply that for a.e. t € Q,

EO(t)J_C(t)) = WrZO(t’x(t)) +871V0+871)/ol//r20(t)5€(t))

1
< Ewrzo(t,fc(t)) +87 1y (11.78)

< —% +87 1y <0.

Thus we have shown that
& (Lx(1) <0 forae te . (11.79)

Let j € {1,...,k}. We show that
J £ (t,%(1), a())dt < 0. (11.80)
Q
It follows from (11.31), (11.28), and (11.14) that

nglfﬁj(t,k(t),ﬁ(t))dt <0. (11.81)
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Relations (11.27), (11.34), and (11.81) imply that

J Yrj (1,X(1), 0(t)) dt
Q

- |y ex0,80) - e

= [ [ (0,80) = ) + (= ) (11.82)
= [y txm,a@)de - (57 ) mes(@)
< —mes(Q)u,

By implication (i2) (see (11.53)), (11.82), and (11.37),

JQ £ (t,%(1), a(1)) dt < L, Vi (6,5(0), (1)) dt + ?—lyo mes(Q) + 4"y

12y L;,S(r)dn 81y, JQ Ui (BE@, D) (11.83)

o —n

< —mes(Q) +y0mes(Q)+yo+y0J $(t)dt < 0.
Q

Therefore, we have shown that
J & (t,x(0),a(t)dt<0, j=1,.,k (11.84)
Q

Relations (11.75), (11.79), (11.84), (11.43), and (11.14) imply that (x,%) € Sp,. Thus
(11.24) holds for all b, € W'. This completes the proof of the lemma. O

12. Minimization problems with constraints

In this section, we discuss three classes of minimization problems with constraints. For
these classes, generic existence of solutions is obtained as a realization of our variational
principle (see Theorem 5.1 and Proposition 5.3).

Let (X,p) be a complete metric space and let C;(X) be the set of all lower semicon-
tinuous functions f : X — R! U {co}. Denote by Cy; the set of all bounded from bellow
functions f € Ci(X).

For each function f: Y — [—00,00], where Y is nonempty set, we define

dom(f)={yeY:-oo< f(y)< oo},

. (12.1)
inf(f)={f(y):yeY}
We use the convention that co — o0 = 0.
Denote by C(X) the set of all continuous real-valued functions f € C;(X) and set
Cp(X) = C(X) N Cpi(X). We equip the set C;(X) with a strong and weak topologies.
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For the set C;(X), we consider the uniformity determined by the following base:

Ecs(€) = {(g,h) € QX)X Ci(X) : |g(x) —h(x)| <€ Vx € X and

(12.2)
| (g(x) —h(x)) — (g(y) —h(»)) | <e€p(x,y) for each x,y € dom(g)},
where € > 0. Clearly this uniform space C;(X) is metrizable (by a metric d¢;) and com-
plete. We equip the set C;(X) with the strong topology induced by this uniformity.
Now we equip the set C;(X) with a weak topology. For each € > 0, we set

Ecw(€)={(g,h) eC(X)xCi(X): |g(x) —h(x)| < e+emax{|g(x)|, |h(x)|} Vx e X}
(12.3)

We can show in a straightforward manner that for the set C;(X) there exists a uniformity
which is determined by the base Ec,(€), € > 0. It is easy to see that this uniformity is
metrizable (by a metric dc,,) and complete. This uniformity induces on C;(X) the weak
topology. Clearly C(X), Cp(X), and Cp(X) are closed subsets of C;(X) with the strong
topology.

Now we define spaces o, and ;. Let oA, be either Cp(X) or Cp(X) and let s, =
Cf x -+ - x C¥ where Cf, i = 1,...,n is one of the following spaces:

Gi(X); C(X)s Cpi(X)s Cp(X). (12.4)
For a € s, we set ¢, = a and for g = (g1,...,84) € A, we set
Se=1xeX:gix)<0,i=1,...,n}. (12.5)
For a = (ay,a,) € 91 X sl,, we define a function f,: X — R U {co} by
fa(x) = ¢g, (x) = a1(x), x €S, falx) =00, xE€X\S,,. (12.6)

Denote by s the closure of the set {a € s, X o, : inf(f,;) < co} in the space sd; X o, with
the strong topology.
The following result was established in [23].

THEOREM 12.1. There exists an everywhere dense (in the strong topology) set B C sd which
is a countable intersection of open (in the weak topology) subsets of S such that for any
a € B, the following assertions hold:
(1) inf( f,) is finite and attained at a unique point x € X;
(2) foreach € >0, there are a neighborhood V' of a in A with the weak topology and § > 0
such that for each b € V', inf(fy) is finite, and if z € X satisfies fp(z) < inf(fp) +6,
then p(z,%) < € and | f(2) — fa(%)] < €.

Note that an analogous result was established in [9] when X is a Banach space and
constraint functions are convex.
Now we present the second main result of [23].
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Let (X, || - ||) be a Banach space. Consider the set & of all bounded from below lower
semicontinuous functions f : X — R!. For the set &, we consider the uniformity deter-
mined by the following base:

Be)={(f,9) €EXL: | f(x) —g)| <€ x X}, (12.7)

where € > 0. Clearly this uniform space is metrizable and complete. We equip the space
< with the topology induced by this uniformity.
Forx € X and A C X, set

p(x,A) =inf {[lx - yll : y € A}. (12.8)

Denote by S(X) the set of all nonempty closed convex subsets of X. For the set S(X), we
consider the uniformity determined by the following base:

Es(€) = {(A,B) € S(X) xS(X) : p(x,B) <€ Vx€ Aand p(y,A) <€ Vy € B}, (12.9)

where € > 0. It is well known that the space S(X) with this uniformity is metrizable (by a
metric H) and complete. We consider the set S(X) endowed with the Hausdorft topology
induced by this uniformity. Set sd = sd; X o5, where sd; = £ and s, = S(X). For each
a=(ay,a) € A define ¢, =a;: X - R, S,;, =a, C X and

fax) =ai1(x), x€a, falx) =00, x€X\a. (12.10)

Clearly inf( f,) is finite for all a € .
The following result was established in [23].

THEOREM 12.2. There exists an everywhere dense set B C A which is a countable intersec-
tion of open everywhere dense subsets of s such that for any a € B, the following assertions
hold:
(1) inf(f,) is finite and attained at a unique point x € X;
(2) for each € > 0 there are a neighborhood V' of a in A and § > 0 such that for each
b €V, inf(fy) is finite and if z € X satisfies f,(z) < inf(f},) + 0, then p(z,X) < € and
(2 - fil®)] <e.

Let (X, - II) be a Banach space,
px,y)=llx—yll, xy€eX, (12.11)
and let #n = 1 be an integer. We consider the minimization problem

f(x) — min,
12.12
x €A, gilx)<0, i=1,..,n ( )

where f € Cy(X), gi € Ci(X),i=1,...,n, A € S(X).
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Set A = A; X A, where s is either Cy(X) or Cp(X),
ﬂzZﬂﬂX"'X‘ﬂanS(X), (12.13)

Ay; is either Cj(X) or C(X) or Cp(X) or Ci(X),i=1,...,n.
For a; € s, we set ¢, = a; and for a, = (g1,...,gn,A), We set

Se, ={x€A:gi(x)<0,i=1,...,n}. (12.14)
and define f;: X — R! U {co} as follows:
fa(x) = ¢a, (%) = a1(x), x €S, falx) =00, x€X\S,,. (12.15)

It is easy to see that for each a = (aj,a;) € o the function f,: X — R! U {oo} is lower
semicontinuous.

Denote by 4 the closure of the set {a € o : inf(f;) < co} in the strong topology. We
assume that sl # . In this section, we establish, the following result.

THEOREM 12.3. There exists an everywhere dense (in the strong topology) subset B C
which is a countable intersection of open (in the weak topology) subsets of 9 such that for
each f € B, the following assertions hold:
(1) inf(f,) is finite and attained at a unique point x, € X,
(2) for each € >0, there exist § > 0 and a neighborhood V" of a in s with the weak topol-
ogy such that for each b € V', inf (f) is finite and if z € X satisfies f,(z) < inf(fp) + 9,
then ||z — x|l < € and | f(2) — fa(x,)| < €.

Proof. Clearly (A1) and (H2) hold. By Theorem 5.1 and Proposition 5.3, it is sufficient to
show that (A2), (A3), and (A4) are valid. We will show that (A2) holds.
Let f € oy € Cp(X) and D, € > 0. There is a positive number ¢, such that

flx)=z—-cy VxeX (12.16)
Choose a positive number €, such that
€o(D+4cy+4) <min{l,e} (12.17)
and a positive number €; < 1 such that
der+e(l-e) H<e (12.18)
Set
U= {geCi(X):(f.g) € Ecwler)} (12.19)

(see (12.3)).
Assume that

gEU, xeX, min{f(x),g(x)} <D. (12.20)
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By (12.19), and (12.3),
| f(z)—g(z)| <er+ermax{]| f(2)|,|g(2)|}, zeX (12.21)
It follows from this relation, (12.18), (12.16) and Lemma 4.1 that for all z € X,
| f(z) —g(z)| <€+eomin{]| f(2)],|g(2)|}, (12.22)
g(z2)= f(z)—€—€o| f(2)| = —1—2c, (12.23)
By (12.22), (12.20), (12.17), and (12.16),

| () =g(x)] <€+ eol min {(x),g(x)} +4co +4] (1224)
<€ +e€(D+4c+4)<e.

Thus (A2) is valid.
We will show that assumption (A3) holds. Let y € (0,1). Choose positive numbers
€(y), 6(y), and €y(y) such that

€(y) <y, eol(y) <e(y). (12.25)
des(g1,92) <€(y)  V(g1,8) € Ecs(eo(y)), 8(y) <8 'eo(y) (12.26)
Assume that f € o, € Cp(X), Y C X is nonempty, X € Y, and
f(®) <inf{f(z):z€ Y} +8(y) < . (12.27)
Define f: X — R! U {c0} by
f(x) = f(x) +eo(y)min{L, Ix— %}, xeX. (12.28)

Clearly f € Cp(X), (f, f) € Ecs(€o(y)), (see (12.22) and if f € Cb(X_), then f € Cp(X).
It foll_ows from the definition of €y(y) that des(f, f) < €(y). Clearly f(x) = f(2), z € X,
and f(x) = f(x).

Assume that y € Y and

f(y) <inf{f(z):z€ Y} +28(y). (12.29)

It follows from (12.28), (12.29), (12.27), and (12.26) that

f) +eo(y)min{1Llly -xzl} = f(y) < f(%) = f(x)+28(y) < f(y) +38(y),
min {1, ]|y — %[} <38(p)eo(y)~" < 60()/), ly —xll < eo(y) <y.
(12.30)

Thus (A3) holds.
In order to complete the proof of the theorem, it is sufficient to show that (A4) holds.
|

In the sequel we need the following auxiliary result (see [23, Proposition 7.1]).
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ProrosiTioN 12.4. Let B(0,1) = {y € X : ||yl < 1}. Assume that E is a closed convex subset
of X such that for all y € B(0,1), infycg ||y — x|l < 1/8. Then 0 € E.

Hypothesis (A4) will follows from the next lemma.
LEmMa 12.5. Let f € Cy, A € S(X),

g€y, i=1..,n, ar = (g1, g A), (12.31)
(x€Sy: f(x) <o} +O (12.32)

and let €,8 > 0. Then there are
(a*z) = (g*ly--.,g*n,A*), (12.33)

where
Ay ES(X), g*iEﬂz,', i=0,...,n, )_CESQ*Q (12.34)

and a nonempty open subset W of sd, with the weak topology such that

(A*,A) e ES(E), (g*i,g,') (S ECS(E), i= 1,...,n, (12.35)
W {(hi,....hn,B) € Ay : (B,A) € Es(€), (hi,gi) € Ecs(€), i=1,...,n} # D, (12.36)
f(x) <inf{f(x):x€8,,} +8< (12.37)

and for all b, € W,
X €8, CSa,y (12.38)

Proof. For each r € (0,1], define A, € S(X) by

A ={xeX:pxA) <r}, (12.39)
define g,; € sd,;,i=0,...,n by
gilx)=gi(x)-r, x€X,i=1,..,n, (12.40)
define
ary = (1> G Ar) (12.41)
and put
u(r) =inf { f(x):x € Sy, }. (12.42)

Clearly p(r) is finite for all » € (0,1] and the function g is monotone decreasing. There is
ro € (0,87 1€) such that p is continuous at ry. Choose r € (0,r0] such that

lu(r1) —u(ro) | <16716. (12.43)
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There is
X€S,, (12.44)
such that
f(x) <u(r)+16716. (12.45)

Relations (12.45) and (12.43) imply that

f(x) <u(ro) +8714. (12.46)
Set
ry=2"Y(ro+n). (12.47)
Clearly
(A,,A) € Ei(e), i=0,1,2, (12.48)
(grj-8j) € Ecs(e), i=0,1,2, j=1,...,n. (12.49)

Choose a positive number y, such that
yo<min{4718,1671,(16) " (ro — 1)} (12.50)

and choose a positive number y < y such that

yHp1—y)l< % (12.51)
Let W be the interior of the subset
[T{E € stsj: (§),8,;) € Ecu(p)} x {BESX): (B,A,,) € Es(y)} (12.52)
j=1
of o, with the weak topology. Set
Ay = Ay, 8+j=8nj» J=L..,n, (12.53)
ax) = (g*17--->g*mA*)- (12-54)

By (12.53), (12.44), (12.41), (12.14), (12.40), and (12.39), relation (12.34) holds. Rela-
tions (12.53) and (12.48) imply (12.35). In view of the definition of W' (see (12.52)) and
(12.48), the relation (12.36) is valid.

Relation (12.37) follows from (12.44), (12.45), (12.42), and (12.53). In order to com-
plete the proofs of the lemma and of the theorem, it is sufficient to show that (12.38) is
true for all b, € W.

Assume that

bz = (61,...,61,3) GO‘/V, (12.55)
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where
fjetﬂzj, j=1,...,n, BES(X) (12.56)

It follows from (12.56), (12.55), the choice of W' (see (12.52)), (12.9), (12.39), (12.50),
(12.51), (12.53), and (12.47) that

Bc{zeX:p(z,A,) <yl cl{zeX:p(z,A) <r} =A, = Ax. (12.57)
By (12.56), (12.55), (12.3), the choice of W' (see (12.52)), foreachx € X, j=1,...,n
[ &5(x) = gnj(x) | <y +ymax{[E(x)], [gn;(0)]}. (12.58)
Relations (12.58) and (12.51) and Lemma 4.1 imply that foreachx € X, j = 1,...,n,
[€i(x) = gnj(x)]| <87 'yo+8 'yomin{|&;(x)], |gn;(x)|}. (12.59)
We show that for each j € {1,...,n}
{zeX: &) <0} c{zeX:gj(z) <0}, j=1,..,n (12.60)
Assume that z € X, j € {1,...,n}, &;(z) < 0. We show that
02 gx(2) = gnj(2) = gj(2) — 0. (12.61)

We assume the converse. Then g;(z) —ry >0 and

2,j(2) =gi(2) —r=gj(2) —rotro—m =1 -1 = r";—“ (12.62)
Combined with (12.59) and (12.50), (12.62) implies that
£i(2) = gr,j(x) =8 'yo— 8y | gnj(2) |
— 12.63
2—1’041’1 -8y, >0, ( )

a contradiction. The contradiction we have reached proves the inequality (12.60) for each
jell,...,n}.
Relations (12.60) and (12.57) imply that
S, C Sa,. (12.64)
We show that x € Sp,. By (12.44), (12.14), (12.41)
XEA,. (12.65)
Relations (12.65), (12.47), and (12.39) imply that

¥+27 Y (ro—r)z€A,, foreachze X such that |z < 1. (12.66)
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In view of (12.66), (12.56), (12.55), and the choice of W' (see (12.52)) for each z € X
satisfying [|z]| < 1,

p(Z,Z(To—rl)_l(B—.?_C)) sZy(ro—rl)_l. (12.67)
In view of (12.67), (12.51), (12.50), and Proposition 12.4, 0 € B — X and
% €B. (12.68)

Let j € {1,...,n}. We show that &;(x) < 0. It follows from (12.40), (12.44), (12.41),
and (12.14) that

gi(X)—r =g,j(x) <0. (12.69)

Relations (12.40), (12.69), and (12.47) imply that

8 (®) =g —r =g @ +n-—n<- (12.70)
By (12.59), (12.70), and (12.50),
E(%) < gnj (%) +8  y0 ] g ()| +871y0 < —m;—“ +8 1y <0, (12.71)
Thus
E(x)<0, j=1,..,n (12.72)
Relations (12.72), (12.68), (12.55), (12.56), and (12.14) imply that x € Sp,. Combined
with (12.64), this implies (12.38) and the lemma itself. O
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