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It is known that every G; subset E of the plane containing a dense set of lines, even if it
has measure zero, has the property that every real-valued Lipschitz function on R? has
a point of differentiability in E. Here we show that the set of points of differentiability
of Lipschitz functions inside such sets may be surprisingly tiny: we construct a Gs set
E C R? containing a dense set of lines for which there is a pair of real-valued Lipschitz
functions on R? having no common point of differentiability in E, and there is a real-
valued Lipschitz function on R? whose set of points of differentiability in E is uniformly
purely unrectifiable.

1. Introduction and results

One of the important results of Lebesgue tells us that Lipschitz functions on the real line
are differentiable almost everywhere. This result is remarkably sharp: it is not difficult to
see that for every Lebesgue null set E on the real line there is a real-valued Lipschitz func-
tion which is nondifferentiable at any point of E. The higher-dimensional extension of
Lebesgue’s result, due to Rademacher, says that Lipschitz functions on R" are also differ-
entiable almost everywhere. Here, however, the sharpness of Lebesgue’s theorem seems
to be lost, as there are null sets in R? in which every real-valued Lipschitz function has
a point of differentiability. A plethora of such examples may be constructed using the
following statement of [6], where it is proved not only in the plane, but in every Banach
space with a smooth norm. Recall that a set is G if it is an intersection of a sequence of
open sets.

THEOREM 1.1. Suppose that E is a Gy subset of R* having the property that for any two
pointsu,v € R? and for any € > 0 thereis a Lipschitz y : [0,1] — R? such that [|[y(0) — ul| <,
ly(1) —vll <e fol ly'(t) — (v —w)ll < & and uf{t € [0,1] : y(t) & E} < &. Then every real-
valued Lipschitz function defined on a nonempty open subset of the plane is differentiable at
some point of E.

The most well-known examples of sets E satisfying the condition of Theorem 1.1
are constructed by requiring that the curves y be lines and that the Lebesgue measure
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puit € [0,1] : y(t) & E} be not only small, but the set is in fact empty. They are given by
the formula

E= () UB(Li01), (1.1)

n=lk=n

where B(S,0) denotes the set {z: dist(z,S) < o} and Ly is a sequence of lines in R? which
is dense in the space of lines; the latter condition means that for any u,v € R? and ¢ >0
there is k such that both u and v are within distance ¢ of L. The set E has measure zero if
Slro1 0k < o0 and the set of lines contained in E is always dense in the space of lines. This
may be seen by noting that the sets {(u,v) € R2 X R?:u# v,[u+n(u—v),v+n(v—u)] C
U=, B(Lk,0k)} are open and dense in R* and for any (u,v) in their intersection (which is
dense in R* by the Baire category theorem) the line passing through u,v lies in E.

Here we show that the set of points of differentiability of real-valued Lipschitz func-
tions inside a particular set E of the form described in (1.1), although nonempty by
Theorem 1.1, may still be extremely small.

Our first example will give a pair of real-valued Lipschitz functions on R? with no
common points of differentiability in E; in other words, we construct a Lipschitz function
f: R? = R? which is differentiable at no point of E. The example will even provide a
function which is “uniformly nondifferentiable on E” in the sense that the quantity

e*(f,z) = limsup sup {||f () + f(v) = 2f ((u+v)/2) || : v € B(z,7)}

r—0+ r

(1.2)

is, on E, bounded away from zero. In this connection, recall that the only known ana-
logues of Theorem 1.1 for vector-valued functions do not show differentiability, but the
so-called e-differentiability. (See [3, 4] where the emphasis is on the infinite-dimensional
case and [2] for a considerably more precise result in the finite-dimensional case. Here
we ignore the results of [5] because they are purely infinite dimensional.) The concept of
e-differentiability measures the nondifferentiability of f : R™ — R” by the quantity

e(f,z) = 1nfhmsup p{||f(u)—f(z)—M(u—z)||:uEB(z,r)}) (1.3)

r—0+ r

where the infimum is over the set of n X m matrices. An e-differentiability result for a
set E and a function f would say that E contain points with &(f,z) arbitrarily small;
this is (considerably) stronger than requiring that the set E contain points with ¢*(f,z)
arbitrarily small. Our example therefore shows that e-differentiability results for vector-
valued functions cannot be extended to all sets for which we have full differentiability
results for real-valued functions.

Our second example will provide a real-valued Lipschitz function on R? whose set of
differentiability points inside E is small in the sense of rectifiability. Recall that a subset
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N of R? is called purely unrectifiable if it meets every rectifiable curve in a set of one-
dimensional measure zero. A somewhat stronger notion of uniform pure unrectifiability
is defined by requiring the existence of an # > 0 such that for every segment I of the unit
circle of length # and for every € > 0 there is an open set G containing N with the prop-
erty that u(y 1(G)) < ¢ for every Lipschitz y : [0,1] — R? such that y’(#) € I for almost
every t. Although these are basic concepts, not much appears to be known about them.
In particular, it is not known whether for Gs sets the notions of pure and uniform pure
unrectifiability coincide or not. Some information will eventually be found in [1]: an
equivalent definition of uniform pure unrectifiability is obtained by fixing the # as any
number less than 7, and for us the most relevant point is that uniform pure unrectifiabil-
ity characterises the sets N for which there is a real-valued Lipschitz function having no
directional derivative at any point of N. Using this result, we could have easily obtained
our first example from the second; we have not done it partly because the second exam-
ple is considerably harder but mainly because in this way we would not obtain a uniform
estimate of nondifferentiability of the pair of functions. We explain the reasoning behind
this after stating our result.

Tueorem 1.2. There is a Gy subset E of R? containing a dense set of lines for which we can
construct
(i) a Lipschitz function f : R? — R? which is differentiable at no point of E, and which
even satisfies that, for a fixed € >0, f is not e-differentiable at any point of E,
(ii) a real-valued Lipschitz function on R* whose set of points of differentiability in E is
uniformly purely unrectifiable.

As we have already pointed out, if we take the function, say k, from (ii) and use the re-
sult from [1] to find a real-valued Lipschitz function g on R? which is nondifferentiable at
every point of the uniformly purely unrectifiable set N of the points of differentiability of
hin E, the pair (g,h) will provide an example satisfying the first part of (i). However, this
would not easily provide an example of an f : R?> — R? that is not e-differentiable on E,
since for every € > 0 the set of points z € E at which e(h, z) < e must be of positive measure
on some lines lying in E. (This is explained in [6] and is behind the e-differentiability re-
sults alluded to above.) As we do not have any control of the behaviour of g at most
of these points, the proof of e-nondifferentiability of (g,/4) would require further argu-
ments.

Yet another curious difference between the one- and two-dimensional situation arises
in this connection. To explain it, recall (a special case of) the result of Zahorski [7] that
for every Gs set N C R of measure zero there is y : R — R with Lip(y) < 1, which is
differentiable at every point of R \ N, and at the points of N it satisfies

lirnsupM =1, lirninfM =—1 (1.4)
y=x y—=x yox y—=x

This result may be used to show that the set of points of differentiability of a real-valued
Lipschitz function A that lie in a set E satisfying the assumptions of Theorem 1.1 cannot
be too small: its Hausdorff (one-dimensional) measure must be positive, since otherwise
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it would project to a null set on the x-axis and a suitable linear combination of h and
Zahorski’s function ¥ would provide a Lipschitz function differentiable at no points of E.
(A stronger version of Zahorski’s results is used in [6] to show that the one-dimensional
projections of the set of points of differentiability of a real-valued Lipschitz function that
lie in a set E satisfying the assumptions of Theorem 1.1 have a null complement.) Now, a
seemingly plausible version of Zahorski’s result in the plane may say that for every uni-
formly purely unrectifiable G5 set N C R? there is a Lipschitz y : R? — R that is differen-
tiable at every point of R? \ N and satisfies e(,z) > ¢ > 0, for all z € N. But this is false
whenever N contains the set of points of the set E from Theorem 1.2 at which the func-
tion h from (ii) is differentiable, because then a suitable linear combination of / and
would be differentiable at no points of E. Notice that there are such uniformly purely un-
rectifiable Gs sets N since every uniformly purely unrectifiable set is obviously contained
in a uniformly purely unrectifiable G set.

2. Constructions

We first describe the method of the choice of the lines Ly, Ly,... and the half-widths g >0
of the strips B(L,0x) which is common to both examples. In addition to L and o, we
will also construct functions g : R? — R? in the first example or ¢ : R? — R in the second
example, and a finite set of lines which we wish to avoid in the future choices of lines; we
denote by T the union of these “prohibited” lines. The function f for the first example
will be obtained as a composition of the gk, and the function A for the second example as
a sum of multiples of the ¢ by suitable functions.

The recursive construction will run as follows. We order a countable dense subset of
R* into a sequence (u, vk) and start the induction by choosing Ly and gy arbitrarily and
letting Ty = 0B(Lo,00). Whenever L;, o;, gj or ¢;, and T; have been defined for j < k, we
choose aline L notlying in T%_; which passes within 1/k of both ux and vk (and satisfying
another simple condition in the first example). Then we define gx by requirements that
make it small compared to the data we have so far and continue by defining the functions
gk or ¢k. These functions will be piecewise affine, and we choose a finite union of lines
Tk D Tk-1 U 0B(L, k) so that they are affine on every component of R? \ Tj; in the first
example, we also require that several other functions obtained by composition of gj, j <
k, be affine on every component of R? \ T. Although the particular requirements on the
various choices will be somewhat different in the two constructions; it is clear that we
can satisfy both of them at the same time and so get the same set E (which is, of course,
defined by (1.1)).

The notation we use is either mostly standard or easy to understand, such as (u,v)
for the scalar product of the vectors u and v. On two occasions, we find it convenient to
use the less standard notation for the cutoff function, which is defined by cutoff(x, y) =
min(max(x,—y),y) forx € Rand y = 0.

2.1. Proof of Theorem 1.2(i). For this example, we additionally require that the line
L do not pass through any meeting point of two different lines of Ti_;, and that it is
not perpendicular to any line of Tx_;. The choice of g is subject to the conditions that
Ok < pk-1/12 and that, for any z € Ly, B(z,0x) meets no more than one of the lines of
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which Ty_; consists. The function gi : R?> — R? will be defined by
gk(2) = z—2cutoff ({z,vk) — o, 0k) Vie> (2.1)

where v is a unit vector perpendicular to Ly and oy = (u,v¢) for u € Ly. Geometrically,
this definition says that, in the strip B(L,0k), gk is the reflection about Ly, and each of
the remaining half-planes is shifted perpendicularly to Ly so that each of the two lines
forming the boundary 0B(Ly,0x) of the strip is mapped onto the other one. Finally, Ty D
Tk-1 U 0B(L, ) is chosen so that all compositions gj o gj4j © - - - o g, where j <k, are
affine on every component of R? \ T.

For j < k, we let

fik=gjogi+1° - og-1, (2.2)

with the usual convention that the composition of an empty sequence of functions is the
identity. Noting that g is an (affine) isometry on each of the three regions into which the
plane is divided by 0B(Lx,0x), we see that f; x+) is an affine isometry on each component
of R2\ Ty.

Since [|gj(z) — z|l < 2p; for every z € R?, we have, for j <k <land u € R?,

-1

-1
||fkl(u) - ”H = Z Hgi(fiﬂ,l(”)) firr(u || < ZZQ, < 30k,
i=k i=k (23)

[ fik () = fia@] <[] fir () — ul| < 3px.

So the limits
fi = lim fix (2.4)
exist and, since Lip(g;) < 1 for each 7, we have Lip(f;) < 1. Moreover, for each j <k,

fi=fike fi = fikogo finr. (2.5)

We show that f = f; is the required function. For this, assume that z € E and consider
any k such that z € B(Lk,0k). Let u € Ly and vy, v, € 0B(Lg,0k), v1 # v2, lie on the line
through z perpendicular to Li. By the choice of gk, [v1,v2] may meet at most one line of
Tk-1, hence the interior of one of the segments [u,v;], [1,v,] does not cross any line of
Tx-1. Choose the notation so that it is [u,v;] and define v = u+2(v, — u). Then f is an
affine isometry on gk ([u,v]) = [u,v1] and hence by (2.3) and (2.5),

Hf(u)+f(1/)—2f(@)“

Z ’

Jocassr-5(22) - s

f ) + i) = 2 (96 ( M52 )| - 12010

= 20k — 120k+1 = 0k.
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Since the distance of the points u, v from z is not more than 3p, this means that e*(f,z) =
1/3.

2.2. Proof of Theorem 1.2(ii). Here we do not need any further conditions on the choice
of Ly, k = 1. Before choosing gx, we let Sx = Ly N Tx_1, denote by s the number of ele-
ments of Sx and choose 0 < & < 27%73/s,. We also choose a unit vector e parallel to
L and denote oy = (z, e,f) where z € Li; we use the notation ut = (—uy,u;) for u =
(u1,uz). We subject g to the conditions gx < 16 %=3sin(71/36), Ok < 0k-1/32, and gk <
27k dist(z, Ty—,) for z € B(Lk,0k) \ B(Sk, k). The last assumption implies

B(z,40x) N Tx1 =@ for z € B(Lk, k) \ B(Sk, 6% ). (2.7)
Finally, we define Tx D Ty—1 U 0B(Lk,0x) so that the function
¢k (z) = cutoff ((z,e{ ) — ax, min (gx,2 % dist (z, Tx-1))) (2.8)

is affine on each component of R? \ Ty.
We let

k—1
Cr= > 277 (4j+24); (2.9)
j=0

these constants will be used to control the Lipschitz constant of a sequence of functions
approximating the desired function h. We list here the inequalities involving §x and i in
a form that will be actually used:

> (38jsj +29jcsc<%)> <27k > 4g;< %k, > 3 l6g; <47k (2.10)

j=k j=k+1 j=k

We start our construction by defining four sequences of functions that describe various
aspects of the geometry of the strips B(Lx,0x). Each of them will have the property that
the kth function is constant on each component of R? \ U;?:l 0B(L;,0j).

(1) Let ko(z) = 0 and k,(2z) = min{k >k, 1(2) : z € B(Lk,0x)}; this formula is under-
stood to imply that k,(z) = w0 if z & Uk>kp,1(z) B(Lk,0k).

(2) Put oj(z) = (1) if kp(2) < j < kps1(2).

(3) Choose W Cc {z€ R?: ||z|| = 1} having five elements so that for every line L there is
w € W whose angle with L is no more than 72/9. We also pick wy € W and let wy(z) = wy.
If U is a component of B(L,ok) \ U?;ll 0B(Lj,p;) on which the angle between wy_,(2)
and Ly is bigger than 277/9 (notice that this angle does not depend on z € U, since wy_; is
constant on U), then we choose w € W whose angle with Ly is no more than 7/9 and let
wi(z) = w for z € U. In all other cases, we let wi(z) = wi_1(2).

(4) Put §(2) = 1/{exs1, wi(2)) if [{exs1, wk(2))| = 1/2 and (k. (z) = 0 otherwise.
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The functions hi approximating h will be defined as a combination of the functions
¢k defined in (2.8). Notice that ¢ is continuous on R?, affine on each component of
R\ Tr, 9k (2)] < o> ll@r(2) 1l < 1, and |lg;(2) | < 27k forz ¢ B(Lk,0x)- Note also that ¢
is zero on Tk_1, on the components of the complement of which both ox_;, and {;_; are
constant.

The coefficients of the required combination of the ¢, will depend on yet another
sequence my of integer-valued functions on R?; these functions will be constant on the
components of R? \ Ty and, similarly to the ¢, the functions h; approximating 4 will be
continuous on R? and affine on each such component. These functions are defined by
requiring that

(i) mo(z) = 0 and hy(z) = 0 for all z € R%;
(ii) hi(2) = b1 (2) + 27 Doy 1 (2) 81 (2) i (2)5
(iii) m(z) = mi-1(2) + 1 if z & Ty and ||k (2)[| > Cy (213
(iv) my(z) = my_1(2) in all other cases.
The function with a small set of points of differentiability is defined by

h(z) = > 271 @01 (2)1(2)pi(2) = hmhk(z) (2.11)

the series converges since |{x_1(z)| < 2 and so its terms are bounded by 2gk, where >; ok
converges.

Notice that my_; is constant on each component of R? \ Ti_; and that ¢y is zero on
Tk-1, 0 hy is continuous on R? and affine on each component of R? \ T. In particular,
the functions hy are Lipschitz. To show that & is Lipschitz as well, we show that

||h(2)|| < Cy, forevery z & T. (2.12)

This clearly holds for k = 0 and, if it holds for k — 1, then either ||k, (2)|| = Cy, , < Cyy, oF
my was defined in (iii), so my = my_; + 1 and [|h (2)[| < Cpy, +27™1" < Cpyy 141 = Copy.

Since the sequence C; is bounded, (2.12) implies that the Lipschitz constants of /i are
bounded by a constant independent of k and hence 4 is Lipschitz.

We need to show that the set of the points of differentiability of & in E is uniformly
purely unrectifiable. We choose 7 = /18 in the definition of uniform pure unrectifiabil-
ity, and let I be an arc of the unit circle of length 7/18. Denote by I; and I, the arcs of the
unit circle concentric with I of length 77/9 and 57/9, respectively. These angles fit with the
definition of wy: they are chosen so that the angle between any vectore € I} and w € I, is
no more than 77/3 and if the angle between some e € I, and w does not exceed 7/9, then
w € I and the angle between w and any e € I; does not exceed 27/9.

For n = 1,2,..., denote

Gi= U B(Lior) U JB(Skd),

k=n,xer ¢l k=n

H, = {z:supmk(z) >n+ 1}.
k

(2.13)
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These sets are open: for G, this is obvious and for H,, it follows by observing that the
functions my are lower semicontinuous. It is our intention to show that the sets G, U H,,
form the required open covers of the set of points of differentiability of / in E. For this
purpose, we fix n and start with proving the following statement.

Claim 2.1. Let z € R*\ G, and simplify the notation by writing k, for k,(z) and wy for
w(z). Then for any p such that k, > n,
(i) ex, € %I for g > p,
(ii) @k, (2) = (z,e,jq) — oy, forq > p,
(iii) wy € =1, for all k = k,,
and there is 7 > p such that
(iv) wi = wg, for k, < k <k,, and wx = wy, for k > k;,
(V) G, -1(2) = 1/{ex,, w,) for p < g <r,and ,~1(2) = 1/{ex,, wx,) for g >r.

~— —

The statement (i) follows immediately from z € B(Lx,,0k,) and z & G, and the state-
ment (ii) follows from z € B(Ly,,0x,) \ B(Sk,, %, ) since for such z we have g, < 27k dist(z,
Ti,-1). For the remaining statements, first notice that wy stays constant for k, 1 < k <k,
and that the angle between wy, and Lk, never exceeds 272/9. Hence, by (i) and the defi-
nition of I, wx, € I, for ¢ > p, and so wx € I, for all k > k, as claimed in (iii). The
statement (iv) is obvious by letting r = p if wy = wy, for all k > k,. If this is not the case,
take the least index after k), which must necessarily be of the form k;, for which wy, # w, .
Then wy = wy, for k, < k <k, and the definition of wy, gives that the angle between wy,
and Ly, does not exceed 71/9. Since by (i) ex, € +Ii, the angle between wy, and any e,
q = r, never exceeds 27/9. Hence, wi, = wy, for g > r and (iv) follows. From (i) and (iii),
we infer that the angle between ey, and wy, 1 = wy, did not exceed 7/3, and (v) follows
from (iv).

We now show that 4 is nondifferentiable at any point z € E \ (G, U Hy). Indeed, since
z € E, ky(z) < o for all p. So, since z & H,, there is an index p such that k, > n and
m = my,(z) = mj(z) for all j > k,. By Claim 2.1, wi(z) € I, for all k > k,(z), and
ek,(z) € *I1 for g > p. Consider any g > p and denote k = k,(z). Since the angle be-
tween wi_;(z) and Ly does not exceed n1/3, |{x_1(z)| = 1 and there are u € Ly and v €
0B(Lk,20x) so that v — u is a multiple of wx_1(z)* and z lies on the line segment [u,v];
moreover, ||v — ull < 4px. So, deducing from (2.7) that h_, is affine on B(z,40x) and
that ¢ (u) = 0 and @x(v) = @x((u+v)/2) and they are either both gx or both —gk, we
use that Xf:kﬂ li(u) +;(v) = 2¢0;(u+v)/2)| < Z;‘;kﬂ 40j < ok/4 to estimate |h(u) +
h(v) = 2h((u+v)/2)| = 27" (| (u) + @r(v) — 2k ((u +v)/2)| — 0k/2) = 27" 1ok, which
means that e*(h,z) > 27773 > 0.

It follows that the proof will be finished once we find ¢, — 0 (independent of y) so
that u(y~1(G, U H,)) < &,. Since G, U H,, is open, it suffices to verify this inequality for a
dense set of y (in the topology of uniform convergence), so we may and will assume that
y intersects each Ty in at most finitely many points and so all 4; are differentiable at y(t),
for almost every t € [0,1].

The estimate of the measure of y~!(G,) is straightforward. Since I has length 7/18, and
28sec(m/36) < 28sec(m/4) < 30, the y-preimage of any disk of radius ¢ is contained in an
interval of length at most 36 and, if ex & =1, the y-preimage of B(Lx,x) is contained in
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an interval of length at most 29y csc(77/36). Hence,

W G =S S ah Bes)+ S ul (Bllued))

k>n z€Sk k>n.e & +1I,

< Z (38k5k + 20k csc (%)) <2

(2.14)

To estimate u(y~'(H, \ G4)), we have to work a little bit more. Let 2, be the least o-
algebra of subsets of [0, 1] with respect to which the functions k; o y, 0 < g < p are mea-
surable. Then the conditional expectations 8, = E(y" | 2,) form an R?-valued martingale
such that ||, < 1.

For any k, the set B(Ly,0x) \ Uj<k 0B(Lj,0;) has at most 3k=1 components. Let P denote
one of these components. Then there is an index p so that k = k,(z) for all z € P. We show
that

J o [ Bo0e) i = H o (1),e )dt‘ < 601 (2.15)
y!
Since all k; oy, 0 < g < p are constant on y~!(P), so is f8,. Hence,

(2.16)

LI(P) | {Bp(0), ) |dt = ' Lm (Bp(t),ex )t |,

and the equality follows from the definition of conditional expectations. The inequality
is obvious if P does not meet y or if the angle between Ly and all vectors from I is at least
/6, since then y~!(P) is contained in an interval of length at most 4gx. When the angle
between L and some vector from I is less than 71/6, the function t — {(y(t),ex) is strictly
monotonic. Let a = inf{(z,e;) : z € P} and b = sup{(z,ex) : z € P}. Since P is an open
convex set, there are functions y~ and y* on (a,b) such that y~ is convex, y* is concave,
Yy~ <y, and 0P N {z:a < (z,ex) < b} is the union of the graphs of ¥~ and y* (in the
coordinate system e, ey ). By our assumption on y, 0P meets y only in a finite set, hence
y~L(P) is the union of finitely many intervals, say (a1,a>),(a3,a4),...,(a2d-1,a24), where
(y(ar),ex),{y(az),ex),... is strictly monotonic and for each 1 <i < d — 1 both points
y(ay;) and y(azis1) lie either on the graph of ¥~ or on the graph of y*. Since ¥~ is
convex and oscillates between aj — gx and ax + gk, the sum of (y(azit1) — y(azi),ep) =
v~ ({y(azie1)sex)) — v~ ({p(azi),ex)) over those i for which the first case occurs is at most
20k. Similarly, we obtain the same estimate of the sum of (y(azi1) — y(a2i),ep ) over those
i for which the second case occurs. Hence,

d
Z 6121 - azi—l)ae]i'>‘

i=1

(2.17)

< [{y(a) —y(a1),eg) | +

d-1
Z (y(azis1) — y(azi),ep) | < 60k,
i=1

and (2.15) is proved.
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For any fixed p, by summing (2.15) first over those components P of B(L,0x) \
Uj<k9B(Lj,0;) for which kj(z) = k on P, which gives no more than 3%~1 terms, and then
over k, which starts only from p, we get that

[

L [{Bo (D)€, ) | dE < > 35 60k <472, (2.18)
P k:p

where A, = {t: k,(y(t)) < oo}.
Hence, letting

Dy :={t:ky(y(t)) <o and | (By(t)sei (,0)) | >277} (2.19)
we conclude from the Markov inequality that
u(D,) <27P. (2.20)
For each v € I, we infer from y'(¢) € I C I; that 1/2 < (y’(t),v) < 1. Hence,

_ L Oyvydt
o (y'sv)dt

is a well-defined probability measure on [0, 1]. Since E({y’,v}|X,) = (Bp,v) and E({y’,
VJ_)'ZP) = (ﬁper_>)

(ﬁp)vL> ()
[E< B (y'v)

u'(A): (2.21)

Byt ) E(Y)[Zp) .
ZP) - (ﬁpﬂ’) - <5P’V >

(y,vt) >
=E({y,v")|Z —[E( v Z, ).
(()’ >| p) ()/’,V) <V ) p
Therefore, (B,,v*)/{Bp,v) is a real-valued martingale with respect to the measure y"
and filtration X,. Since both (B,,v*) and (f,,v) are in the interval [1/2,1], the martingale
is bounded by 2. From this, it follows that the L?(4¥) norm of the martingale is bounded
by 2, moreover,

(2.22)

(Bo,v*) : = _<ﬁ2p—1,vL> <[)’ZP’VL> 2 )
H <'BO’V> L2(w) p=1 <ﬁ2P*1:V> i <,82P,V> LZ(HV)_‘L (2'23)
Let
vy Bov)
ﬂp—go( 1)4 o) (2.24)

Then B3, is a 4’ martingale with respect to the o-algebras %5, ; with L*(4")-norm
bounded by 2. By Kolmogorov’s martingale inequality, u”{t : sup,, [B3, 1| > n} <4/ n.
Since the terms of the series defining f8 are bounded by 2, we conclude that sup,, [} | <
sup, |ﬁ§q_1| +2 and so u"{t: sup,, |/3;| >n+2} < 4/n* whenever v € I,. Since y < 2y,
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the Lebesgue measure of these sets is at most 8/n?. The same estimate holds also for
vy € —I,, since [3;" = [3; Hence, denoting

{t sup i -1)1 (Bov*) >n+2 forsomev e Wr\ib}, (2.25)
2 )
we have
u(B) < i—g (2.26)
We show that
#(yl(Hn\Gn) \ (Bu O%)) = 0. (2.27)
p=n

By (2.20) and (2.26), this will give u(y '(H, \ G,)) < 27" + 40/n?, and so finish the
proof.

To establish (2.27), suppose that t € (0,1) \ (B U U;‘;n D,) is such that z = y(t) € H, \
G, and all h; are differentiable at z and simplify the notation by denoting my(z) = my,
wi(z) = wi, and k,(z) = k,. We will need an estimate, for any k </, of

1
> 2701 (2)1(2)9(2)]|.

j=k+1

|[h)(z) — hi(2)]] = (2.28)

Let p be the least index such that k, > k and let g be the largest index such that k; < [.
Recall that [0j_1(2)| = 1, |{j-1(2)] <2, IIqJ}(z)II <l,andmj | = my forallk+1<j<IL
Hence, the norm of each term of the series is trivially estimated by 2~"*!. If z ¢ B(L},p;),
we also have IIqJ}(z) || <277, and so the contribution of the terms for which z ¢ B(Lj,0;)
is at most

1

)
> 2™ @) llej@)| <27 Y 27t < o7, (2.29)
j=k+1 j=k+1

Using this, the trivial estimate for j = k, and j = kg, the simple fact that ox () =
(—1)°*"!, and noting that the untreated indices j are of the form j = k, where p <s< g,
we get

1B (2) = h(2)|| <6- 27+ || > 27 (=1)" 1 (2) g (2)

p<s<q

Z 2 M1 (— 1)5‘1(1{571 (Z)q’l,cs(z) :

p<s<q

(2.30)

<2 Mty

A simple corollary of this is that my, < r for all . Indeed, since IIh;(r (2|l < Gy, forall r by
(2.12), we get from (2.30) with k = k, and I < k4, that ||h;(2)|| < Cy,, + 27 M t3 < Cing, +1
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for all k, < < ky11. By the definition of my, this gives m; < my, + 1 for all k, <[ < ky41;5 in
particular, my,,, < my, + 1. Since this holds for all 7, my, <r.

We now turn our attention to the estimate of the sum in (2.30) under the special as-
sumptions that for all p <s < g, wx, = wx, and my, = my, > n. Since k, > my, > n, Claim
2.1 shows that ¢ (z) = e; and (y,-1(2) = 1/(ex,,wk,). Hence, we wish to estimate the
norm of the vector

U=Upgi= > 27 (=11 G 1 (2) 9 (2)
p<s<q

ol (2.31)
_ Z Z—mkp(_l)sfl ks .
p<s<q <eks’ Wk, )
Since [(u*,wx,)| = Izp<s<q(—l)5‘12’mk1’| <27™» < 27" we will establish this by esti-

mating I(uL,wklp) |. For this, we switch from ey, to Ss(t); recall that by Claim 2.1, e, € =1,
wi, € =, y'(t) € I C I, therefore |{ex,wk,)| = 1/2, [{Bs(t) Wkp>| = |E({y’, W, M) =
172, IBs(t)1l = 1/2, and Bs(t)/11Bs(Ol € 1. We also have |(Bs(t),e;. ) <2 %sinces>p >

my, > nand so t & D, and ks(y(t)) < 0. Hence,
S t > i §) v s
BOL) (i) | GO0 |
(Bs(t),wr,)  (exwx,) (exo> W, ) (Bs(t), Wi, )
and we see from t ¢ B that
/3)5( )) k
—m, e S —s+2
p<s<q S p<s<q
<27 (2n+2) +2*P+2) (2.33)
<27"(2n+6).
Consequently,
[upgll <27"2n+7). (2.34)

After this digression, we are ready to finish the argument. Since my = 0, mjy; < m; + 1,
and sup;mj = n +2, there are indices jy and j; such that m;,_; = n, m; = n+1, for jo <
j<ji,and mj = n+2. Let ro and | be the least indices such that k,, > jo and k;, > ji.
We note that k,, > my,, = mj,—1 = n. Hence, Claim 2.1 implies that there is r, > ry so that
wi(z) = wg, (z) for k,0 < k < ky,, and wi(z) = wy,, (2) for k > k;,. Let 3 = min(ry,r2). It
follows that (2.34) can be used with p =1, and q =3 as well as with p =r; and g =1y,
and we get

||h;-l (z) - h}-o,l(z)|| < 27" |y ||+ 27 |ty || < 27" (404 24). (2.35)
Since mj,_; = n, tho (@)l = C, and so

||h}-1 (2)|| < Co+27"(4n+24) < Cyy1 = Cyy, . (2.36)
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But this means that n+2 = mj, = m; | = n+ 1, which is the contradiction we desired to
prove (2.27), finishing the proof of the theorem.
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