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We study the minimization problem f(x) — min, x € C, where f belongs to a complete
metric space Jl of convex functions and the set C is a countable intersection of a de-
creasing sequence of closed convex sets C; in a reflexive Banach space. Let & be the set
of all f € J for which the solutions of the minimization problem over the set C; con-
verge strongly as i — oo to the solution over the set C. In our recent work we show that
the set & contains an everywhere dense G; subset of JL. In this paper, we show that the
complement Jl \ & is not only of the first Baire category but also a o-porous set.

1. Introduction

Let X be a reflexive Banach space with the norm || - || and let
Co=(\Ci# D, (1.1)
i=1

where C;;; C C; for each i = 1,2,... and where each C; is a closed convex subset of X. We
study the minimization problem

f(x) — min, xe€ Cs, (1.2)

where f belongs to a complete metric space Jl of convex functions defined on C;. In [8]
we show that for a generic function f € Jl the solutions of the minimization problem
over the set C; converge strongly as i — oo to the solution over the set Ce.

When we say that a certain property holds for a generic element of a complete metric
space Y we mean that the set of points which have this property contains a G5 everywhere
dense subset of Y. A set G is said to belong to the class Gs if it can be expressed as a count-
able intersection of open sets. Such an approach, when a certain property is investigated
for the whole space Y, and not just for a single point in Y, has already been successfully
applied in many areas of analysis. We mention, for instance, the theory of dynamical sys-
tems [5, 13, 15], optimization [3, 7, 8, 9, 11, 12], variational analysis [1], approximation
theory [6], the calculus of variations [2, 4, 9, 18] and optimal control [19, 20, 21].
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In this paper, we study the set of all functions f € Jl for which the solutions of the
minimization problem over the sets C; converge strongly as i — oo to the solution of the
minimization problem over the set C.. We show that the complement of this set is not
only of the first Baire category but also a o-porous set.

We now recall the concept of porosity [5, 6, 7, 12].

Let (Y,d) be a complete metric space. We denote by By(y,r) the closed ball of center
y €Y and radius r > 0. A subset E C Y is called porous in (Y,d) if there exist & € (0,1]
and ry > 0 such that for each r € (0,7¢] and each y € Y there exists z € Y for which

Ba(z,ar) C Ba(y,r) \ E. (1.3)

Hence every ball under a certain size includes a smaller ball of fixed proportional size that
is contained in the complement of E.

Remark 1.1. In the above definition of porosity it is known that the point y can be as-
sumed to belong to E.

A subset of the space Y is called o-porous in (Y, d) if it is a countable union of porous
subsets in (Y, d).

Other notions of porosity have been used in the literature [16, 17]. We use the rather
strong notion which appears in [5, 6, 7, 12].

Since porous sets are nowhere dense, all o-porous sets are of the first category. That is,
each g-porous set can be expressed as a countable union of nowhere dense subsets. If Y
is a finite-dimensional Euclidean space, then all o-porous sets are of Lebesgue measure
zero. In fact, the class of g-porous sets in such a space is smaller than the class of sets
which have measure zero and are of the first category [16]. Furthermore every complete
metric space without isolated points contains a closed nowhere dense set which is not
g-porous [17].

To differentiate between porous and nowhere dense sets note that if E C Y is nowhere
dense, y € Y, and r > 0, then there is a point z € Y and a number s > 0 such that B4(z,s) C
Ba(y,r) \ E. If, however, E is also porous, then for small enough r we can choose s = ar,
where « € (0,1) is a constant which depends only on E.

2. The main result

We use the convention that co — 0o = 0 and co/o0 = 1. Let X be a reflexive Banach space
with the norm || - || and let

COO:ﬁc,»;A@, (2.1)

i=1

where Ci;; C C; for each i = 1,2,... and where each C; is a closed convex subset of X. Let
¢:Cy — R! satisfy

o(x) — oo as |lx]| — oo. (2.2)
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Denote by .l the set of all convex lower semicontinuous functions f : C; — R' U {0}
which are not identically infinity on C. and satisfy

f(x) =z e(x) VxeC. (2.3)
For each f € Jl and each nonempty set C C C; set
inf(f;C) = inf { f(x) | x € C}. (2.4)

It is well known that for each f € Jl and each i € {1,2,...} U {0}, the following mini-
mization problem:

(Pif) f(x) = min, x € C;
has a solution. Denote by Jl, the set of all finite-valued functions f € Jl and by .l the
set of all finite-valued continuous functions f € Jl. Next we endow the set Jl with a
metric d. For each f, g € Jl and each m € N, we first set

dm(f,g) =sup{| f(x) —g(x)| :x € C; and ||x|| < m} (2.5)

and then define
d(f.g) = > 27" du(f.0) (du(fog)+1) '] (2.6)
m=1

(see the convention at the start of this section). We adopt the convention that the supre-
mum of the empty set is zero. Clearly (Jl,d) is a complete metric space. It is also not
difficult to see that the collection of sets

E(m,8) ={(f,g) e M x| |f(x)—g(x)| <6 foreach x € C; satisfying ||x|| < m},
(2.7)

where m € N and § > 0, is a base for the uniformity generated by the metric d. Evidently
My and M, are closed subsets of the metric space (Jl,d). In the sequel we assign to all
these spaces the same metric d.

In [8] for a function f € M, we studied the convergence of solutions to the problem

(Pif ) for each i = 1,2,... to a solution of the problem (Pofo). If X is a Hilbert space with
inner product (-, -) and

flx)={(xx) forxeX, (2.8)

then this convergence property was established by Semple [14]. A similar result was also
obtained for certain Banach spaces and the distance function by Israel Jr. and Reich [10].
In [8] we showed that the convergence property holds for most functions f € Jil,. More
precisely, we considered the metric space (M,,d) with

ox)=allxll —a, forxeC, (2.9)

where a; and a, are positive numbers, and showed that there exists a subset of .il, which
is a countable intersection of open everywhere dense sets such that for each function
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belonging to this subset the convergence property holds. Note that this result is true for
reflexive Banach spaces but not necessarily for nonreflexive Banach spaces. For more in-
formation consider [8, Examples 1 and 2].

In this paper for the spaces JL, Jil,, and M, we show that the complements of subsets
of functions which have the convergence property are not only of the first Baire category
but are also o-porous sets. We will establish the following result.

THEOREM 2.1. Let A be either M, My, or M,. There exists a set F C A such that the com-
plement A\ F is o-porous in (sd,d) and such that for each f € &F the following properties
hold.
(Py) There exists a unique point xy € Co such that f(xs) = inf(f;Cs).
(Py) For each i =1,2,..., let x; € C; with f(x;) = inf(f;C;). Then [lx; — x¢|l — 0 as
i— oo,
(P3) For each € > 0 there exist a neighborhood U of f in (d,d), a number § >0, and a
natural number p such that for each g € U, eachi € {p,p+1,...} U{oo}, and each
y € C; satisfying

g(y) <inf(g;C;) +6, (2.10)
the relation ||y — x| < € also holds.

3. Auxiliary results
We begin with a lemma.

LemMma 3.1. Let f € M and § > 0. Choose m = m(f) € N so that
[z€ Crand ¢(z) <inf (f;Cx) +1] = llzll <m (3.1)

and define U(m,8) = {g € M | (f,g) € E(m,08)}. Then for each i € {1,2,...} U {oo} and
each g € U(m,?),

inf (g;C;) <inf (f3C;) + 6. (3.2)
Proof of Lemma 3.1. Letie {1,2,...} U {co} and z € C; with f(z) <inf(f;C;) + 1. Since

C; c C; and ¢(z) < f(z) <inf(f,C;) +1 < inf(f,Cs) + 1 it follows that ||z]| < m and
hence that | f(z) — g(z)| < 8. Therefore for each i € {1,2,...} U {o0},

inf (¢;C;) <inf {g(z) | z € C;and f(z) <inf (f;C;) +1}
<inf{f(2)+8|z€ C;and f(z) <inf (f;C;) +1}
<inf{f(z)|z€ Cand f(z) <inf (f;C;) +1} +0 -3
<inf (f;C)) +9. O

The next proposition introduces a useful property.
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ProrosiTION 3.2. Let f € JM. Suppose there exists a unique point xy € Co such that
f(xf) = inf(f;Cs) and suppose that the following property holds.

(P4) For each € >0 there exist § = §(€) >0 and p = p(€) € N such that for each i €
{pp+1,...} Uieo}andeach y € C;satisfying f(y) < inf(f;C;) + 8 the inequality
ly —x¢ll < € is valid.

Then properties (P1), (P,), and (Ps) also hold.

Proof of Proposition 3.2. Property (P;) holds by virtue of the first assumption. For each
i=1,2,..., we choose x; € C; with f(x;) = inf(f;C;). The truth of property (P4) clearly
implies the truth of (P,). We will show that property (P3) also holds. Choose € > 0. By
property (P4) there exist § € (0,1/2) and p € N such that if

ie{p,p+1,...} U{e}, yeC, f(y)=<inf(f;C)+36, (3.4)

then ||y — x¢[| < €. Choose m = m(f) € N and define U = U(m,d) as in Lemma 3.1. Let
ie{p,p+1,...} U{oo} and g € U. Assume that z € C; with g(z) < inf(g;C;) + §. From
Lemma 3.1 it follows that

¢(z) <g(z) <inf (g;C;) + 8 <inf (f3C) +28 <inf (f5Cx) +1 (3.5)
and hence ||z|| < mand | f(z) — g(z)| < 4. Since
f(z) <g(z)+08 <inf (g;C;) +28 <inf (f5C;) +36 (3.6)

it follows that ||z — x7|| < €. Hence property (P3) is also true. O

LemmMa 3.3. Let f € M. Then

liminf (f;C;) = inf (f;Cx). (3.7)
Lemma 3.3 is similar to [8, Lemma 2.1]. The proof is also similar and is omitted.

4. Proof of the main result

It is convenient to split the proof into several smaller parts. We use the notation % to
denote either JL, JAly, or Jl,.

LemMa 4.1. For each n € N let %, denote the set of all f € s with the following property.
(Q1) There exist x, € Cw, 0, >0, and p, € N such that for i € {py, py+1,...} U{oo}
and each y € C; with f(y) <inf(f;C;) + 8, the inequality ||y — x, || < 1/n is valid.
If f € F =(,_ Fy, then properties (P1), (P), and (P3) all hold.

Proof of Lemma 4.1. Letxy € Cy satisfy f(xy) = inf(f;Ce). By property (Q;) with i = oo
and y = xy we know that

(4.1)

S | =

|l = xal| <
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for all n € N. Hence xy = lim,, . x,,. Therefore xy is the unique minimizer of f on Ce.
Let € >0 and n € N be such that n > 2/€. For each i € {p,, p, +1,...} U {c0} and each
y € C;with f(y) <inf(f;C;)+ 0y, it follows from property (Q, ) that

1
||y—xn||S;- (4.2)

Hence ||y — x7|l < €. Thus property (Py) is valid and hence also properties (P), (P3), and
(P3). O

Remark 4.2. To complete the proof of Theorem 2.1, we need to show that o \ & is o-
porous in (4,d). Since A\ F = U, (4 \ F,) it is sufficient to show that the set o4 \ F,
is o-porous in (4, d) for any n € N. For each m € N denote by E,, the subset of all f € o
with the following property.

(Q2) If x € C; and ¢(x) <inf(f;Cx) + 1, then [Ix|| < m.

Since Us,_ By = A and A\ F,, = U,_ (Em \ F,) it is sufficient to show that for each
m,n € N the set E,,, \ &, is porous in (4, d).

LemmA 4.3. Let m € N and suppose f € Ey,. Let x; € Co with f(xy) = inf(f;Cs). If
fy(x) = f(x) +yllx — x| (4.3)
is defined for each y >0 and all x € Cy, then f, € A and d(f,, f) < y.
Proof of Lemma 4.3. Clearly f, € . We will estimate d( f,, f). Since
¢(xf) < f(xf) =inf (f;Cs) (4.4)
it follows from property (Q,) that [[x|| < m. For each k = 1,2,... we have

di(fy f) =sup {| fy(x) = f(x)| | x € C; and ||x|| <k}
= sup {y||x —x¢|| | x € C; and ||x[| <k}

4.5
< ysup {lIxll +||xf|| | x € C and |Ix|| <k} (4:5)
<y(m+k)
and hence
d(f,nf) Zz Ky(m+k) (y(m+k)+1) 1<yzz k= (4.6)
O

LEMMA 4.4. Let m,n € N. Choose a real number r with 0 < r < 1 and choose real num-
bersy = y(r) = (1 —1/2"3)r and 6 = O(r,m,n) = r/(2""*n). If f € E,, and g € A with
d(g, fy) <0, theng € F,andd(g,f) <r.

Proof of Lemma 4.4. Let f € E,, g € 9, and d(g, f,) < 0. Then by elementary algebra
we can show that d,(g, f,) < 2™10. If x € C; and ¢(x) < inf(f;C;) + 1, then ¢(x) <
inf(f;Cs) + 1 and since f € E,, it follows that [|x|| < m. Hence

|g(x) = fy(x)| <2™6. (4.7)
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Note also that if y € C; and f,(y) < inf(f,;C;) + 1, then ¢(y) < f,(y) <inf(f,;C;) +

1 <inf(f,;Cs) + 1 and since inf(f,;Cs) = f,(xf) = f(xf) = inf(f;Cs) it follows that
¢(y) <inf(f;Cx) + 1. Since f € E,, we deduce that || y|| < m and hence also that

1)~ /)| =26, (4.8)
Since this holds for any such y, we obtain
inf (g;C;) < inf (f,;C;) +2"16. (4.9)

Assume that z € C; and g(z) < inf(g;C;) + 2™*10 then ¢(z) < g(z) < inf(g;C;) +
2mHlg < inf(f);C;) +2m+20 < inf(f);Co) +1 =inf(f;Cs) + 1. Hence ||z|| < m and

|g(2) - f,(2) | <2™"'6. (4.10)

We can now deduce that f,(z) < g(z) +2"16 < inf(g; C;) + 220 < inf(f,;C;) +3.2"*10

<inf(f,Cs)+3.2m*10. If we choose p so large that inf( f;C;) > inf(f,Cs) — 2™*10 when
ie{p,p+1,...} U{co},then

fy(2) <inf (f,C;) +2™70 < f(2) +2"6 (4.11)

and hence

. (4.12)

S [ =

||z —xg]] <2 = <

= |

Since z € C;and g(z) < inf(g;C;) +2™ @ fori € {p,p+1,...} U {oo} implies that ||z —
x|l < 1/n, we have shown that ¢ € %,,. Finally we note that d(g, f) < d(g, f,) +d(f,, f) <
O+y<r. O

We can now complete the proof of the main result.

Proof of Theorem 2.1. In Remark 4.2, we observed that the proof of Theorem 2.1 would
be complete if we could show that for each m,n € N the set E,;, \ %, is porous in (A, d).
Let f € E;, \ F,. Choose any real number r with 0 < r < 1 and choose real numbers
y =y(r) and 0 = 6(r,m,n) as in Lemma 4.4. If we define « = a(m, n) by the formula

o= ﬁ, (4.13)

then 6 = ar and for each r with 0 < r < 1 we can see from Lemma 4.4 that
{gedld(g fy) <arfclgedld(gf) <rlnF,. (4.14)

Hence each sufficiently small ball B,4(f,r) C (s,d) centred at a point f € E,, \ &, con-
tains a smaller ball B4( f,,ar) of fixed proportional radius centred at the point f, and lying
entirely within &,. Hence E,, \ %/, is porous in (4, d). This completes the proof. O
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