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The main aim of this paper is to prove that every non-σ-lower porous Suslin set in a
topologically complete metric space contains a closed non-σ-lower porous subset. In fact,
we prove a general result of this type on “abstract porosities.” This general theorem is also
applied to ball small sets in Hilbert spaces and to σ-cone-supported sets in separable
Banach spaces.

1. Introduction

This paper is a continuation of the work done in [9]. We are interested in the following
question within the context of σ-ideals of σ-porous type.

Let X be a metric space and let � be a σ-ideal of subsets of X . Let S⊂ X be a Suslin set
with S /∈�. Does there exist a closed set F ⊂ S which is not in �?

The answer is positive provided that X is locally compact and � is a σ-ideal of σ-
P-porous sets, where P is a porosity-like relation satisfying some additional conditions
(see the definitions below, and for the precise statement, see [9]). In the case of the σ-
ideal of ordinary (i.e., upper) σ-porous sets, which satisfies the assumptions of the above-
mentioned theorem in any locally compact metric space, even more is true: X can be any
topologically complete metric space (see [8]). The proofs are not easy; they use either
some amount of descriptive set theory (see [9]) or a quite complicated construction (see
[8]).

In this paper, we deal with σ-ideals of σ-P-porous sets again, but these σ-ideals are
supposed to be generated by closed P-porous sets, that is, every σ-P-porous set is covered
by countably many closed P-porous sets. Note that this property does not hold for ordi-
nary σ-porous sets but does hold for σ-lower porous sets. Although we will also work in
nonseparable spaces, it turns out that the situation is much simpler than in [9]. Under
a simple additional condition on the porosity-like relation P, we prove that every such
σ-ideal has the property that every non-σ-P-porous Suslin subset of a topologically com-
plete metric space X contains a closed non-σ-P-porous subset. As the main tool, we use
a nonseparable version of Solecki’s theorem proved in [2].

Copyright © 2005 Hindawi Publishing Corporation
Abstract and Applied Analysis 2005:3 (2005) 221–227
DOI: 10.1155/AAA.2005.221

http://dx.doi.org/10.1155/S1085337504406022


222 Inscribing closed non-σ-lower porous sets

The general result will be applied to the σ-ideals of σ-lower porous sets, of σ-cone-
supported sets, and of ball small sets.

2. The general result

We start with notations and definitions. Let (X ,ρ) be a metric space. Then the open ball
with center x ∈ X and radius r > 0 is denoted by B(x,r). We will use the following ter-
minology from [7, 9]. We say that R is a point-set relation on X if it is a relation between
points of X and subsets of X . Thus a point-set relation R is a subset of X × 2X . The sym-
bol R(x,A), where x ∈ X and A⊂ X , means that (x,A) ∈ R, that is, R holds for the pair
(x,A).

Let R be a point-set relation on X . If A ⊂ X and B ⊂ X , then R(A,B)
def⇐⇒∀a ∈ A :

R(a,B). The point-set relation ¬R on X is defined by (¬R)(x,A)
def⇐⇒¬(R(x,A)).

We consider the following properties of a point-set relation R on X .
(A1) If A⊂ B ⊂ X , x ∈ X , and R(x,B), then R(x,A).
(A2) R(x,A) if and only if there is r > 0 such that R(x,A∩B(x,r)).
(A3) R(x,A) if and only if R(x,A).
We say that a point-set relation P on X is a porosity-like relation if P satisfies the

“axioms” (A1)–(A3).
Let P be a porosity-like relation on X . We say that A⊂ X is

(i) P-porous at x ∈ X if P(x,A),
(ii) P-porous if P(x,A) for every x ∈ A,

(iii) σ-P-porous if A is a countable union of P-porous sets.
If P is a porosity-like relation on X and A⊂ X , then the set of all points of A, at which

A is not P-porous, is denoted by N(P,A).
The proof of our result is based on the following nonseparable version (see [2, Corol-

lary 3.6 and Remark 3.7]) of Solecki’s theorem (see [3]). We need the following definitions
to formulate it.

Let � be a system of subsets of a metric space X . We say that � is weakly locally deter-
mined if A⊂ X belongs to � whenever for each x ∈ X there exists a, not necessarily open,
neighbourhood U of x such that U ∩A∈�.

Let � be a family of closed subsets of a metric space X . We say that � is hereditary if
for all sets F1, F2 with F1 ⊂ F2, F2 ∈�, we have F1 ∈�.

Proposition 2.1 (see [2]). Let X be a topologically complete metric space. Let � be a
hereditary weakly locally determined system of closed sets. Then each Suslin subset of X is
either covered by countably many elements of � or else contains a Gδ set H such that H ∩G
cannot be covered by countably many elements of �, whenever G is open and G∩H �= ∅.

Definition 2.2. Let X be a metric space and let P be a porosity-like relation on X . It is said
that P has property (�) if the following condition is satisfied.

(�) If H ⊂ X , x ∈ H′, and H is not P-porous at x, then there exists J ⊂ H such that
J ′ = {x} and J is not P-porous at x.

The symbol H′ stands for the set of all points of accumulation of H .

Now we can formulate our abstract theorem.
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Theorem 2.3. Let X be a topologically complete metric space and let P be a porosity-like
relation on X such that P satisfies (�), and each σ-P-porous set is covered by countably
many closed P-porous sets. If S⊂ X is a Suslin non-σ-P-porous set, then there exists a closed
non-σ-P-porous set F ⊂ S.

The next lemma immediately follows by a Baire category argument.

Lemma 2.4. Let X and P be as in Theorem 2.3. Let F ⊂ X be a closed nonempty set such that
N(P,F) is dense in F. Then F is not σ-P-porous.

Proof of Theorem 2.3. We denote the σ-ideal of all σ-P-porous sets by �.
The system of all closed P-porous sets is clearly hereditary and weakly locally deter-

mined by (A1) and (A2). According to Proposition 2.1, we may and do assume that S is
a Gδ set and S∩G /∈ � for every open G ⊂ X intersecting S. If there is x ∈ S \ S′, then
{x} /∈ �. In this case, F := {x} can serve as the set for which we are looking. From now
on, we assume that S ⊂ S′. Let S =⋂∞n=1Gn, where {Gn}∞n=1 is a decreasing sequence of
open sets. We will construct a sequence {Fn}∞n=0 of closed sets and a decreasing sequence
{Hn}∞n=1 of open sets such that F0 =∅ and for every n∈N, we have

(a) ∅ �= Fn ⊂N(P,S),
(b) F′n = Fn−1,
(c) Fn ⊂Hn ⊂Hn ⊂Gn,
(d) (¬P)(Fn−1,Fn).

We proceed by induction over n. Since S /∈�, we can choose x ∈N(P,S). We put F1 =
{x}. We easily find an open set H1 such that x ∈ H1 and H1 ⊂ G1. The sets F1 and H1

satisfy (a)–(d) for n= 1.
Assume that we have constructed F1, . . . ,Fm and H1, . . . ,Hm such that (a)–(d) hold for

n = 1, . . . ,m. We find an open set Hm+1 with Fm ⊂ Hm+1 ⊂ Hm+1 ⊂ Gm+1 ∩Hm. The set
Fm \ F′m is discrete in X \ F′m, that is, for every y ∈ X \ F′m, there exists r > 0 such that
B(y,r)∩ (Fm \ F′m) contains at most one point. It is well known and easy to prove that,
for each z ∈ Fm \ F′m, we can choose rz > 0 such that � = (B(z,rz))z∈Fm\F′m is discrete in
X \ F′m, that is, for every y ∈ X \ F′m, there exists s > 0 such that, for at most one z ∈
Fm \F′m, B(y,s) intersects B(z,rz).

Since S∩G /∈� for every open G intersecting S, we have that N(P,S) is dense in S. Ac-
cording to this, (A3), and (a), we have Fm ⊂N(P,N(P,S)). Thus using the condition (�)
and (A2), we find for every z ∈ Fm \ F′m a set Jz such that Jz ⊂ B(z,rz)∩Hm+1 ∩N(P,S),
(¬P)(z, Jz), and J ′z = {z}.

We put Fm+1 = Fm∪
⋃{Jz; z ∈ Fm \ F′m}. Clearly, Fm+1 ⊂N(P,S) and Fm+1 ⊂Hm+1. It

is easy to see that F′m+1 = Fm; in particular, Fm+1 is closed.
Let x ∈ Fm. We distinguish two possibilities. If x ∈ F′m = Fm−1, then (¬P)(x,Fm) by the

induction hypothesis, and so (¬P)(x,Fm+1) by (A1). If x ∈ Fm \F′m, then (¬P)(x, Jx) and
we also have (¬P)(x,Fm+1). We get (¬P)(Fm,Fm+1). Thus the sets Fm+1 and Hm+1 satisfy
(a)–(d) for n=m+ 1 and the construction of our sequences is finished.

The desired set F is defined by F =⋃∞n=1Fn. Using (c) and the monotonicity of the
Hn’s, we get F ⊂ S. We have (¬P)(

⋃∞
n=1Fn,F) by (d). The set

⋃∞
n=1Fn is dense in F. Hence

F /∈�, by Lemma 2.4. �
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3. Applications

We will apply Theorem 2.3 to the σ-ideal of σ-lower porous sets (in a topologically com-
plete metric space) and to two of its subsystems: to the σ-ideal of σ-cone-supported sets
(in a separable Banach space) and to the σ-ideal of ball small sets (in an arbitrary Hilbert
space).

Note that σ-lower porous sets (called frequently simply “σ-porous sets” and some-
times “σ-very porous sets”) were applied in a number of articles on exceptional sets in
(sometimes also nonseparable) Banach spaces (cf. [6]). In [6], information on σ-cone-
supported and ball small sets can also be found.

To verify condition (�) in concrete cases, we will apply the following easy lemma.

Lemma 3.1. Let g : [0,∞)→ [0,∞) be a continuous increasing function with g(0)= 0. Let
(X ,ρ) be a metric space, H ⊂ X , and a ∈ H′. Then there exists J ⊂ H \ {a}, such that
J ′ = {a}, and for each x ∈H \ {a}, there exists x∗ ∈ J such that g(ρ(x,x∗)) < min(ρ(x,a),
ρ(x∗,a)).

Proof. Let M1 := {x ∈ X ; 1 ≤ ρ(x,a)} and Mn := {x ∈ X ; 1/n ≤ ρ(x,a) < 1/(n− 1)} for
n= 2,3, . . . . For each natural n, choose εn > 0 such that g(εn) < 1/n and in H ∩Mn, find a
maximal εn-discrete subset Dn (ρ(u,v)≥ εn for each u, v ∈Dn, u �= v). Put J :=⋃∞n=1Dn.
Clearly, J ⊂H \ {a} and J ′ = {a}. Let x ∈H \ {a} be given. Find n∈N with x ∈Mn. By
maximality of Dn, we can choose x∗ ∈Dn ⊂ J with ρ(x,x∗) < εn. Consequently,

g
(
ρ
(
x,x∗

))
< g
(
εn
)
<

1
n
≤min

(
ρ(x,a),ρ

(
x∗,a

))
. (3.1)

�

3.1. σ-lower porous sets

Definition 3.2. Let (X ,ρ) be a metric space. It is said that A⊂ X is lower porous at x ∈ X
if there exist c > 0 and r0 > 0 such that for every r ∈ (0,r0), there exists y ∈ B(x,r) with
B(y,cr) ⊂ B(x,r) \A. The corresponding porosity-like relation is denoted by Pl, and σ-
Pl-porous sets are called σ-lower porous.

It is a well known and an easy fact that the σ-ideal �l of all σ-lower porous sets is gen-
erated by closed Pl-porous sets (see, e.g., [6, Proposition 2.5]). The proof of the following
lemma is also easy.

Lemma 3.3. Let X be a metric space. Then Pl has property (�).

Proof. Let x ∈N(P,H)∩H′. Put g(h) :=√h (then h = o(g(h)), h→ 0+) and find J ⊂H
by Lemma 3.1. Then J ′ = {x}. We will prove (¬Pl)(x, J).

Suppose on the contrary that J is lower porous at x. Then there exist c > 0 and r0 > 0
such that for each 0 < r < r0, there exists y ∈ X with B(y,cr)⊂ B(x,r) \ J . We can clearly
choose r1 > 0 such that g(h) > 2h/c for each 0 < h < r1. Put r̃ :=min(r0,r1), c̃ := c/2, and
consider an arbitrary 0 < r < r̃. Choose y ∈ X such that B(y,cr)⊂ B(x,r) \ J . To obtain a
contradiction with x ∈N(Pl,H), it is sufficient to show that

B(y, c̃r)∩H =∅. (3.2)
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Suppose that it is not the case and choose z ∈ B(y, c̃r)∩H . By the choice of J , we can find
z∗ ∈ J such that g(ρ(z,z∗)) < ρ(z,x) < r < r1. Since c̃ < c, we have z �= z∗ and the defini-
tion of r1 gives g(ρ(z,z∗)) > 2ρ(z,z∗)/c. Consequently, ρ(z,z∗) < cr/2, which implies that
z∗ ∈ B(y,cr)∩ J . This is a contradiction which proves (3.2). �

Theorem 2.3 thus implies the following result.

Corollary 3.4. Let X be a topologically complete metric space and let S⊂ X be a Suslin set
which is not σ-lower porous. Then there exists a closed F ⊂ S which is not σ-lower porous.

Remark 3.5. We say that A ⊂ R is lower symmetrically porous at x ∈ R if there exist r0 >
0 and c > 0 such that for each 0 < r < r0, there exist h > 0 and t ≥ 0 such that h/r > c,
t + h≤ r, (x+ t,x+ t + h)∩A=∅, and (x− t− h,x− t)∩A=∅. The notions of a lower
symmetrically porous set and a σ-lower symmetrically porous set are defined in the obvious
way.

Proceeding quite similarly as above, we can easily obtain that each analytic set S ⊂ R
which is not σ-lower symmetrically porous contains a closed set which is not σ-lower sym-
metrically porous.

3.2. Cone-supported sets

Definition 3.6. If X is a Banach space, v ∈ X , ‖v‖ = 1, and 0 < c < 1, then define the cone
A(v,c) := ⋃λ>0 λ · B(v,c). Define the (clearly porosity-like) point-set relation Ps as fol-
lows: Ps(x,M) if there exist r > 0 and a cone A(v,c) such that M∩ (x+A(v,c))∩B(x,r)=
∅. Sets which are Ps-porous (σ-Ps-porous) are called cone supported (σ-cone supported).

If X is separable, it is easy to prove (see [4, Lemma 1], cf. [6]) that M ⊂ X is σ-cone
supported (i.e., σ-Ps-porous) if and only ifM can be covered by countably many Lipschitz
hypersurfaces. Since each Lipschitz hypersurface is clearly a closed Ps-porous set, every
σ-Ps-porous set is covered by countably many closed Ps-porous sets.

Lemma 3.7. Let X be a Banach space. Then Ps has property (�).

Proof. Let x ∈N(Ps,H)∩H′. Put g(h) := √h and find J ⊂H by Lemma 3.1. Then J ′ =
{x}. We will prove (¬Ps)(x, J). We can and will suppose that x = 0.

Suppose on the contrary that Ps(0, J). Then there exist v ∈ X , with ‖v‖ = 1, 1 > c > 0,
and r > 0 such that J ∩A(v,c)∩ B(0,r) =∅. We can suppose that r < c/4. To obtain a
contradiction with 0∈N(Ps,H), it is sufficient to show that

H ∩A
(
v,
c

2

)
∩B

(
0,
r

2

)
=∅. (3.3)

Suppose that this is not the case and choose z ∈H ∩A(v,c/2)∩B(0,r/2). By the choice
of J , we can find z∗ ∈ J such that ‖z − z∗‖ ≤ ‖z‖2 < min(r/2,c/4 · ‖z‖). Thus clearly
z∗ ∈ B(0,r). Choose λ > 0 with ‖λz− v‖ < c/2. Then

∥∥λz∗ − v
∥∥≤ c

2
+ λ
∥∥z− z∗

∥∥≤ c

2
+‖λz‖ · c

4
<
c

2
+
(

1 +
c

2

)
· c

4
< c, (3.4)

and thus z∗ ∈ A(v,c)∩B(0,r). This is a contradiction which proves (3.3). �
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Theorem 2.3 thus implies the following result.

Corollary 3.8. Let X be a separable Banach space and let S⊂ X be an analytic set which
cannot be covered by countably many Lipschitz hypersurfaces. Then there exists a closed set
F ⊂ S which cannot be covered by countably many Lipschitz hypersurfaces.

3.3. Ball small sets

Definition 3.9. Let X be a Banach space and let r > 0. It is said that A⊂ X is r-ball porous
at a point x ∈ A if for each ε ∈ (0,r), there exists y ∈ X such that ‖x− y‖ = r and B(y,r−
ε)∩A=∅. A set A⊂ X is called r-ball porous if it is r-ball porous at each x ∈ A. It is said
that A ⊂ X is ball small if it can be written in the form A =⋃∞n=1An, where each An is
rn-ball porous for some rn > 0.

Using the obvious fact that B(z,‖z− x‖− ε)⊂ B(y,ρ− ε) whenever ‖y− x‖ = ρ > 0, z
lies on the segment xy, and ‖z− x‖ > ε > 0, it is easy to verify the following facts.

(i) If A is r-ball porous at a and 0 < r∗ < r, then A is r∗-ball porous at a.
(ii) If A is r-ball porous, then A is r/2-ball porous.

For A⊂ X and x ∈ X , we will write Pb(x,A) if A is r-ball porous at x for some r > 0.
Using (i), it is easy to see that Pb is a porosity-like relation on X and that the σ-ideal

�b of all ball small sets coincides with the system of all σ-Pb-porous sets.
By (ii), we easily obtain that �b is generated by closed Pb-porous sets.
The proof of the following lemma is not difficult but slightly technical.

Lemma 3.10. Let X be a Hilbert space. Then Pb has property (�).

Proof (Sketch). First, observe that an elementary (two-dimensional) computation gives
the following fact.

(F) If b, v, x, x∗ are points of X , ‖v‖ = 1, 0 < ρ < 1/10, x ∈ B(b + ρ/2 · v,ρ/2), and
‖x∗ − x‖ ≤ 4‖b− x‖2, then x∗ ∈ B(b+ ρv,ρ).

Now let H ⊂ X and a∈N(Pb,H)∩H′. Put g(h) :=√h and find J ⊂H by Lemma 3.1.
Then J ′ = {a}. We will prove (¬Pb)(a, J). Suppose to the contrary that J is r-ball porous
at a for some r > 0. By (i), we can suppose that r < 1/10. Then for each 0 < ε < r/4, there
exists v ∈ X with ‖v‖ = 1 such that B(a+ rv,r− ε)∩ J =∅. It is sufficient to prove that

B
(
a+

r

2
· v,

r

2
− 2ε

)
∩H =∅. (3.5)

Then H is r/2-ball porous at a, a contradiction.
To prove (3.5), suppose on the contrary that there exists x ∈ B(a+ r/2 · v,r/2− 2ε)∩

H . By the choice of J , there exists x∗ ∈ J such that ‖x − x∗‖ < ‖x − a‖2. Denote b :=
a+ 2εv and distinguish two cases.

If ‖x− b‖ < 2ε, then ‖x− a‖ < 4ε and therefore ‖x− x∗‖ < 16ε2 < ε (since ε < r/4 <
1/40). Consequently, x∗ ∈ B(a+ r/2 · v,r/2− ε)⊂ B(a+ rv,r− ε), a contradiction.

If ‖x− b‖ ≥ 2ε, then ‖x− a‖ ≤ 2ε + ‖x− b‖ ≤ 2‖x− b‖ and thus ‖x− x∗‖ ≤ 4‖x−
b‖2. Put ρ := r− 4ε. Since x ∈ B(b+ ρ/2 · v,ρ/2)= B(a+ r/2 · v,r/2− 2ε), fact (F) implies
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that

x∗ ∈ B(b+ ρv,ρ)= B
(
a+ (r− 2ε)v,r− 4ε

)⊂ B(a+ rv,r− ε), (3.6)

a contradiction. �

Corollary 3.11. Let X be a Hilbert space and let S ⊂ X be a Suslin set which is not ball
small. Then there exists a closed set F ⊂ S which is not ball small.

Finally, note that Theorem 2.3 can be easily applied also to the system of σ-cone porous
sets in an arbitrary Banach space (by a cone porous set, we mean a set which is α-cone
porous for some α > 0; see [5] for the definition and [1] for some properties of α-cone
porous sets in Hilbert spaces). On the other hand, it seems that Theorem 2.3 can be ap-
plied neither to the (more interesting) related system of cone small sets (cf. [6]) nor to
the system of σ-cone supported sets in nonseparable Banach spaces.
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Luděk Zajı́ček: Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75
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