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We are concerned with the multiplicity of solutions of the following singularly perturbed
semilinear elliptic equations in bounded domains Q:—&?Au+a(-)u = ululP~2in Q, u >0
in Q, u = 0 on dQ). The main purpose of this paper is to discuss the relationship between
the multiplicity of solutions and the profile of a(-) from the variational point of view. It
is shown that if a has a “peak” in Q), then (P) has at least three solutions for sufficiently
small e.

1. Main theorem

We are concerned with the multiplicity of solutions for the following singularly perturbed
semilinear elliptic equations:

(P)e
—&Au+a(u=ululP? inQ,
u>0 inQ, (1.1)
u=0 onoQ,

where e € R*, Q C RN (N > 1) is a bounded domain, p € (2,2*) (2* denotes the critical
exponent of the Sobolev embedding H!(Q) — L?(Q) given by 2* = 2N/(N —2) if N > 3
and 2* = +o0 if N = 1,2). The main purpose of this paper is to discuss the relationship
between the multiplicity of solutions of (P), and the shape of the profile of a(x) when ¢ is
small. In order to characterize the topological feature of a(x), we introduce the following

(A)k rezop : alx) € C(Q) N LN2(Q) and the following conditions (i), (ii), (iii), and
(iv) are satisfied:
(i) oK is homotopically equivalent to S¥~!, B(0,p) = {x € RN;|x| < p} C K and
(0K), = {x € RN | dist(x,0K) < r} C Q,
(ii) infqa(x) = ¢,
(iii) maxma(x) >G,
(iv) max ), a(x) <c+d<c.
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Roughly speaking, the condition above implies that a(x) has a “peak” in K (condition
(iii)), the value of a(x) on JK is uniformly less than the level of the peak (condition (iv)),
and 0K forms a set which surrounds the peak and is homotopically equivalent to SN~!
(condition (i)).

Then our main result reads as follows.

TaEOREM 1.1. For any positive numbers p, c, ¢ with ¢ <<, there exists a (sufficiently small)

,,,, o for some
r >0 and a closed subset K of Q, then there exists a positive number &) so that (P), admits
at least three solutions for all € € (0,&].

We give some examples of the function a(-) satisfying the assumption of Theorem 1.1.

Example 1.2. Let Q be a bounded domain which contains the closure of B(0,R). Let
a € C(Q) and assume that there exist some positive numbers p, ¢, ¢ with ¢ < ¢ and a
closed subset L of B(0,R) such that

B(0,p) C L,
a(-)=¢ inQ\L, (1.2)
¢=mina(-) <¢< minaf(-).
L B(0,p)
Take R; (< R) and r > 0 such that
LcB(0,R,),  (3B(0,Ry)), C B(O,R)\L. (1.3)

1565651

Example 1.3. Let Q) be a bounded domain containing B(0,p) for some p > 0 with smooth
boundary 9Q which is homeomorphic to SV~!. Let a € C(Q) and assume that there exist
some positive numbers ¢, ¢ with ¢ < ¢ such that

c=infa(-) <¢< maxa(-),
“ B0#) (1.4)

c=a(x) Vxeod.
Then it is easy to see that for any small § > 0, there exists a number r > 0 such that

9(Q);, is homeomorphic to SV 1,

B(0,p) C ()3 (1.5)

max a(x)<c+d8 (<0),
(9(Q)2,)r

andr, ¢, ¢, §, p above.
Note that in this case, a(-) may not possess any global (local) minimum in Q.
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Remark 1.4. (1) It would be a routine work to prove that (P). admits at least one solution
up (the “ground state solution”) for all € € (0, o) with the aid of the well-known Moun-
tain Pass lemma and the compactness of the Sobolev embedding H! — L?. However, one
cannot expect in general the existence of multiple solutions. Indeed, for example, when
a(x) = 1 and Q = ball, the uniqueness result for sufficiently small ¢ is known (Dancer
[6]). Theorem 1.1 says that immediately after a(x) is perturbed to have a “peak”, other
solutions u;, u, should appear even if the perturbation is very small (in the radial case,
up and one of the u; and u,, say u;, may be geometrically equivalent to each other, i.e.,
they may coincide via rotation in RV, so one gets at least two geometrically distinct so-
lutions, uy ~ u; and u,). This “generation of higher energy solution” is a consequence of
the change of topology of some level sets of the functional associated to (P), caused by
the nontrivial shape of a(x). It is the purpose of this paper to discuss the effect of this
change of topology on the multiplicity of solutions.

(2) It is already known that if a € C(Q) and the global minimum set of a(x), amin =
{x € Qsa(x) = minycqa(y)}, is homotopically equivalent to S¥ 1, then there exist at least
catamin = catS¥~! = 2 solutions for small ¢ (here cat means the Ljsternik-Schnirelman
category, see Definition 3.3 below). It should be noted that our assumption (A)x .z
does not require that a(x) should have a global minimum set in Q as is stated in Example
1.3, but requires that “nearly” global minimum set of a(x) should contain the set 0K
which is homotopically equivalent to SN 1.

(3) Another type of multiplicity result for —Au+u = a(x)u+ f(x) in RN, based on an
argument similar to ours, is discussed in Adachi and Tanaka [1].

2. Known results and notation

2.1. Known results. The interest in (P), arises from several physical and mathematical
backgrounds.

In the physical context, (P), can be regarded as a (reduced) nonlinear Schrodinger
equation and small parameter ¢ corresponds to the Dirac constant .

It is well known that when 7 can be well-approximated by 0 (this approximation is
called “semiclassical approximation”), quantum mechanical equation may have a solu-
tion corresponding to a “semiclassical” state, concentrating around a classical mechanical
equilibrium. It is also well known that the classical equilibrium is often given as the point
which minimizes the potential energy.

So it is reasonable to expect that for small ¢, (P), has a semiclassical solution concen-
trating around a point which attains the minimum of the energy potential a(x). Hence
the structure of amin = {x € Q | a(x) = minyeqa(y)}, the minimum set of a(x), may play
a significant role for the existence and the multiplicity of solutions of (P),.

In the mathematical context, (P), can be regarded as a typical model exemplifying
the following feature. In many semilinear elliptic problems including small parameters
(e.g., semilinear elliptic equations involving the critical exponent [10], stationary Cahn-
Hilliard equation [2], Ginzburg-Landau equation [3]), it is commonly observed that if
the parameter is small enough, then the existence and multiplicity of solutions are con-
trolled by the finite-dimensional object. As for singularly perturbed equations, del-Pino
and Felmer [7, 8] and Cingolani and Lazzo [5] obtain the following result.
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ProrosiTioN 2.1 (effect of weight function, del Pino and Felmer [7]). Assume that a(x) is
a locally Hélder continuous function and A is a bounded set compactly contained in Q. Also
assume that there exists a positive constant « such that inf eq a(x) > a and, mingy a(x) >
infp a(x). Then for sufficiently small €, (P). admits a solution u,, which concentrates to a
point in A where the minimum of a(x) is attained as € — 0.

ProrosITION 2.2 (effect of weight function, del Pino and Felmer [8]). Assume that a(x) €
C'(Q) and there exists a positive constant « such that infyeqa(x) > a. Let xo € Q be a
“topologically nontrivial critical point” of a(x) (this class of critical points includes the local
minimum, the local maximum, and the saddle point of a(x). For the precise definition, see
(8, page 249]). Then for sufficiently small €, (P), admits a solution u,, which concentrates to
Xo as e — 0.

ProrosritioN 2.3 (effect of the topology of amin, Cingolani and Lazzo [5]). Assume that
a(x) € C(RN) and lim|y|— a(x) = ag > mingegn~ a(x) > 0. Then for sufficiently small , (P).
admits at least catamin solutions. Here catamin denotes the Ljsternik-Schnirelman category
Of Amin (see Definition 3.3 below).

The finite-dimensional objects referred to above in Propositions 2.1, 2.2, and 2.3 are
the local minimum set (point) of a(x), the “topologically nontrivial” critical set (point)
of a(x), and the global minimum set of a(x), respectively.

Our problem (P), also bears some interesting aspect in the context of the so-called
“variational problem with lack of compactness”. As stated in Section 1, for problem (P),
with bounded (), one can easily find that there exists at least one solution of (P),, the
ground state solution, with the aid of the compactness of the Sobolev embedding
H'(Q) = LP(Q). On the other hand, in the case of unbounded Q, the situation changes
drastically. That is, (P), may not have a ground state solution. From the point of view
of the variational analysis, this nonexistence is caused by the breakdown of the Palais-
Smale condition for the functional associated with (P). due to the fact that the Sobolev
embedding H!'(Q)) = LP(Q) is no longer compact for unbounded Q.

Even though we are concerned with (P), in bounded domains (the original problem),
the analysis of (P). in RY with some weight function determined by a(x) (the limit-
ing problem) plays a crucial role in investigating the multiple existence of solutions of
(P)e. That is, the lack of compactness of the variational problem associated with (P), in
unbounded domains with (suitably chosen) weight functions causes the multiplicity of so-
lutions of (P), in bounded domains. In other words, for small ¢, (P). can be treated as a
problem on “almost unbounded domains” with Palais-Smale condition.

Applying propositions above to our problem, we find that the following facts hold
true.

(1) If @min = 0K (=~ SN~1) C Q, then Proposition 2.3 assures the existence of at least
catdmin = catoK = catSN~! = 2 solutions of (P), for small e.

(2) Suppose that a(x) has a global maximum point in Q and a(x) € C'(Q). Then
Proposition 2.2 implies that there exists at least one solution of (P), for small ¢, which
concentrates to the global maximum point of a(x) as ¢ — 0.

As is pointed out in Section 1 (Example 1.3 and Remark 1.4), in our Theorem 1.1, we
need not assume dm;, = 0K nor a(x) € C'(Q).
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Moreover, our argument here relies on the comparison of variational structures of the
original and the limiting problem with nontrivial weight function and, seems somewhat
different from those in [5, 7, 8].

2.2. Notation. We here fix the notation frequently used in this paper.
Let w be a domain of RY, and we use the following notation.
(i) My(w) := {ue H(w); llutllprw) = 1} where u*(x) := max(0,u(x)).
(i1) Lo aw(u) == |, (21 Vul® + au?)dx.
(111) SP(E,LI,(U) = infueMp(w)\{()} Ig,u,w(u).
(iv) Let # € C(R) be a cut-off function such that

if |[t| <R,

1
n(t):=q9R
n if |t| = R, (2.1)

Br(u) := I[RN xn(lxl) |ut|Pdx  Vue M,(RY).

(v) When a(x) = & > 0, we denote by v, 4, the minimizer of S, (e, a, ) which is ra-
dially symmetric with respect to the origin, and v; g~ is simply denoted by v,.

(vi) ¢, € CF(RN) stands for a cut-off function such that ¢, is radially symmetric with
respect to the origin and

prx)=1 iflx| <7,
0<¢(x)=<1 if% <|x|<r, (2.2)
or(x)=0 if|x] =7

We also denote ¢, (x) := ¢, (ex).
For any y, € dK/e, we put

oo (x) = Por = Y Vigar (2~ y.)
&0, Ve : | |¢g’r71,a,RN | |LP

> (2.3)

and @, (ye) := Veq,y, for all y. € 0K/e. Here K and r are a compact set and a
positive constant which appear in the condition (A)g ¢, in Section 1.
We occasionally suppress the subscript @ when no confusion occurs.
(vii) We denote a.(x) := a(ex).
(viii) Let X be a Banach manifold and a € R. Then for I € C'(X;R), we put

>

I<aly:={ueX;I(u) <a}
(I =alx:={ueX; (u) =a}
0

, (2.4)
Cr(I;X):={u € X; (dI), =0},

where (dI), represents the Fréchet derivative of I at u € X.
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3. Variational tools and preliminary facts

3.1. Variational tools. Our main tool relies on the variational approach. We here prepare
some terminology frequently used later on.

Definition 3.1 (Palais-Smale condition). Let M be a C! Banach-Finsler manifold and J €
CY(M;R).

(a) (un) C M is called a (PS).-sequence (Palais-Smale sequence at level ¢) if

(@),

(roms — 0, J(u,) —c asn— . (3.1)

(b) J is said to satisty the (PS).-condition if
(PS). every (PS).-sequence of J contains a strongly convergent subsequence.

(In the above T,,M denotes the tangent space of M at u.)
Our approach is based on the following fundamental principle.

Fundamental principle in Morse theory. Suppose that M is a Banach-Finsler manifold and
I € CY(M) satisfies the following assumptions:

(1) I satisfies (PS).-condition for all ¢ € [a,b];
(2) [I < a]p and [I < b]y have a “difference in topology.”

Then there exists a critical value ¢ € [a,b].

In order to compare the topology of sets, various kinds of topological invariants are
known. We will here use the notion of the “category” of sets. We use the following
notation.

Definition 3.2. Let M be a topological space, and let A and X be a closed subset and a
point of M, respectively.

Denote “A = {x} by # in M” if 5 € C([0,1] X A;M), 1(0,x) = x for all x € A, and
n(l,x) =xforall x € A.

Definition 3.3 (notion of category). Let X be a topological space and let M, A be two
closed subsets of X with A C M. Then the category of A relative to M, denoted by n =
caty[A], is defined as the smallest number among m such that (A;)}., is a closed con-
tractible covering of A in M, that is, there exists a closed covering (4;)j.; of A in M,
xj € M,and n; € C([0,1] x Aj; M) such that A; = {x;} by #; in M forall j = 1,2,...,m.

We simply denote catq [Q] by catQ.

In terms of this notion, Ljusternik-Schnirelman theorem (category version) reads as
follows.

ProrosiTioN 3.4 (Ljusternik-Schnirelman theorem, category version [12, Theorem
5.19]). Suppose that M is a C' Banach-Finsler manifold, I € C'(M), and a = infj I >
—oo. Suppose also that for some b’ > b > a, I satisfies (PS). for all ¢ € [a,b"] and Cr(I; M) N
[I=0bly=0.

Then [I < by contains at least cat[I < bl critical points.
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In this paper, we use the variational method on the constraint manifold. In order to
guarantee that the critical point on the manifold gives the critical point in the original
space, we need the following version of Lagrange multiplier rule.

ProrosritioN 3.5 (Lagrange multiplier rule, [12, Proposition 5.12]). Let X be a Banach
space, ¥ € C2(X;R), and ] € CY(X;R). Let M = {u € X | y(u) = 1}. Assume that (dy), #
0in X* for any u € M.

Then ||(d))l(r,my« = mincer [(d]), — C(dw), || holds. In particular, u € M is a critical
point of ] restricted in M if and only if there exists C € R such that (d]), = C(dy), in X*.

In the proof of Theorem 1.1, we have to compare the category of two sets. For this
purpose we use the following comparison theorem of category.

ProrosITION 3.6 (comparison theorem for category). Let a and b be closed subsets of
topological spaces A and B, respectively. Suppose that there exist ® € C(a;b) and p € C(B;A)
such that o ® is homotopically equivalent to the natural injection from a to A. Then,
catg[b] = caty[a].

Proof. Let m = catg[b]. Since ff o @ is homotopically equivalent to the injection from a to
A, there exists f € C([0,1] x a;A) such that for all x € g,

f0,x)=x  f(Lx)=Bod(x (3.2)

Since m = catp[b], there exist a family of closed subsets b; C B, a family of mappings
n; € C([0,1] X bj;B), and u; € B for j = 1,2,...,m such that

bj={u;}byn;inB Vj=12,..,m. (3.3)

Leta;j = @ '(b;) C a. Then it is easy to see that a = U?Ll ajand a; is closed in A.
Set

F2tx) v e o] xa,
gi(tx) = . (3.4)
Boni(2t—1,0(x)) V(tx)e [2 ]Xa]

Then it is easy to see that

11mg](tx) f(1,x) = o d(x),

lim g;(t,x) = Bon; (0,0(x)) = o D(x) (32)
holds for all x € a;. Hence g; € C([0,1] X aj;A).
It is also obvious that for all x € aj, g;j(0,x) = f(0,x) = x and g;(1,x) = o ;(1,
D(x)) = P(uj) € A.
Therefore it holds that a = U7, a;, a; is a closed subset of A, and a; ~ {B(u;)} by g]
in A. Hence, by the definition of the category cats[a], we have m < caty[a].

In order to prove the existence of the critical point which has the higher energy, we use
the following version of minimax principle.
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PropoOsITION 3.7 (minimax principle). Let M be a C"' Banach-Finsler manifold and let A
be a metric space. Suppose Ay C A is a compact subset, ¢ € C(0Ag; M), and I € C'(M;R).
AlsoletT = {y € C(Ao;M);ylaa, = ¢} # @ and let ¢ = inf,crmax,eca, I o p(y) > —oco.

If I satisfies (PS)c and sup,cos, I © @(y) < ¢, then c gives a critical value of I.

Proof. Suppose the conclusion is false. Then the standard deformation lemma (see, e.g.,
[11, Theorem I1.3.11]) implies that for € = (¢ — SUP a1 © ¢(y))/2, there exist € € (0,¢)
and f € C([0,1] x M;M) such that

f(LI<c+elm) ClI<c—éelm, (3.6)
ftbu)=u Vuell<c-¢tly. (3.7)
Take any y. € T such that maxyea, I o ye(y) <c+e. Let y'(+) = f(1,y:(+)) € C(Ag; M).

Then by the choice of €, we have y:(y) € [I < c— €]y for all y € dA,. Hence, in view of
(3.7), it is obvious that for all y € dA,,

Y () = f(Lye(y) =y:(y) = (). (3.8)
Therefore y’ € T and, in view of (3.6), we have

c:;relgré%loy(y)sryrg)gloy(y)sc—£<c, (3.9)

a contradiction. O

3.2. Preliminary facts. Setting v(x) = u(ex), (the weak form of) problem (P), can be
rewritten as

(P")e
_ [ Q
—Av+a(ex)v = |v|P~™*v, v>=0,veH, (—8). (3.10)

As for (P'),, the following fact is well known. For the convenience, we briefly give the
sketch of proof.

ProrosritioN 3.8 (variational formulation of (P"),). To find nontrivial solutions of (P"), is
equivalent to

(V) find critical points of I 4, /e on Mp(€)/e).

Proof. Sufficiency of (V). Assume that (V) has a solution, that is, there exists u € M,(Q/¢)
which is a critical point of I} 4 . Let w(u) = [, |u"[P. Since u € M,(Q/e), it is ob-
vious that (dy),(u) = p o [u"1? = p # 0 and (dy), # 0 in (Hj(€/e))*. Therefore, by
Proposition 3.5, there exists C € R such that

(A1 0se) () = C(dy)u(h) Vhe H&(Q). (3.11)

&
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Testing (3.11) with h = u, we get

Il,as,o/s<u>=j (IVu|2+ae(x)|u|2)=CpJ lu*|? = Cp, (3.12)
O/e Q/e

since u € M, (Q/e).
Then, by virtue of the fact that u # 0 and a, > 0, we have

_ Il,a;,Q/s(”) N
p

C 0. (3.13)

Testing also (3.11) with & = 4~ = min(0, u), we obtain
J (|Vu*|2+a£(x)|u*|2)=CpJ lut |P 2wty =0, (3.14)
O/e QO/e

whence follows 4~ =0and u = u* > 0.

Then it is easy to check that v = (I 4 o/ (u)/p)V P~ u gives a (nontrivial) solution of
(P")e.

Necessity of (V) also follows from arguments similar to those above. O

For S, (&, a, w), it is well known that the following result holds.

ProposiTiON 3.9 (existence and uniqueness for ground state in RN [9]). For any ¢ >
0 and a >0, there exists a positive minimizer Veqry for Sy(e, a, RN) which is unique (up
to translation) and radially symmetric with respect to the origin. Especially, the map o —
Sy (&, RN) is continuous.

As we will see, the nontriviality of the topology of some level sets of I 5./ is the conse-
quence of the nontriviality of that of 0K. In order to discuss this relationship between the
level set of I 4, /. (in function space) and dK/e (in RY), we use the “truncated barycen-
ter” Br(u) and a family of comparison function vy, where y. € dK/e (see Section 2.2
for definitions).

It is obvious that [Br(u)| < R holds for all u € M,(RN). Moreover, if the (intuitive)
barycenter of u € M, is near “infinity”, then z(u) is located near dBg = {x € RN | |x| =
R}. Namely, the following holds.

LemMA 3.10 (the range of truncated barycenter). (a) For any a >0, |Bro @ea(ye) —
Ry:/|yell = o(1) as € — 0 uniformly in y € 0K, where y, = y/e.

(b) Suppose that u € Mp(RN) and (y,) C RN satisfies |y,| — o as n — co. Then
IBr(u(- = yn))| — Rasn — co.

Proof. (a) Take any & >0, € >0, y € JK and set y. = y/e. Since we will consider the limit
& — 0, without loss of generality we can assume that

B(yg, |M>cB(o,%> C B(O,R)". (3.15)

2
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Then it follows that

Ve
v, —R——
ﬁR( s,ocys |ys| ’

_ p Ye J P
- &0 -R &0,
‘JRNx”/“x'HV”ys(xH dx |y£| RN|V”yE(x)| dx

3.16
< J R(" e >|V”y¢x>|dx (3.16)
B(yern/1y:172) x| |)’|
Je p
-R Vea d
o (10 =Ry v 0
= (A) +(B).
As for (A), we find that, in view of (3.15),
Xy | y | | ye | Hxl = | yel |
x| | el Ix\lye||x el x| | ye |
o=yl | yel/2 (3.17)
|x| |ye|/2
L,
|)’s|

for all x € B(ye,+/l yel/2).
Then, since [|@g, Vo llLrry) = [VallLo(ry) as € — 0, for suitable positive constant C; and
C,, we have

((2RA1yel) S 17" +2R fygo, /720 |7l )

= ||P
||(P8J’V¢X||LP(DRN) (3.18)

(A)+(B) =<
NG

N 2+ 1J ) |V“|P—>0
miny ey +/ |y B(0,minyear /Ty1/(2:/€))¢

as ¢ — 0, uniformly in y € 9K (recall that min,cyx 4/ y| > 0 since 0 € intK).
(b) The argument is essentially the same as in [4, proof of Lemma 3.4]. O

In view of the principle of Morse theory, in order to establish the existence of critical
points of I1 4, /e, it is enough to verify the existence of a pair of level sets of I 4/ which
have a difference in topology. The existence of such a pair of level sets of I} 5 /. is the
consequence of the existence of that of Iy ., rv, the “limiting functional” associated to
I1,4,,0/e with suitable weight function bz, (x).

Let begp(x) € C(RN) be a function which satisfies the following condition (B)., for
some positive number ¢ € [¢,?).
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(B)eyp : begp(x) = x(Ix]) where

c fortsg,
x(t) = —Z(C_C)t+22—c for‘;—)<t5p, (3.19)
c forp<t.

Note that by the assumption (ii) of (A)k e

recdp and the definition above, for any & €
(0,1),

Q
. _ Zbcf — — V e —,
ac(x) = a(ex) = begp(x) ~ (c—0)  Vx e~ (3.20)
begpx) 2 ¢ VxeRN.

We next investigate the topology of the level set of I} ., g~ near its infimum level.

cip>

3.3. Limiting problem. Hereafter we fix positive constants ¢, ¢, p. Let b.c,(x) be the
function satisfying (B).¢, in the previous subsection. Throughout this subsection, we
denote the limiting functional I p,_ g as I,

In view of Proposition 3.9, we have the following.

Lemma 3.11 (inf is not achieved in the limiting problem). (a) S,(1,c, RN) = Sp(Lbezp(+),
RN).
(b) Sp(1,bep(-),RN) is not achieved.

Proof. Suppose that the following claim holds true.

Claim 3.12. Let b € LNV?(RN) satisfy the following condition for some ¢ > 0:

inf b(x)>c¢, lim b(x)=c¢, b(x)#c. (3.21)

x€RN |x| =00

Then we have the following:
(a) SP(LC) IRN) = Sp(lyb()) IRN))
(b) $,(1,b(+),RYN) is not achieved.

Then it is easy to see that Lemma 3.11 follows from the claim above with b(x) =

bep(x).
Proof of Claim 3.12. (a) It is clear that for all u € M,(RYN), we have
| vukvemp) < | qvur+be)), (322)
whence follows
Sp(1,6,RN) <8, (1,b(+),RN). (3.23)

To get the converse inequality, we will use some special sequence (v,). Let V. € M,(RV)
be a positive minimizer of S,(1,¢,RY) whose existence is guaranteed by Proposition 3.9.
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Let (y,) C RN be any sequence which satisfies | y,| — o0 as n — o0. Set v,(+) = V(- — yp).
Now we will show that

‘J[RN(|an|2+b(-)|vn|2>—JRN(|an|2+c|vn|2>' —0 asn—oo. (3.24)

Take any € > 0. The fact lim|y| .. b(x) = ¢ allows us to take R; such that

e
(2I17ll5)

|b(x) —c| < (3.25)

holds for any |x| > R;.
Moreover, by virtue of v, € H I(RN) — L2"(RN), we can choose R, so large that

. N/(N-2)
— 2%
JB(O,RZ)C |Vc()| < ((2”17”1\]/2)) . (3.26)

Since |y,| — o0 as n — oo, it is also easy to see that, for R; and R, above,
B(y.,Ry) € B(O,R))° (3.27)

holds for large n.
Then we have

L Qom0 ) = [ (19n ] +elnl?)

<I[ el + [ IbO el lnl? (3.28)
B(yn,R2) B(yn,R2)*
=:(A) + (B).
Using (3.25) and (3.27), we have
2 €
(Wl=[  ber-ellml* =2 (3.29)
B(O,Ry )¢ 2
Moreover (3.26) and the fact that [b(-) —¢| = b(-) — ¢ < b(-) yield that
(@ <] Bl
B(yn,Ra)¢
2N (N-2)/N
s(j |b(-)|m) (f |vc<-)|2*) (3.30)
B(yn,Ry)* B(0,R,)*
€
<-.
2

Thus (3.24) follows from (3.28), (3.29), and (3.30).
Combining (3.24) with

JRN (19> +clval?) = JW (1V9 1 +clwel’) = Sp(LeRY),  (331)
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we have
Sp(1,6,RN) =S, (1,b(+),RN). (3.32)

(b) As in (a), let v, be a positive minimizer for S,(1,c, RYN). Suppose that the claim is
false, that is, there exists w € M P([RN ) such that

(T bCbw2)dx = 8, (1,6, BY). (3.33)

N

Then, by virtue of b(x) = c and Sp(1,¢,RN) = S,(1,b(+),RN), we get
Sp(l,c,[RN) SJ (IVw|*+clw|?)
RN

SJRN(IVWIZW(-)IWF) (3.34)
= 5p(1,b(-),RY)
=S,(Lc,RY),

that is, Sp(1,¢,RN) = [gv (| Vw|? + c|w[?). Then from Proposition 3.9, we find that w >0
in RN. Therefore, in view of b(x) = ¢ and b(x) # ¢, we have

Sp(Lc,RN) = J (IVw|?+clw|?)
RN

2 2
<[ avwp b)) (335)
= Sp(l;b()y[RN)
=S,(Lc,RY),
which leads to a contradiction. O

This result implies that all the minimizing sequences possess no convergent subse-
quence. Combining this fact with the compactness of embedding H' — L! , we find the
following. O

LemMa 3.13 (behavior of minimizing sequences of the limiting problem [4, Lemma 2.2]).
For any minimizing sequence (v,) C Mp([R{N) of I, there exists (y,) C RN such that | y,| —
o0 and vy, (+) =V.(- — yu) +0(1) in HY(RN) asn — oo, where v¢(x) = vy gy (%) is a (unique)
minimizer of Sp(1,¢,RN).

Lemma 3.13 says that, for any v € M( RN) such that I« (v) is very close to its infimum
Sp(L,beep(), RN), v is almost concentrated at infinity. So by Lemma 3.10(b), we find that
[Br(v)| = R. Thus we get the following first key result stating the nontriviality of some
level set of I« near its minimum level.

ProrosITION 3.14 (concentration lemma at infinity for the limiting functional). For all
s € (0,R) and positive numbers p, ¢, € with ¢ <, there exists « > 0 which satisfies the fol-
lowing. If v.e My(RN) satisfies I, (v) < Sp(1,bcep(+), RN) +a for bee,(x) satisfying the
condition (B)., with some c € [c,(c+¢)/2], then fr(v) & B(0,s) holds.
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Proof. Suppose that the claim is not true. Then we find that for some p >0, s € (0,R),
¢, © with ¢ <G, there exist (c,) C [¢,(c+0)/2], (be,cp(x)) C C(RN) defined by (B)., c
(Vi) C Mp(RN) such that
I, (Vn) = Sp(lahcn,f,p(')>RN) +o(1), (3.36)
Br(v) € B(0,5) (3.37)
as n — oo, passing to subsequence if necessary.

Since (c,) C [¢,(c +7©)/2], taking further subsequence if necessary, there exists ¢ €
[¢,(c+7¢)/2] such that

cp=c+o(l). (3.38)

Let bz, (x) € C(Q) be a function defined by (B),.
Then, by virtue of the condition (B)., ¢, and (3.38), we have

|be,zp(x) = begp(x)| < [cy—c| =0(1) uniformlyinx € RY. (3.39)

Also it is easy to see that (3.36) yields the boundedness of (v,,) C H'(RYN). Therefore, it
follows that

|Ic,,,oo (Vn) — I (Vn) | = J[R{N |bcn,2,p(') - bc,f,p(') ! |Vn | = o(1) (3.40)

asn — oo.
Furthermore, by Proposition 3.9 and (3.38), it holds that

Sp(L,cn,RY) =8, (1,6, RN) +0(1) (3.41)

asn — co.
Therefore, by virtue of (3.36), (3.40), and (3.41), we find that (v,) C M,(R") is a
minimizing sequence of I .. Hence, together with Lemma 3.13, we have

Va(+) =¥y (- —yn) +0o(1)  in H'(RYN) (3.42)

for some (y,) C RN with |y,| — o as n — . Consequently, Lemma 3.10(b) combining
with the continuity of S implies that

[Br(Vi) | = | Br(Vremry (- =yn)) | +0(1) = R+0(1) (3.43)

as n — oo. But this is impossible in view of (3.37). O

This proposition says that [I e < S, +a] (C MP(RN )), the infinite-dimensional ob-
ject, can be compared with the B(0,5)¢ (C RY), the finite-dimensional object, with the aid
of Br(v). We will see in the next subsection that this correspondence between the finite-
dimensional object and the infinite-dimensional object is also observed in the “original”
problem.
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3.4. Original problem. Now we proceed to the analysis of the original problem.
Throughout this subsection, we assume that a(x) is a function satisfying the condition
(A)k,rccsp for some positive numbers p, ¢, ¢, § with ¢ <¢ and § € (0,¢ - ¢). We also
assume that bc.s:(x) is a function defined by the condition (B)4s¢, in the last part of
Section 3.2.

As in the previous subsection, we denote the limiting functional Iy .., gy as I, and
the original functional I, 4o/ as I;.

We regard the original functional I.(v) = [o,, |Vv|* +a(ex)|v|? as a perturbed func-
tional of the limiting functional I.is . for suitable § > 0. Furthermore with the aid of
D, .45 (see Section 2.2 for definition), we can embed the topology of dK/e into the level
set of I, near its infimum level when ¢ is small enough.

ProPosITION 3.15 (construction of an embedding mapping from RN to the function
space). For any § >0, I, o @ ci5(ye) < Sp(1,bersp(-),RY) +0(1) as € — 0 uniformly in
y € 0K where y, = y/e.

Proof. First we are going to show the following fact.

Claim 3.16. Let o >0. Then

lim N<|Vv£’“’ys|2+(x|v£)a)y€ %) = 8,(1,0,RY) (3.44)

=0 JR
uniformly in y € RN (see Section 2.2 for the definition of vy, ).

Proof of Claim 3.16. In view of

JN (|vvstxy¢ +“|Vs,¢xy£ 2) = J N (|VV€,(X,0|2+“|V€,1X,0|2)’
. o . (3.45)
Sp(l,oc,RN)=JRN<|VVa| ralml?),
we have only to verify that
. 2 2 2 |2
lim RN(|VV£’“’O| +a| Veao| >:J[RN<|VV“| +a| vy ) (3.46)
Note that
‘JRN<|Vv£,a,o|2+oc|vs,a,o|2)—JRN(|V70¢\2+05|V(,,|2)‘
2 — 2
f[RN(|v(‘Pe,rVa)| +a| e Val ) (347)

- — | (| +alva]?)|.
(fan | @er7ul ) JRN< ’ )

Here it is easy to see that

‘J |¢s,rva|p_1'=‘J |(P£,rvoc|p_J |va|P‘5CJ' |V¢x|P—’0 (3.48)
RN RN RN B(0,r/2¢)¢

ase— 0.
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Since |V .| = €|V, | < eCs, we also find that

HRN (199w I +algomal) = | (197> +al7a]?)

— 2 2 2 2
= \Y% -1+ 1
J’B(O,r/zs)c V7] ’ e ) aJB(O,r/Zs)C e | ’ |9 '

+2J Voer | | V| |9er| | Pa +J Voer | |7a]’
B(O,rm)cl Per | | VVal [ @er | [Va] B(WWI Per | Ve (3.49)
1/2
sCIJ <|V7a|2+a|va|2)+eC2<J |m|2)
B(0,r/2¢)¢ B(0,r/2¢)¢

Nz )
(| ml) wec| jwlt—o
B(0,r/2¢)¢ B(0,r/2¢)¢
ase— 0.

Thus (3.47), (3.48), and (3.49) imply the claim. O

Note that for all y € 0K,

SUPP Vectd,y, = B(ys,£> C <87K) ) = {x e RN | d(x,a?K> < g} (3.50)

Here (i) of (A)k,czo, assures that (dK/e),. C Q/e. Hence we find that vecys,, =
O cr5(ye) € Mp(Qe).
Also note that by virtue of (iv) of (A)k rczs,0, We have

sup ae(x) = sup a(x) < c+34. (3.51)
(OK/€) /e (9K),

Then, in view of Claim 3.16 and Lemma 3.11(a), we obtain

2 2
Lo ®s,g+6(}’s) = J;)/ ( | VVecrsy |+ ae(+) | Ve,c+6,y: )
€

2 2
= J <| VVe,c48,y, | + { sup as(')} |V£>£+6>J’s | )
B(yer/e) (OK/2),7e (3.52)

= JB(}’&,T/S) ( | vve,g+5,y5 2)

— Sp(Lec+8,RY) =8,(1,berszp(x),RY)

2
+(c+9) \ Ve,ct+8,e

as ¢ — 0 uniformly in y € oK. O

We next prove that under the condition (A)x ¢, the relation between the level set
of functional I and B(0,s)¢ described in Proposition 3.14 still holds for the perturbed
functional I,.

ProrosITION 3.17 (concentration lemma at infinity for original functional). For any pos-
itive numbers p, s, ¢, and ¢ with ¢ < ¢, there exist § > 0, 1 > 0 such that for any a(x) satisfying
(A)K rce0,p With some r >0 and some closed subset K of Q, the following holds: there exists
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€ € (0,1) such that for all e € (0,¢],
[I. < S, (1,c+6,RY) +11]MP(Q/£) + O, (3.53)

and if v € M,(Q/e) satisfies I.(v) < Sp(1,¢ + 6, RN) +1, then Br(v) & B(0,s) holds.

Proof. Take any positive numbers p, s <R, ¢, ¢ with ¢ <T.
Then by Proposition 3.14, there exists « such that for all ¢ € [¢, (c +¢)/2], begp(x) sat-
isfying the condition (B).c, and v € M,(RY),

Ic,w(v) = Sp(la bc,?,p(')’lRN) + a:ﬁR(V) é B(O)S) (354)

Let

N o o c-c
;1—2, 1) mm(Sp(l,c,RN)+11’ 5 ) (3.55)

Take any function a(x) which satisfies the condition (A)x ; ¢, for some r > 0.

Then by Proposition 3.15, for § above, we see that there exists ¢ > 0 such that for all
e € (0,¢],

I o (Ds,ngb‘(ys) < Sp(l’ bg+8,E,p(')a [RN) +7 (3-56)
forall y € oK.
Hence by Lemma 3.11(a), [l < S,(1,c+4, RN) + 1lm, () # @ for such e.
Set € = min(¢’, 1) and take any ¢ € (0,€], v € M, (£)/¢) such that

L(v) < Sp(L,berscp(-),RN) +1. (3.57)

Then, by virtue of the condition (ii) of (A)k s ¢, we find that

QJ lv]? < J a:()|v]? < L(v), (3.58)
RN RN
whence follows
[ 2 < =0 (3.59)
RN c

Also note that, in view of (3.20) and ¢ < 1, we have

bersep(x) —as(x) <d Vxe % (3.60)
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Hence, from (3.59) and (3.60), we deduce that

Lesw) = [ (9VP+aOWP) + [ (bersieg() -l ) VP

RN

< Is(v)+8j |2

SIE(V)‘F@ (3.61)
_().RN 2| Sp(1,bersicp(x),RY) +11
= (SP(I’thr(S,c,p( )R )+’7)+SP(I,E,RN)+17 ;

S Sp(l)bg-ﬂs,ﬁ,p(')) [RN) +a.

Therefore (3.54) with ¢ = ¢+ ¢ yields Sr(v) & B(0,s) (note that by the definition of 8, we
havec=c+6 € [¢,(c+7)/2]).
Thus we have the conclusion. O

4, Proof of Theorem 1.1

Now we are in the position to give a proof of Theorem 1.1. In this section, we denote
the original functional I ; /e by I. Take any positive numbers p, ¢, ¢ with ¢ <¢ and R,
s with R >s. Then Proposition 3.17 implies that there exist § > 0, # > 0 such that for any
a(x) satistying (A)g r.cc8, With some 7 > 0 and some closed subset K of 0, the following
holds: there exists €1 € (0,1) such that for all € € (0,&;],

[IssSp(l,g+8,RN)+q]Mp(Q/S)#@, (4.1)

Br (I = Sp(1,e+8,RY) + 7]y, (o)) € B(O,s)" (4.2)

Take any a(x) which satisfies (A)k rcc6,-

156!

Then, by Proposition 3.15 (with &, # above) and Lemma 3.11(a), we see that there
exists & > 0 such that for all € € (0,¢,],

I o Dg i (ye) sSp(l,g+8,[R{N)+g (4.3)

for all y, € 0K/e.
Note that since s < R, we can take py so small that

(9B(0,R)),, := {x € RY; dist (0B(0,R),x) < po} C B(0,5)", (4.4)

Then, by Lemma 3.10(a), we find that there exists &3 > 0 such that

/';R ° ®£)£+5 (ye) € B( |jj£ | R)PO) (45)

for all e € (0,&3] and y, € dK/e.
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It is also obvious that we can take &4 > 0 such that for all € € (0,&4],
dK/e € B(0,R)". (4.6)

Let € = min(e, &2,¢€3,¢€4) and take any € € (0,%).
We are going to verify the following claim which assures the assertion of Theorem 1.1.

Claim 4.1. There exist ¢, ¢, such that
(a) ¢ is not a critical value of I, and
my = cat[SN 7] =2, (4.7)
where m; is the number of critical points in [l < ¢1]um,(0ze),
(b) ¢, is a critical value of I, and ¢; < c;.
Proof of Claim 4.1. (a) Without loss of generality, we can assume that there exists ¢; which

satisfies

2
= [Sp(l,g+8,[RN)+g,sp(1,g+6,[RN)+Z’7], (4.8)
and ¢; is not a critical value of I, otherwise we already have infinitely many critical values
and the proof is finished.
Then, by (4.3),

q)g,gﬂ;(aTK) C [Is <Sp(Lc+8,RY) + g]MP(Q/E) C L = a1y, (e (4.9)
Let
(1=28)Br o Pegrs(ye) + 2|tfsy|£ Y (t,y:) € [o, %] X aTK,
$lbe) = % +2t=1)y, Y (tye) € B,l] X 8TK o

Then it is easy to see that

K ); g(O’J/£) :ﬁRoq)s,gHS(ys)) g(lays) = Ye. (411)

g€ C([O,l] X ?;[RN

Moreover, because of (4.4), (4.5), and (4.6), we have g([0,1], ) € B(0,s). Hence g is a
homotopy between g o O+ and the natural injection from 0K/e into B(0,s)¢, that is,
(I) Br o Decrs is homotopically equivalent to the natural injection from 0K/e into
B(0,s)".
Let A = B(0,s), a=0K/e, B=b = [ < 1], ® = D¢ 45, and f = fr. Then (4.2), (4.9),
and (I) assure that all the hypothesis of Proposition 3.6 is fulfilled. Hence

K
cat[I; < c¢1] > catp(o,) [88 ] =cat[SN7!] = 2. (4.12)



204  Singularly perturbed elliptic equations

It is standard to check that I, satisfies the (PS)-condition in M,. Hence Proposition 3.4
together with (4.12) implies that (4.7) holds.

(b) We will rely on the minimax principle, see Proposition 3.7.

Let T = {y € C(K/&sMp);yloxse = Qe ot and ¢y = infer maxyegye Ie o p. Since obvi-
ously @, s can be extended to K/e and I(-) = 0, it is clear that T # & and ¢, = 0. More-
over, by virtue of (4.3), we have

sup IeoysSP(l,g+6,[RN)+ﬂ vy el (4.13)
y€eodK/e 4
Here we claim the following fact.
Claim 4.2.
K
Vyel, 3y, € ?:ﬁRoy(yE,y) =0. (4.14)

Proof of Claim 4.2. For all y € T, there exists y,, € K/e such that g o y(y,,) = 0.

F(t,y)) 20 Y (t,y:) € [0,1]><87K. (4.15)

Suppose on the contrary there exists (,y,) € [0,1] X 0K/e such that F(,y,) = 0. Then by
(4.6) we have y, # 0 and, in view of (4.2) and (4.3), Br o D, c15(ye) € B(0,5)°. Hence we
deduce that £ # 0,1 and g 0 Q¢ 15(¥,) = —£7./(1 - 1).

But this is impossible because of (4.4) and (4.5). Therefore (4.14) holds.

Property (4.15) and the homotopy invariance of the topological degree imply that

1 =deg<id,l‘€<,0) =deg</3Roy(-),Is<,0>. (4.16)

Therefore there exists y,, € K/e such that fr o y(y,) = 0. O

Now we go back to the proof of the second part of Claim 4.1.
By virtue of (4.14) and (4.2), it follows that

}{21?3(515 ° Y(}’) >0 Y(ye,y) =T 0 D; s (}’e,y) = Sp(1)§+ J, [RN) +n Vyel, (4.17)

which means

_ R N
cz—;relglelgils y(») = Sp(1,c+6,RY) +1. (4.18)

Then (4.13) and (4.18) imply that

= sup L oy(y). (4.19)
y€eoK/e

e =8,(Lec+8,RY) +1>S,(1,c+6,RY) +

EEES
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Hence all the hypothesis of Proposition 3.7 with M = M,(Q/e), ¢ = D¢ ci5, A = RN Ay =
K/e, and ¢ = ¢, is satisfied. Therefore

czzSp(l,g+5,[RN)+11>c1, (4.20)
and ¢, is a critical value. O
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