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We prove the existence and uniqueness of a strong solution for a linear third-order equa-
tion with integral boundary conditions. The proof uses energy inequalities and the den-
sity of the range of the operator generated.

1. Introduction

In the rectangle Ω= (0,1)× (0,T), we consider the equation

f (x, t)= ∂3u

∂t3
+

∂

∂x

(
a(x, t)

∂u

∂x

)
(1.1)

with the initial conditions

u(x,0)= 0,
∂u

∂t
(x,0)= 0, x ∈ (0,1), (1.2)

the final condition

∂2u

∂t2
(x,T)= 0, x ∈ (0,1), (1.3)

the Dirichlet condition

u(0, t)= 0 ∀t ∈ (0,T), (1.4)

and the integral condition

∫ 1

l
u(x, t)dx = 0, 0≤ l < 1, t ∈ (0,T). (1.5)
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In addition, we assume that the function a(x, t) and its derivatives satisfy the conditions

0 < a0 < a(x, t) < a1 ∀x, t ∈Ω,∣∣∣∣∂a∂x
∣∣∣∣≤ b ∀x, t ∈Ω,

c′k <
∂ku

∂tk
(x, t) < ck ∀x, t ∈Ω, k = 1,3, with c′1 > 0.

(1.6)

Over the last few years, many physical phenomena were formulated into nonlocal mathe-
matical models with integral boundary conditions [1, 9, 10, 11]. The reader should refer
to [13, 14] and the references therein. The importance of these kinds of problems has
also been pointed out by Samarskii [22]. This type of boundary value problems has been
investigated in [2, 3, 4, 6, 7, 8, 12, 18, 19, 20, 23, 25] for parabolic equations, in [21, 24]
for hyperbolic equations, and in [15, 16, 17] for mixed-type equations. The basic tool in
[5, 15, 16, 17, 20, 25] is the energy inequality method which, of course, requires appro-
priate multipliers and functional spaces. In this paper, we extend this method to the study
of a linear third-order partial differential equation.

2. Preliminairies

In this paper, we prove the existence and uniqueness of a strong solution of the problem
(1.1)–(1.5). For this, we consider the solution of problem (1.1)–(1.5) as a solution of the
operator equation

Lu=�, (2.1)

where the operator L has domain of definition D(L) consisting of functions u ∈ L2(Ω)
such that (∂k+1u/∂tk∂x)(x, t)∈ L2(Ω), k = 1,3 and satisfing the conditions (1.4)-(1.5).

The operator L is considered from E to F, where E is the Banach space consisting of
function u∈ L2(Ω), with the finite norm

‖u‖2
E =

∫
Ω
Θ(x)

[∣∣∣∣∂3u

∂t3

∣∣∣∣
2

+
∣∣∣∣∂2u

∂x2

∣∣∣∣
2
]
dxdt

+
∫
Ω
Θ(x)

[∣∣∣∣∂u∂x
∣∣∣∣

2

+
∣∣∣∣ ∂2u

∂t∂x

∣∣∣∣
2
]
dxdt

+
∫
Ω
Φ(x)

[∣∣∣∣∂u∂t
∣∣∣∣

2

+ |u|2
]
dxdt.

(2.2)

F is the Hilbert space of functions �= ( f ,0,0,0), f ∈ L2(Ω), with the finite norm

‖�‖2
F =

∫
Ω
Θ(x)

∣∣ f (x, t)
∣∣2
dxdt, (2.3)
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where

Θ(x)=

(1− l)2, 0 < x ≤ l,

(1− x)2, l ≤ x < 1,

Φ(x)=

0, 0 < x < l,

1, l ≤ x < 1.

(2.4)

3. An energy inequality and its application

Theorem 3.1. For any function u∈D(L), the a priori estimate

‖u‖E ≤ k‖Lu‖F for u∈D(L), (3.1)

where k2 = 40exp(cT)/k1 with k1 = inf{1/4,(c′3− 3cc′1 + 3c2c′1− c3a1− b2)/2, a2
0/2, (3/

2)(ca0− c1)}. The constant c satisfies

sup
(x,t)∈Ω

(
1
a

∂a

∂t

)
< c < inf

(x,t)∈Ω

(
1
a

∂a

∂t
+ 1
)

,

c′3− 3cc′1 + 3c2c′1− c3a1− b2 > 0,

c′2− 2cc′1 + c2a2
1 + ca0− c1 > 0.

(3.2)

Proof. Let

Mu=




(1− l)2 ∂
3u

∂t3
, 0 < x < l,

(1− x)2 ∂
3u

∂t3
+ 2(1− x)Jx

∂3u

∂t3
, l < x < 1,

(3.3)

where Jxu=
∫ x
l u(x, t)dx.

We consider the quadratic form obtained by multiplying (1.1) by exp(−ct)Mu, with
the constant c satisfying (3.2), integrating over Ω = (0,1)× (0,T), and taking the real
part:

Φ(u,u)= Re
∫
Ω

exp(−ct) f (x, t)Mudxdt. (3.4)



36 Three-point boundary value problem

By substituting the expression of Mu in (3.4), integrating with respect to x, and using the
Dirichlet and integral conditions, we obtain

Re
∫
Ω

exp(−ct) f (x, t)Mudxdt

=
∫ T

0

∫ 1

0
Θ(x)exp(−ct)

∣∣∣∣∂3u

∂t3

∣∣∣∣
2

dxdt

− 3
2

∫ T

0

∫ 1

0
Θ(x)exp(−ct)

[
∂a

∂t
− ca

]∣∣∣∣ ∂2u

∂x∂t

∣∣∣∣
2

dxdt

+
∫ T

0

∫ 1

0

Θ(x)
2

exp(−ct)
[
∂3a

∂t3
− 3c

∂2a

∂t2
+ 3c

∂a

∂t
− c3a

]∣∣∣∣∂u∂x
∣∣∣∣

2

dxdt

+
∫ T

0

∫ 1

l
exp(−ct)

∣∣∣∣Jx ∂3u

∂t3

∣∣∣∣
2

dxdt

− 2Re
∫ T

0

∫ 1

l
exp(−ct)a(x, t)u

∂3u

∂t3
dxdt

+
∫ 1

0
Θ(x)exp(−ct)a(x, t)

∣∣∣∣ ∂2u

∂x∂t

∣∣∣∣
2

dx|t=T

−
∫ 1

0
Θ(x)exp(−ct)

(
∂a

∂t
− ca

)
∂u

∂x

∂2u

∂x∂t
dx|t=T

−
∫ 1

0

Θ(x)
2

exp(−ct)
[
∂2a

∂t2
− 2c

∂a

∂t
+ c2a

]∣∣∣∣∂u∂x
∣∣∣∣

2

dx|t=T

− 2Re
∫ T

0

∫ 1

l
exp(−ct)∂a

∂x
uJx

∂3u

∂t3
dxdt.

(3.5)

Integrating by parts −2Re
∫ T

0

∫ 1
l exp(−ct)a(x, t)u(∂3u/∂t3)dxdt with respect to t, and us-

ing the initial conditions, the final conditions, and the elementary inequalities, we obtain

∫ T

0

∫ 1

0

Θ(x)
2

exp(−ct)
∣∣∣∣∂3u

∂t3

∣∣∣∣
2

dxdt

− 3
2

∫ T

0

∫ 1

0
Θ(x)exp(−ct)

[
∂a

∂t
− ca

]∣∣∣∣ ∂2u

∂x∂t

∣∣∣∣
2

dxdt

+
∫ T

0

∫ 1

0

Θ(x)
2

exp(−ct)
[
∂3a

∂t3
− 3c

∂2a

∂t2
+ 3c

∂a

∂t
− c3a

]∣∣∣∣∂u∂x
∣∣∣∣

2

dxdt

+
∫ T

0

∫ 1

l
exp(−ct)

∣∣∣∣Jx ∂3u

∂t3

∣∣∣∣
2

dxdt

+
∫ T

0

∫ 1

l
exp(−ct)

[
∂3a

∂t3
− 3c

∂2a

∂t2
+ 3c

∂a

∂t
− c3a

]
|u|2dxdt

− 3
2

∫ T

0

∫ 1

l
exp(−ct)

[
∂a

∂t
− ca

]∣∣∣∣∂u∂t
∣∣∣∣

2

dxdt

+
∫ 1

0

Θ(x)
2

exp(−ct)
[
a−

∣∣∣∣∂a∂t − ca
∣∣∣∣
]∣∣∣∣ ∂2u

∂x∂t

∣∣∣∣
2

dx|t=T
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−
∫ 1

0

Θ(x)
2

exp(−ct)
[
∂2a

∂t2
− 2c

∂a

∂t
+ c2a+

∣∣∣∣∂a∂t − ca
∣∣∣∣
]∣∣∣∣∂u∂x

∣∣∣∣
2

dx|t=T

+
∫ 1

0
Φ(x)exp(−ct)

[
a−

∣∣∣∣∂a∂t − ca
∣∣∣∣
]∣∣∣∣∂u∂t

∣∣∣∣
2

dx|t=T

−
∫ 1

0
Φ(x)exp(−ct)

[
∂2a

∂t2
− 2c

∂a

∂t
+ c2a+

∣∣∣∣∂a∂t − ca
∣∣∣∣
]
|u|2dx|t=T

≤ 17
∫ T

0

∫ 1

l
Θ(x)exp(−ct)| f |2dxdt.

(3.6)

From (1.1), we get

∫
Ω
Θ(x)a2

∣∣∣∣∂2u

∂x2

∣∣∣∣
2

dxdt

≤ 2
∫
Ω
Θ(x)

∣∣∣∣∂3u

∂t3

∣∣∣∣
2

dxdt+ 2
∫
Ω
Θ(x)

(
∂a

∂x

)2∣∣∣∣∂u∂x
∣∣∣∣

2

dxdt

+ 4
∫
Ω
Θ(x)| f |2dxdt.

(3.7)

Combining this last inequality with (3.6) and using the conditions (3.2) yield

∫
Ω
Θ(x)

[∣∣∣∣∂3u

∂t3

∣∣∣∣
2

+
∣∣∣∣∂2u

∂x2

∣∣∣∣
2
]
dxdt

+
∫
Ω
Θ(x)

[∣∣∣∣∂u∂x
∣∣∣∣

2

+
∣∣∣∣ ∂2u

∂t∂x

∣∣∣∣
2
]
dxdt+

∫
Ω
Φ(x)

[∣∣∣∣∂u∂t
∣∣∣∣

2

+ |u|2
]
dxdt

≤ k
∫
Ω
Θ(x)

∣∣ f (x, t)
∣∣2
dxdt,

(3.8)

which is the desired inequality. �

It can be proved in a standard way that the operator L : E→ F is closable. Let L be the
closure of this operator, with the domain of definition D(L).

Definition 3.2. A solution of the operator equation Lu=� is called a strong solution of
problem (1.1)–(1.5).

The a priori estimate (3.1) can be extended to strong solutions, that is, we have the
estimate

‖u‖E ≤ c‖Lu‖F ∀u∈D(L). (3.9)

This last inequality implies the following corollaries.

Corollary 3.3. A strong solution of (1.1)–(1.5) is unique and depends continuously on �.

Corollary 3.4. The range R(L) of L is closed in F and R(L)= R(L).
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Corollary 3.4 shows that to prove that problem (1.1)–(1.5) has a strong solution for
arbitrary �, it suffices to prove that set R(L) is dense in F.

4. Solvability of problem (1.1)–(1.5)

To prove the solvability of problem (1.1)–(1.5) it is sufficient to show that R(L) is dense
in F. The proof is based on the following lemma.

Lemma 4.1. Suppose that the function a(x, t) and its derivatives are bounded. Let u∈D0(L)
= {u ∈ D(L), u(x,0) = 0, (∂u/∂t)(x,0) = 0, (∂2u/∂t2)(x,T) = 0}. If for u ∈ D0(L) and
some functions w(x, t)∈ L2(Ω),

∫
Ω
h(x) f wdxdt = 0, (4.1)

where

h(x)=

1− l, 0 < x < l,

1− x, l < x < 1,
(4.2)

holds, for arbitrary u∈D0(L), and then w = 0.

Proof. The equality (4.1) can be written as follows:

∫
Ω
h(x)

∂3u

∂t3
wdxdt =

∫
Ω
A(t)uvdxdt, (4.3)

for a given w(x, t), where

v =



(1− l)w, 0 < x < l,

w−
∫ x

l

w

1− ζ
dζ , l < x < 1,

A(t)u= ∂

∂x

(
h(x)a(x, t)

∂u

∂x

)
,

Nv =

(1− l)v, 0 < x < l,

(1− x)v+ Jxv, l < x < 1.

(4.4)

For v = w− ∫ xl (w/(1− ζ))dζ , l < x < 1 we deduce
∫ x
l v(ζ , t)dζ = (1− x)

∫ x
l (w/(1− ζ))dζ ,

then
∫ 1
l v(ζ , t)dζ = 0.

Following [25], we introduce the smoothing operators with respect to t, (J−1
ε )= (I −

ε(∂3/∂t3))−1, and (J−1
ε )∗ = (I + ε(∂3/∂t3))−1 which provide the solution of the respective

problems:

uε − ε∂
3uε
∂t3

= u, uε(x,0)= 0,
∂uε
∂t

(x,0)= 0,
∂2uε
∂t2

(x,T)= 0,

v∗ε + ε
∂3v∗ε
∂t3

= v, v∗ε (x,0)= 0,
∂v∗ε
∂t

(x,T)= 0,
∂2v∗ε
∂t2

(x,T)= 0.

(4.5)
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And also, we have the following properties: for any u ∈ L2(0,T), the function J−1
ε u ∈

W3
2 (0,T), (J−1

ε )∗u∈W3
2 (0,T). If u∈D(L), J−1

ε u∈D(L).

lim
ε→0

∥∥J−1
ε u−u

∥∥
L2(0,T) = 0, lim

ε→0

∥∥(J−1
ε
)∗
u−u

∥∥
L2(0,T) = 0. (4.6)

Substituting the function u in (4.3) by the smoothing function uε and using the relation
A(t)uε = J−1

ε A(t)u + εJ−1
ε Bε(t)u, where Bε(t) = (3∂/∂t)((∂A(t)/∂t)(∂uε/∂t)) + (∂3A(t)/

∂t3)uε, we obtain

∫
Ω
uN

∂3v∗ε
∂t3

dxdt =
∫
Ω
A(t)uv∗ε dxdt− ε

∫
Ω
Bε(t)uv∗ε dxdt. (4.7)

The operator A(t) has a continuous inverse in L2(0,1) defined by

A−1(t)g =



− 1

1− l

∫ x

0

dζ

a(ζ , t)

∫ ζ

0
g(η)dη+

C1(t)
1− l

∫ x

0

dζ

a(ζ , t)
, 0 < x < l,

∫ x

l

−dζ
(1− ζ)a(ζ , t)

∫ ζ

l
g(η)dη+C2(t)

∫ x

l

dζ

(1− ζ)a(ζ , t)
+u(l), l < x < 1,

(4.8)

where

C1(t)= (1− l)u(l) +
∫ l

0

(
dζ/a(ζ , t)

)∫ ζ
0 g(η)dη∫ l

0

(
dζ/a(ζ , t)

) ,

C2(t)= −(1− l)u(l) +
∫ 1
l

(
dζ/a(ζ , t)

)∫ ζ
l g(η)dη∫ 1

l

(
dζ/a(ζ , t)

) .

(4.9)

Then we have
∫ 1
l A

−1(t)u = 0, hence, the function J−1
ε u = uε can be represented in the

form

uε = J−1
ε A−1(t)A(t)u. (4.10)

The adjoint of Bε(t) has the form

B∗ε (t)v = 1
a

(
J−1
ε
)∗ ∂3a

∂t3
v+

3
a

(
J−1
ε
)∗ ∂

∂t

(
∂a

∂t

∂v

∂t

)
−Gε(v)(x)

+

∫ x
0

(
dζ/a(ζ , t)

)
∫ 1

0

(
dζ/a(ζ , t)

)Gε(v)(1),
(4.11)

where

Gε(v)(x)=
∫ x

0

[
3
a

(
J−1
ε
)∗ ∂

∂t

(
∂2a

∂t∂ζ

∂v

∂t

)
− 3
a2

∂a

∂ζ

(
J−1
ε
)∗ ∂

∂t

(
∂a

∂t

∂v

∂t

)

+
1
a

(
J−1
ε
)∗ ∂

∂t

(
∂4a

∂t3∂ζ
v
)
− 1
a2

∂a

∂ζ

(
J−1
ε
)∗(∂3a

∂t3
v
)]

dζ.

(4.12)
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Consequently, equality (4.7) becomes

∫
Ω
uN

∂3v∗ε
∂t3

dxdt =
∫
Ω
A(t)uhε dxdt, (4.13)

where hε = v∗ε − εB∗ε (t)v∗ε .
The left-hand side of (4.13) is a continuous linear functional of u, hence the function

hε has the derivatives ∂hε/∂x, (1− x)(∂hε/∂x) ∈ L2(Ω), and the condition hε(0, t) = 0 is
satisfied.

From the equality

(1− x)
∂hε
∂x

=
[
I − ε 1

a

(
J−1
ε
)∗(∂3a

∂t3

)]
(1− x)

∂v∗ε
∂x

− 3ε
1
a

(
J−1
ε
)∗ ∂

∂t

(
∂a

∂t

∂

∂t
(1− x)

∂v∗ε
∂x

)
,

(4.14)

and since the operator (J−1
ε )∗ is bounded in L2(Ω), for sufficiently small ε, we have

‖ε(1/a)(J−1
ε )∗(∂3a/∂t3)‖<1. Hence, the operator I−ε(1/a)(J−1

ε )∗(∂3a/∂t3) has a bounded
inverse in L2(Ω). We conclude that (1− x)(∂v∗ε /∂x)∈ L2(Ω). Similarly, we conclude that
(∂/∂x)((1− x)(∂v∗ε /∂x)) exists and belongs to L2(Ω), and the condition v∗ε (0, t) = 0 is
satisfied.

Putting u= ∫ t0 ∫ ζ0 ∫ Tη exp(cτ)v∗ε dτ dηdζ in (4.3), where the constant c satisfies (3.2) and
using the proprieties of smoothing operator, we obtain

∫
Ω

exp(ct)v∗ε Nvdxdt =−
∫
Ω
A(t)uv∗ε dxdt− ε

∫
Ω
A(t)u

∂3v∗ε
∂t3

dxdt, (4.15)

and from

− ε
∫
Ω
A(t)u

∂3v∗ε
∂t3

dxdt

= 3
∫
Ω
h(x)exp(−ct)∂

2a

∂t2

∣∣∣∣ ∂3u

∂t2∂x

∣∣∣∣
2

dxdt

− 3
∫
Ω
h(x)exp(−ct)

[
∂3a

∂t3
− c

∂2a

∂t2

]
∂3u

∂t2∂x

∂2u

∂t∂x
dxdt

+ 3
∫ 1

0

h(x)
2

exp(−ct)∂a
∂t

∣∣∣∣ ∂3u

∂t2∂x

∣∣∣∣
2

dx|t=T

+ 3
∫ 1

0

h(x)
2

exp(−ct)
[
∂2a

∂t2
− c

∂a

∂t

]∣∣∣∣ ∂2u

∂t∂x

∣∣∣∣
2

dx|t=T

−
∫
Ω
h(x)exp(−ct)a

∣∣∣∣∂3v∗ε
∂t3

∣∣∣∣
2

dxdt

−
∫
Ω
h(x)exp(−ct)∂

3a

∂t3

∂u

∂x

∂3u

∂t2∂x
dxdt,

(4.16)
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we have

− εRe
∫
Ω
A(t)u

∂3v∗ε
∂t3

dxdt

≤ ε

{
3
∫
Ω
h(x)exp(−ct)

[
∂2a

∂t2
+

1
2

∣∣∣∣∂3a

∂t3
− c

∂2a

∂t2

∣∣∣∣
]∣∣∣∣ ∂3u

∂t2∂x

∣∣∣∣
2

dxdt

+
3
2

∫
Ω
h(x)exp(−ct)

[
∂2a

∂t2
− c

∂a

∂t
+
∣∣∣∣∂3a

∂t3
− c

∂2a

∂t2

∣∣∣∣
]∣∣∣∣ ∂2u

∂t∂x

∣∣∣∣
2

dxdt

−
∫
Ω
h(x)exp(−ct)a

∣∣∣∣∂3v∗ε
∂t3

∣∣∣∣
2

dxdt

+
3
2

∫
Ω
h(x)exp(−ct)

∣∣∣∣∂3a

∂t3

∣∣∣∣
∣∣∣∣∂u∂x

∣∣∣∣
2

dxdt

+
1
2

∫
Ω
h(x)exp(−ct)

∣∣∣∣∂3a

∂t3

∣∣∣∣
∣∣∣∣ ∂4u

∂t3∂x

∣∣∣∣
2

dxdt

+
1
2

∫
Ω
h(x)exp(−ct)∂a

∂t

∣∣∣∣ ∂3u

∂t2∂x

∣∣∣∣
2

dxdt

}
.

(4.17)

Integrating the first term on the right-hand side by parts in (4.15), we obtain

− εRe
∫
Ω
A(t)uv∗ε dxdt

= 3
2

∫
Ω
h(x)exp(−ct)

[
∂a

∂t
− ca

]∣∣∣∣ ∂2u

∂t∂x

∣∣∣∣
2

dxdt

−
∫
Ω
h(x)exp(−ct)

{
∂3a

∂t3
− 3c

∂2a

∂t2
+ 3c2 ∂a

∂t
− c3a

}∣∣∣∣∂u∂x
∣∣∣∣

2

dxdt

−
∫ 1

0

1
2
h(x)exp(−ct)a

∣∣∣∣ ∂2u

∂t∂x

∣∣∣∣
2

dx|t=T

+
∫ 1

0

1
2
h(x)exp(−ct)

{
∂2a

∂t2
− 2c

∂a

∂t
+ c2a

}∣∣∣∣∂u∂x
∣∣∣∣

2

dx|t=T

−
∫ 1

0
h(x)exp(−ct)

{
∂a

∂t
− ca

}
∂u

∂x

∂2u

∂t∂x
dx|t=T .

(4.18)

This last equality gives

− εRe
∫
Ω
A(t)uv∗ε dxdt

≤−
∫ 1

0
h(x)exp(−ct)

∣∣∣∣∂a∂t + a− ca
∣∣∣∣
∣∣∣∣ ∂2u

∂x∂t

∣∣∣∣
2

dx|t=T

+
∫ 1

0

1
2
h(x)exp(−ct)

{
∂2a

∂t2
− 2c

∂a

∂t
+ c2a+ ca− ∂a

∂t

}∣∣∣∣∂u∂x
∣∣∣∣

2

dx|t=T .

(4.19)

By using the conditions (3.2), inequalities (4.17) and (4.19), we obtain

Re
∫
Ω

exp(ct)v∗ε Nvdxdt ≤ 0 as ε −→ 0. (4.20)
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This implies Re
∫
Ω exp(ct)(v∗ε − v)Nvdxdt+ Re

∫
Ω exp(ct)vNvdxdt ≤ 0, that is,

∫ T

0

∫ l

0
exp(−ct)(1− l)|v|2dxdt

+
∫ T

0

∫ 1

l

∫ l

0
exp(−ct)(1− x)|v|2dxdt+

∫ T

0

∫ 1

l
exp(−ct)∣∣Jxv∣∣2

dxdt

+
∫ T

0

∫ l

0

1− l

2l
exp(−ct)∣∣Jxv∣∣2

dxdt ≤ 0.

(4.21)

Then v = 0.
Finally from (4.4), we conclude w = 0. �

Theorem 4.2. The range R(L) of L coincides with F.

Proof. Since F is Hilbert space, then R(L)= F if and only if the relation
∫
Ω
Θ(x) f g dxdt = 0 (4.22)

holds.
Arbitrary u∈D0(L) and �= ( f ,0,0,0)∈ F implies f = 0. Taking in (4.22), u∈D0(L),

and using Lemma 4.1, we obtain

w =

(1− l)g, 0 < x < l,

(1− x)g, l < x < 1,
(4.23)

then g = 0. �
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