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We investigate here the properties of extremal solutions for semilinear elliptic equation
—Au = Af(u) posed on a bounded smooth domain of R” with Dirichlet boundary con-
dition and with f exploding at a finite positive value a.

1. Introduction

We consider the following semilinear elliptic problem:

(Py)
—Au=2Af(u) inQ,
u>0 inQ, (1.1)
u=0 onoQ,

where A >0, Q C R” is a bounded smooth domain and f satisfies the following

condition:
(H) f is a C? positive nondecreasing convex function on [0, o) such that
t
m & = 400, (1.2)
t—4oc0

It is well known that under this condition (H), there exists a critical positive value A* €
(0,0) for the parameter A such that the following holds.

(Cy) Forany A € (0,A*), there exists a positive, minimal, classical solution u, € C*(Q).
The function u, is minimal in the following sense: for every solution u of (P)), we have
uy < uon Q. In addition, the function A — u) is increasing and A1 (—A — A f"(uy)) >0, for
example, for any ¢ € H(Q)\ {0},

AL}f’(u;L)goz dx < JQ IV o|2dx. (1.3)

(C,) For any A > A*, there exists no classical solution for (Py).
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2 On the extremal solutions of semilinear elliptic problems

When A tends to A*,

* =i 1.4
' = limw (1.4)
always exists by the monotonicity of u,. In [3], Brezis et al. have introduced a notion
of weak solution as follows: we say u is a weak solution for (Py) if u € L'(Q), u > 0,
f(u)d € LY(Q) with §(x) = dist(x,00Q), and

J u(—AE)dx=/\J Fwédx, (1.5)
Q Q

for all £ € C2(Q), &|yq = 0. They then proved the following.

(Cs) u* is always a weak solution of the problem (Py+), and for A > A* no solution
exists even in the weak sense.

Later, Martel proved in [6] that u* is the unique weak solution of (P ), the so called
extremal solution.

The typical examples are when the nonlinearity of f is either exponential f(u) = e
or power-like f(u) = (1+u)?, p>1 (see [4, 5, 7]). For f(u) = e", u™ is smooth when
n<9,ifn =10, u™ = —2In|x| is the extremal solution on B;(0). When f(u) = (1+u)?, if
n<n,=6+4(1+p(p—1))/(p—1), u* is regular, and for n = np, u* = |x| =¥~V -1
is the extremal solution on B;(0). An immediate consequence is that with any p > 1 and
n <10, u* is a smooth solution. It is natural to ask the following question: for small
dimension n, is u* always a classical solution for any function f satisfying (H) and any
domain O € R"? Nedev in [9] and Ye and Zhou in [10] had given some partial answers
to this question.

TaEOREM 1.1 [9]. Suppose that f satisfies (H), then for n = 2 or 3, u™ is always a classical
solution. Moreover, when n = 4, u* € L1(Q), for any q < n/(n —4) and f(u*) € L1(Q), for
any q<n/(n—2).

Tueorem 1.2 [10]. Let f verify (H), rewrite f(t) = f(0) + teS"). Assume that there exists

to positive such that t*g' (t) is nondecreasing in [ty, ), then for any Q C R" withn <9, u*
is a classical solution.

On the other hand, Brezis and Vazquez have given a characterization of unbounded
extremal solutions in H} (Q) as follows: if v € H}(Q) is an unbounded weak solution of
(Py) with A > 0 and satisfying the stability condition

Af f'(v)godesJ IVol2dx, Vo e Ci(Q), gla = 0; (1.6)
Q Q

then A = A* and v = u*. They remarked also that there exist unbounded weak solutions
which satisfy (1.6), but do not belong to H{ (2), and which are not extremal solutions.

In this paper, we investigate some similar problems with f exploding at a finite positive
value a. More precisely, let f satisfy the following condition:

(H') f isa C! positive, nondecreasing, convex function on [0,a) with a € (0, %) and

lim £(£) = +eo, (1.7)
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We consider the following problem:

(Ex)
—Au=Af(u) inQ,
ue(0,al inQ, (1.8)
u=0 onodQ.

By the work of Mignot and Puel (see [7]), we have always a critical value A* € (0, o0) such
that for any A € (0,A*), there exists a positive, minimal, classical solution uy € C*(Q),
that is, u) < ain () and for A > 1*, no classical solution exists. The aim of this work is to
study the propriety of the solution of (E)) at the extremal value A = A* and to prove the
nonexistence of weak solution when A > A*. We define that w is a weak solution of (E)),
if w € L'(Q,[0,4a]) such that f(w)d € L'(Q), and for all { € C*(2), with { = 0 on 09,

—JQwA(:)LL)f(w)(. (1.9)

Similarly, we say that w is a weak supersolution of (E)), if w € L'(Q,[0,a]), such that
(Aw)é € L' (Q), and for all { € C%(€)), { = 0 with { = 0 on 09,

—JQwA(zAIQf(w)(. (1.10)

Our main results are the following.
TueoreM 1.3. Given f satisfying (H'), if A > A*, then there is no weak solution of (E)).
THEOREM 1.4. The function u® = limy_+ uy is the unique weak solution of (Ey+ ). Moreover,

for any ¢ € C'(Q) with ¢ = 0 on 9Q),

/\*J f’(u*)(pzdxsj |Vol|*dx. (1.11)
o o

THEOREM 1.5. Assume that v € H}(Q) is a weak solution of (E)) for some A > 0, assume
also that sup,(v) = a and

A fwgtde< | vl (112)
Q Q
forall g € C1(Q)), ¢ =0 0n 0Q, then A = A* and v = u*.

2. Proof of Theorem 1.3
In fact, Theorem 1.3 is deduced from a general result, which is the following proposition.
ProposITION 2.1. Given g satisfying (H'), if there exists a weak solution w of

-Aw=g(w) inQ,

w=0 onodQ, (2.1)
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then, for any € € (0, 1), there exists a classical solution w, of

—Awe = (1-€)g(w:) inQ,

2.2
w, =0 onoQ. (2.2)

For the proof of this result, we need the following lemmas which are proved in [3].

LEMMA 2.2. Given g € L'(Q,8(x)dx), there exists a unique v € L'(Q) which is a weak
solution of

-Av=g inQ,

v=0 onoQ, (2.3)

where ||Vl < Cligllii e dx), for some C constant independent of g. In addition, if g = 0
a.e. in Q, thenv = 0 a.e. in Q.

LemMA 2.3. Assume g(0) >0 and set

o ds
h(u) = jo s (2.4)

forall 0 < u < a. Let § be a C' positive function on [0,a) such that § < g and g’ < g'. Set

- “ ds -
A(w) = JO qo Q=i mw), (2.5)

forall u € [0,a]. Then,

(1) ©(0)=0and0<D(u) <uforall0<u<a,
(ii) @ is increasing, concave, and @' (u) < 1 forall0 < u < q,
(iii) h(a) < 0o and ®(a) < a, if§ # g in [0,a].

Proof. Ttis easy to see that (i) and (iii) hold. We prove (ii), in fact ®' (1) = (P (u))/g(u) >
0, and

D" (u)

_ g (O(w)) @' (u) - g(P(w))g' (u) _ g(P(w)) (g (P(w)) —g'(u)) (2.6)
) .o

g(u)? - g(u)?
Since ¢'(D(u)) < g'(P(u)) < g’ (u), it follows that @ is concave, which completes the
proof. O

Proof of Proposition 2.1 and Theorem 1.3. Choosing ¢ = (1 — ¢)g in Lemma 2.3 and de-
note by v = ®(w), where w is the weak solution of (2.1) and using an approximating
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argument for w, we get
—J VAC = — J D(0)AC = — J AD(w){ = —J [0 (0)Aw + D" ()| Vol2]¢
Q Q Q Q

(2.7)
> | @wg = | g@@)i= | a-ogm)1
Q Q Q

for any { € C'(Q), { = 0 with { = 0 on 9Q. Hence, v is a weak supersolution of (2.2).
The result of Proposition 2.1 follows by standard barrier method as follows. We define a
sequence (wk)k=0 by

—Awgy = (1-¢&)g(wr) inQ,
" & (2.8)
wri1 =0 onodQ,

for k € N, with wy = v. Using Lemma 2.2, it is easy to check that wx > wi41 = 0, for all
k € N, so the sequence wy is nonincreasing and converges in L' (Q) to a weak solution u
of (2.2). Since supg(u) < supg(v) < a, u is a classical solution, Proposition 2.1 is proved.
Theorem 1.3 is deduced by taking ¢ = A f in Proposition 2.1. For any A > 1*,let e € (0,1)
such that A* < (1 — ¢€)A < A, since there is no classical solution of

—Aw; =(1-e)Af(we) inQ,

ws =0 onoQ, (2.9)

it follows by Proposition 1.3 that there is no weak solution of (E)). O

3. Proof of Theorem 1.4
We know that u™* is the increasing limit of classical solution u, with positive first eigen-

value, that is, for any ¢ € C!(Q) with ¢ = 0 on 9Q,

Ajﬂf’(m)wdx < JQIVq)Ide. (3.1)

Passing to the limit, the inequality (1.11) holds. To prove the uniqueness, we will in fact
also prove a slightly stronger result.

ProposiTION 3.1. Let v € L'(Q,[0,a)) be a weak supersolution of (Ey«), then v = u*.

Proof. We proceed in two steps. First, we show that v is a weak solution of (E,«). Next,
we prove that if v # u*, then we obtain a contradiction.

Step 1. Suppose that v is not a weak solution of (Ej+), then we can assume that there
exists f > 0 and & € C*(Q)), & > 0, with &/5q = 0 such that

_ J VAE = 1F j FWE +B, (3.2)
Q Q

it follows that there exists a nonnegative measure y # 0, with yé bounded on Q, such that

_ L VAE = L) (W F(v) + w)E, (3.3)



6  On the extremal solutions of semilinear elliptic problems
for all £ € C2(Q) with &[5 = 0. Consider ¢ and y, the solutions of

-Ap=y inQ, =0 ondQ,

-Ay=1 inQ, x=0 onoQ. (34)
By u # 0, it follows from the properties of the Laplacian that there exists ¢ > 0 such that
ey < ¢.Setz=v+ey — ¢ <v. Then, since f is nondecreasing,

- JQ ZAE = JQ (W f(v) + )€ = JQ (M f(2) + )&, (3.5)

for all £ € C2(Q), & = 0, with & |aQ = 0. This means that z is a weak supersolution for
—Aw = g(w), where g(v) = A* f(v) + &. Using the proof of Proposition 2.1 and Lemma 2.3
with §(v) = A* f(v) + &/2, we can get a classical solution v; of

—Avy =A% f(v1) + (%) in Q,

y1 =0 onodQ.

(3.6)

Moreover, there exists a > 0, such that 2av, < ey. Set z = v; + av; — (&/2)y. It is clear that
0 <z < and z satisfies —Az > (1 + a)A* f(v1) = (1 + @)A* f(2) in Q. Thus, the classical
barrier method gives a solution of (E(+q)1+), which contradicts then the definition of 1*,
so v is a solution of (Ej«).

Step 2. Clearly, v > u) for any A < A*, hence v = u*. Suppose that v # u*, take ¥ = f(v) —
f(u*) =0, it is clear that ¥8 € L'(Q). We have then ¥ # 0, because otherwise f(v) =
f(u*) a.e. on Q, and Lemma 2.2 will give v = u* a.e. on Q. Let g be the weak solution of

-Ag=¥Y inQ,
(3.7)
g=0 onodQ.
By the maximum principle, we have g > ¢ on Q for some ¢ > 0. Hence,
—J (v—u*-1*g)AE =0, (3.8)
Q

for all £ € C2(Q), with &|3q = 0. We obtain by Lemma 2.2 that v — u* = 1*g > 1*¢6 a.e.
on Q, set Z = (v+u*)/2, then

—JQZAE - % JQ (F) + f(u*))E = A L} (f(Z)+h)E > A% Jﬂf(Z)E (3.9)

for all £ € C*(Q), & > 0, with &|3q = 0, where h is given by

_ %(f(y)+f(u*)) (”” ) L* dsLW "(0)do.  (3.10)
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Clearly, hd € L'(Q). Suppose first that h = 0, then "' (o) = 0if 0 € [u*,v], hence f(0) =
f(0)+ f'(0)o on Uxeq[u* (x),v(x)] = [0,supg v], since v > u* in Q. Then, if sup, v = g,
we obtain a contradiction by (1.7), and if sup, v < a, both ™ and v are classical solutions
of a linear problem with f(¢) = A + Bt for which the uniqueness is known (see, for in-
stance, [8]). If h # 0, it follows that Z is a strict supersolution of (E)+) and we obtain also
a contradiction by Step 1. 0

4, Proof of Theorem 1.5

Suppose that A < A*. We observe that by a density argument, the inequality (1.12) holds
for every ® € H{(Q). Taking @ = v — uy in (1.12), we get

AJQf'(V)(v— w) dx < L) [V (v—u) |2dx =/\L) [f(v)= f(m)](v—w)dx, (4.1)
that is,
AJQ [f) = f(w) = f ) (v—u)](v—w)dx > 0. (4.2)

Since f is convex and v = uy, we get f(v) = f(uy) + f'(v)(v —uy) a.e. on Q. Hence, f
must be linear in the interval [u)(x),v(x)] for a.e. x € Q. If v > uy, we get that f is linear
in Ux[u(x),v(x)] = [0,sup,v) = [0,a), which contradicts (1.7). So, v = uy, as v is not a
classical solution, we get a contradiction, so A = A*. The similar argument with (1.11)
shows that v = u*.

5. Application

Now, we consider a special case f(u) = 1/(1 — u)? with p > 0and Q = B;(0), this problem
was studied by Brauner and Nicolaenko in [1, 2]. When p = 1, this equation appears as
a limit of some problem of disruption in biochemistry; it allows then to justify some
phenomenon in kinetic enzymatic and the kinetic of reactors associated to some limit
coat. For n > 2, we know an explicit weak solution

U(x) =1 |x[¥#*D, (5.1)

which is obviously in Hj (Q), it corresponds to the parameter value

4 _2 (. 2P
Mo, p) = p+1(n p+1> >0, (5.2)

The linearized operator is

__pap_ 2P, 2P \©
Lo = A0 p+1<n p+1)r2’ (5.3)
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where r = |x|. By Theorem 1.5, U is the extremal solution if and only if for any ® €
H, (Q),

2
2_P<n_ 2_P> @ J V0| 2dx. (5.4)
p+1 p+1/Jpr: ~

Thanks to Hardy’s inequality, this holds if and only if (see [4])

2p (2 _(n-2p
p+1<n p+1)SH_ 4 (5.5)

Thus, we have the following proposition.

ProposiTiON 5.1. Forany p >0, let

2
no(p) = ﬁ[(3p+1)+z,/p(p+1)]. (5.6)

Then,
(i) ifn=no(p), u*(x) =1 — |x|¥P*D, and \* = A%;
(i) if n < no(p), A* >A?* and u* is smooth.

Proof. By an easy computation, we have that n > ny(p) is equivalent to (5.5), so (i) is
proved by Theorem 1.5. The proof of (ii) is given in [7]. O

We remark that when p tends to 0, no(p) tends to 2. So, for any n > 3, we can meet
some nonlinearities f (by choosing appropriate p) such that the extremal solution is no
longer classical, this fact is different from the situation for a = co, if we compare with the
results in [9, 10]. Thus, a natural question is raised, for f satisfying (H") and Q) bounded
smooth domain in R2, do we have always that u* is a classical solution?
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