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BOUNDS FOR VANDERM ONDE TYPE DETERMINANTS OF ORTHOGONAL
POLYNOMIALS*

GERHARD SCHMEISSERT

Abstract. Let (Pn)nen, be a system of monic orthogonal polynomials. We establish upper and lower esti-
mates for determinants of the form

Pn(z1) ... Ppyp—1(z1)
Va(z1,...,2,) = det :

Pn(zi) ... Pagr—1(2zk)

For the proofs, we have to study the monic orthogonal system (PJL"“])%NO obtained by inserting the polynomial
w(x) := [[*_, (¥ — z.,) as a weight into the inner product defining (Pn)nen,- We also express the recurrence

v=1
[w]

formula for (Pp,"")nen, in terms of Vandermonde type determinants.
Key words. Vandermonde type determinants, orthogonal systems, polynomial weights, inequalities.
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1. Introduction and statement of results. First we want to introduce some terminol-
ogy for orthogonal polynomials, referring to [1, 2, 7] for standard results.

We denote by o an m-distribution, that is, a non-decreasing bounded functiono : R —
R which attains infinitely many distinct values and is such that the moments

JTES / " do(x) (n € Ny)
exist. Then there exists a uniquely determined sequence of polynomials
Py(z), Pi(2), ..., Pu(2), ...,
called the sequence of monic orthogonal polynomials with respect to do(z), with the follow-

ing properties:
(i) each P, is amonic polynomial of degree n;

(i) (Pn,Pnm) = [T Pu(2)Pn(z)do(z) =0 for m#n.
For any polynomial f, we define the norm

(L1) HM:—</mLﬂ@Fdd®>U2

— 00

and introduce the numbers

(12) Yo = PP (n€Ny).

The system (P, )nen, Satisfies a recurrence formula

(1.3) Po(z) = (# —on)Pao1(x) = Bn1Pr2(z)  (n€N),
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where P_;(z) =0, Py(z) =1, 8o = 1, and

(1.4) ap = ! / zP? | (z)do(z) and B3, = n (n € N);
Tn—1 J -0 Tn—1

see [7, §3.2].
It is known that the polynomials P,, (n € N) have only real zeros. Denoting by J,, the
smallest interval containing the zeros of P,,, we introduce the n-th distance function

(1.5) dn(2) == min{|z—¢| : (€ Jn} (z€C).
Since the zeros of consecutive orthogonal polynomials interlace, we have

di(z) > da(z) = -+ = dup(2) = -+ > |9z].

In this paper, we want to estimate the following generalized VVandermonde type determi-
nants:

P,(z1) Payi1(z1) ... Poyr—1(z1)
(1.6) Vi(z1, ..o, 2k) = det :

Po(zt) Poyi(zx) .. Pogr—1(zx)
It is easily seen that V(z1, ..., 2x) is equal to the classical Vandermonde determinant of
z1, ..., 2k. In fact, each polynomial P,, may be written as

m—1
Pm(Z) =zm + Z Cmupu(z)v
pn=0

with certain constants c,,,,. Hence, if we add to each column in (1.6) an appropriate linear
combination of its predecessors, and do it first for the last column, then for the last but one
and so on, we find that

1 =z ... 2f71
.7 Vo(z1,.. oy 2k) = det [ 0 ¢ = H (zj — Zg) )
R 1<t<i<h
There is no simple explicit formula for V;,(z1, . . ., zx) when n > 1, and therefore we are

interested in bounds for these determinants.
It is usually not a big problem to find some upper bound for a determinant. For sake of
completeness, we present the following result.

PROPOSITION 1.1. Let z1,..., 2z, € C. Then, with the preceding notations,

1/2

k
(1.8)  [Val(z1,-- 5 z0)l < [ Ww¥nt1 s Ynrk—1 H (Amk(zj) - An(zj)) ;
j=1

where
1
— (P (2)Pn—1(2) — Pn(2)P.,_1(2) if ze R
A(2) = 7’”‘1( ) (m € N).
" 1 S{Pu(2)Pu-1(2)}

if C\R
Tm—1 Sz € \
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Moreover, for any z € C,

2

P, 1 P,
(1.9 min m(2) < An(z) < max m(2)
Ym—1 1<ps<m |2 — Ty Ym—1 1<p<m |2 — Zy,
where 1, ..., x,, are the zeros of P,,.

Lower estimates for determinants in general and for our Vandermonde type determinants
in particular are much more delicate. We shall establish a lower bound for the modulus of

(110) Vn+1(21,...,zk)

Va(z1, -0y 2k)
Used repeatedly for n, n — 1, n — 2, ... and combined with (1.7), it allows us to estimate
[Vig1(z1, ..., 21)| for n € Ny from below. Here we admit that some (or all) of the points
z1,. .., 2, May coalesce. In this case, we define the quotient (1.10) by continuous continua-
tion. More precisely, if z;, = z;, = --- = z;,, then we replace the polynomials in the j;-st,

jo-nd, ..., je-th row in (1.6) by their first, second, ..., ¢-th derivative.

As usual, we shall denote by | x| the largest integer not exceeding x. We are now ready
for presenting the main result.

THEOREM 1.2. Let (P,)nen, be a sequence of monic orthogonal polynomials with as-
sociated intervals .J,,, constants -, and distance functions d,, (n € N) as specified in (1.2)-
(1.5). Let w(z) = H’;zl(:c — z;) be a real polynomial which has no zero in J,, 1 |x/2)+1-
Denote by m4 and ma the number of zeros (counted according to their multiplicities) in the
left and the right component of R\ J,,4 12|41, respectively, Define

0 if my and moy are both even,
m = 1 if exactly one of the numbers m; and ms is odd,
2 if my; and msy are both odd,

and ¢ := (k —m)/2. Suppose that

dn+\_k/2j+l(zj) >r (.] = 17"'ak)7

with » > 0. Then, for the determinants (1.6),

rm &
__ <)7n+l jTJ

Remark 1. Note that m = 0 if w(x) does not change sign on R. Furthermore, when
m = 0, then the right-hand side of (1.11) remains positive even if » — 0. Therefore (1.11)
holds with a positive lower bound even if w(x) has zeros on .J,,; /2|41 provided that their
multiplicities are even and m = 0. However, if w(x) changes sign on J,, ;| /2)+1, then the
left-hand side of (1.11) may vanish, and so we cannot have a non-trivial lower bound.

The proof of Theorem 1.2 will show that (1.11) can be refined by working with individual
bounds r; instead of r such that d,, ; |2 +1(2;) > forj=1,... k.

Remark 2. At the conference in Inzell (3rd Workshop ‘Orthogonal Polynomials, Ap-
proximation, and Harmonic Analysis’, April 2000), Michael Skrzipek gave a lecture on the
inversion of Vandermonde type matrices of orthogonal polynomials. Theorem 1.2 includes a
sufficient condition for invertibility.

Vn+1(21,...,z )

(1.11) AC
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Remark 3. The proof of Theorem 1.2 rests on repeated application of Lemmas 2.2 and
2.3 given in §2 below. In the proofs of these lemmas, all considerations are based on equa-
tions. It is only at the end that a lower bound is deduced from a mean value. We can as well
deduce an upper bound from that mean value and establish an inequality analogous to (1.11),
but in the opposite direction. More precisely, we can proceed as follows. Analogously to
(1.5), we define

Dy(z) == max{|z—(| : (€ Jn} (z€C).
Then
Di(2) < Do(2) < -+ < Dp(2) < ---.
Now suppose that in the situation of Theorem 1.2, we have
Doy irj2j+1(z) <R - (j=1,...,k).

Then, for the determinants (1.6),

Y4

m Y 2
S - ) ne—j R
T g\

Vn+1(z1, .. .,Zk)

(1.12) A

Remark 4. Except for trivial cases, inequality (1.11) is not sharp. In view of Remark 3
and an analysis of the proofs given below, we find that the precision of (1.11) depends on
the length of J,, /241 If this interval is relatively small, then the estimate (1.11) is quite
accurate. If J,, | |1/2)4+1 Is unbounded as n — oo, then (1.11) will be less accurate when n is
large, but it will be non-trivial nevertheless.

The proof of Theorem 1.2 will show that the points z1, ..., z; can be involved succes-
sively as real singles and pairs of conjugates. Therefore the location of these points, relative
to one another, is not crucial for the accuracy of (1.11). This may be surprising since, on the
left-hand side of (1.11), the numerator and the denominator tend to zero as two of the points
z1,- .., 2k approach each other.

If in Theorem 1.2 the hypothesis on w(z) holds for some n € N, then it automatically
holds for all smaller indices n, and m and ¢ do not change when n is reduced. This al-
lows us to deduce the following lower estimate for |V;,11(21, - . ., 2 )| by iterating (1.11) and
employing (1.7).

COROLLARY 1.3. Suppose that in the statement of Theorem 1.2 the hypothesis on w(x)
holds for some n € N. Then, introducing the polynomials

4
o) = 3 ()20 =),
=0 J %

we have

Vir(z1,oz)| 2 T o) [ 12—
v=0

1<i<j<k

n
> pm(ntl) H Tv+e H 2 — 2] .
v=0

v
v 1<i<j<k



ETNA

Kent State University
etna@mcs.kent.edu

BOUNDS FOR VANDERMONDE TYPE DETERMINANTS 155

For the proof of Theorem 1.2, we shall employ another orthogonal system which reveals

why the determinants V,,(z1, . . ., zx) are of interest.
Let w(z) = Hle(a: — z,) be a real polynomial which is non-negative on the real line.

Then there exists a uniquely determined sequence of monic orthogonal polynomials
(1.13) PMz), PM(2), ..., P(2), ...

with respect to w(z)do(x). We want to distinguish all the quantities associated with this
system from those associated with (P, ),cn, by attaching a superscript [w]. Thus

W= [ (P@) e aota),

[w

11 is the smallest interval containing the zeros of ri* and @i’ (z) is the distance of z from
[w]

In 1858 already, Christoffel had observed (in the case where o(x) = z) that

1 k Vn(x721,...,zk)
V(21,0 2k)

see [7, § 2.5], where the result is given for general o.

When w(z) changes sign on the real line, then w(z)do(2) may not be an admissible
differential for defining an inner product in the space of polynomials. But if w(x) is non-
negative on J,, 1| x/2+1, then w(x)do(x) is admissible for the subspace P,, consisting of all
polynomials of degree at most n. In fact, for any f, g € P, the integral

(1.14) w(z) P (z) = ( (n € Np);

(L15) / " @)@ w() do(z)

can be calculated by means of the Gaussian quadrature formula [7, § 3.4] whose nodes are the
zeros of P, |x/2)+1, and so we need only the restriction of w to J;, /241 Thus we find
that (1.15) defines an inner product on P,, and that the polynomials

(1.16) P (z), PM(2), ..., PI)(z),

as given by (1.14), form an orthogonal basis for P,,. Moreover, if the support of do(z) is
contained in an interval J (such an interval is called an interval of orthogonality) and w(x) is
non-negative on J, then (1.14) defines an infinite sequence of orthogonal polynomials.

If, in the previous paragraph, w(x) is non-positive on J,, ;| 2)+1 (respectively, on
J), then the polynomials (1.16) (respectively, those in (1.13) with unrestricted n), exactly
as defined by (1.14), form a sequence of monic orthogonal polynomials with respect to
—w(z)do(x).

In order to establish the recurrence formula for the system (P,[f”])neNo, we need a mod-

ification of the determinants V,,(z1, ..., zx). We denote by V*(z1,..., zx) the determinant
obtained from V,,(z1, ..., z) by replacing the index n of the polynomials in the first column
by n — 1, that is,

P, 1(z1) Poti(z1) ... Pogr—1(z1)
(1.17) Vi (z1,...,25) = det :
Po_1(zk) Pogi(zk) ... Pogr—1(zr)
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THEOREM 1.4. Let (P,)nen, be @ monic orthogonal system satisfying a recurrence
formula

Po(z) = (z — o) Pu1(2) — Brn-1Pn—2(x) (n€N)

with P_;(x) = 0 and Py(z) = 1. Let J be an interval of orthogonality, and suppose that
w(x) = Hle(x — z;) is a real polynomial that does not change sign on .J. Then

(1.18) P(z) = (z— ol PM (2) - g P (@) (neN)

with P)(z) = 0, P["!(z) = 1, and

Ve (21,05 2k) Vi (z1, .-y 2k)

1.19 a[w] =, + O n—1 ’ i — B, ) ) 7

( ) " 6 1Vn_1(21,...,2’k) ﬂ Vn(zl,...,zk)
Vn+1(zl7"'azk)vn—1(zla'-'7Z]€)

(1.20) gl = g,
(Vn(zl, P ,Zk))z

Note that /6’([)”] is not needed and may therefore be arbitrarily defined.

While (1.19) and (1.20) give explicit representations for ay;”] and ﬁ,[lw], Gautschi [3]
proposed an algorithm for a recursive computation of these quantities. However, as far as the
computation of the polynomials plv (x) is concerned, Skrzipek [6] pointed out that the use of
the recurrence formula (1.18) may have disadvantages. He proposed an alternative approach.

In [5], we have proved several inequalities for %[Z“”] and ||P,[{“”]|\; see [5, Lemmas 3-
5]. They imply further inequalities for V,,(z1, ..., z) and its modifications. Some of these
inequalities are sharp.

2. Lemmas. Continuing in using the notations of § 1, we shall prove the following aux-
iliary results.

LEMMA 2.1. Let P, and P,.; be consecutive monic orthogonal polynomials, and

denote by x4, ..., x,41 the zeros of P, ;. Then
P(z) 1,
2.1 = h v =1,..., 1
(2.1) P () ;Z_% where )\, >0 (v n+1)
and
n+1
v=1

Proof. For (2.1), see [7, p. 47, Theorem 3.3.5]). Multiplying both sides of the equation
in (2.1) by z and letting z — oo, we readily conclude that (2.2) holds. d

LEMMA 2.2. Let N € Nand w(z) =2 — £ with £ € R\ Jy41. Then

(2.3) B



ETNA

Kent State University
etna@mcs.kent.edu

BOUNDS FOR VANDERMONDE TYPE DETERMINANTS 157
and

(2.4) A >y di (€)

forn=0,..., V.
Proof. By (1.14),

P,
@5 w@PM @) = Pan@ - 22 ) o, ).
P, (6)
Now let x1, ..., x, 1 be the zeros of P, in increasing order. Then
Pn+1(€)

w(z, )P (z,) = — Pu(z,) (v=1,....,n+1).

Pu(8)
Since the polynomials P, and P,,,1 are monic and their zeros interlace, we have
(2.6) sgn Py, (z,) = (—1)"t1 v=1,...,n+1).

Taking into account that w(x) does not change sign on Jx 41, we find that

Pn+1(§)

wl(z,) = (—1)" " sgn ——20
sgn P (xy) = (=1)"""sgn w(y) P (€)

v=1,...,n+1).

Hence the zeros of P,[Z“”] and P, interlace, and this implies (2.3).

w]

The polynomials P(E Y PJ[\}”] are orthogonal with respect to +w(x)do(x), the sign
depending on the sign of w(x) on Jx 1. In any case,

= | [ (Pr@) o) ot

Substituting (2.5) into the right-hand side, we readily find that

_ ‘ /_ Z w(z) P () Py () do(z)] .

Pria(§)
2.7 W] — 5 (22t ‘
2.7) Yn " | Pe)
Now, by Lemma 2.1,
’ P (6) ‘ < 1 1
Popa(§)| — minicycnt[§— 20| T dnga(§)
and so (2.4) follows from (2.7). d

While in Lemma 2.2 w(z) was linear, we now establish a corresponding result for a
quadratic w(z).

LEMMA 2.3. Let N € Nand w(z) = (x — (1)(x — (2), where either ¢, = (; or
(1, G2 €R\ Jy42. Then

(2.8) JWc J.1 (n=0,...,N).
If, in addition, ¢; and ¢, do not lie in different components of R \ Jx 2, then

(2.9) YT > v Y dny 1 (G) dng (G) (n=0,...,N).
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Proof. We shall prove the lemma under the additional hypothesis that {; # (. An
extension to ¢; = (> will be achieved by continuous continuation, as we have explained in
the paragraph following (1.10).

Using the notation (1.17), we deduce from (1.14) by Laplace expansion (with respect to
the first row) of the determinant in the numerator that

Vat1(¢1,¢2) Vi (G, G2)

2.10 w(z) P (z) = P,(x) — Poi1(x) + Puyo(x).
( ) ( ) n ( ) Vn(C17<2) ( ) Vn(C17<2) +1( ) +2( )
Now let x1,...,z,11 be again the zeros of P, in increasing order. It follows from the
recurrence formula (1.3) and from (1.4) that

Pois(y) = — " p(2)  (v=1,...,n+1).

Tn
Hence (2.10) gives

v=1,...,n+1).

w(zl’)Psz](Iu) = Pn(Iu) (Vn+1(<1’<2) _ 7n+1>

Vn (Cl 3 42) Tn

The term in parentheses must be different from zero since P! would have n + 1 zeros
otherwise. Recalling (2.6), we easily conclude that the zeros of P,[lw] and P,y interlace.
This shows that (2.8) holds.

Now we want to estimate 7,[1”] from below. Clearly

oo

= [ Z (P@) wl)dote) = [~ w@) Pl ) Pafe) o).

— 00

Substituting (2.10) into the right-hand side, we readily find that

NN Vat1(G1, G2)
" " ValGLG)

Employing the recurrence formula (1.3), we obtain that

B Prii(G)  Pata(Gr)
Vit1(C1, G2) = det < Pri1(C2)  Pag2(C2) )

(2.11)

— det ( Poi1(G) (G = ang2)Puri(G) = Brs1Pu(G1) )
Poi1(C2) (G2 — any2)Pati1(C2) — Brr1Pu(C2)

= (2= Q)P (C)Pura(C2) + Ty (G, ) -

n

Hence (2.11) may be rewritten as

[w] _ (€2 = C1)Pas1(G1) Pat1(¢2)
(2.12) Ve Yn+1 + Vn TGRS .

Using Lemma 2.1 for a partial fraction decomposition of P,,/ P, 1, we find that

n+1

Va(G1,G2) P(¢1) P (¢2) A
= - = (&—-G) E .
(Cl - CCV)(CQ - Iu)

Poi1(C)Por1(C2)  Pagi(G)  Puya(Ge)

v=1
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Since (1, and ¢ are either a pair of conjugate zeros or a pair of real zeros lying in the same
component of R\ Jx 2, we see that the last sum is a mean value of positive terms. Therefore

Va1, C2) < 1
(G2 = C1)Pur1(C1)Pry1(C2) = dnga(Cr)dny1(C2)

Combining this estimate with (2.12), we obviously obtain (2.9). d

3. Proofsof theresultsin § 1.
Proof of Proposition 1.1. Let A = (a,, ) be a matrix in C**™. Then, by an inequality
of Hadamard [4, p. 418, Theorem 13.5.3] applied to the transpose of A,

n n 1/2
det A] < J] <Z|aw|2> .

p=1 \v=1

This estimate can be generalized. If D € C™*™ is a non-singular diagonal matrix with
diagonal entries dy, . . ., d,, then det(D~*AD) = det A, and therefore

n n 1/2
1 2
decdl < gz 1 (Z'“’“’d”'> |
p=1

v=1
This shows that V,, (21, . . ., z;) may be estimated as

1/2

k n+k—1
1
B1)  [Valzr,.. )| < mnﬂ---wk_lH( Y —|Py<z,,->|2>
Jj=1

Yv

v=n

By the Christoffel-Darboux formula (see [7, p. 43, (3.2.3) and (3.2.4)])

m—1 1 5 7:71 (Pfln(z)Pm—l(z) - Pm(Z)Prlnfl(Z)) if z¢ R7
; - [P (2)]" = . 1 Pu(2)Pu-i(2) _fm(E)mel(Z) # 2eC\R
m—1 zZ—Zz

But this is the quantity A,,,(z), defined in Proposition 1.1. Thus (3.1) gives (1.8).
Employing Lemma 2.1, we can avoid the distinction between real and non-real z in the

definition of A,,,(2). In fact, let 1, ..., z,, be the zeros of P,,, and let A4, ..., \,, be the
coefficients in the partial fraction decomposition of P,,,_; /P, according to Lemma 2.1.
If z € R, then

Ym—-1Am(2) = Pf/n(Z)mel(Z) - Pm(Z)Py/n—l(Z)

d
= PA)
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and if z € C\ R, then

'7m—1Am(Z) = -1\ —

Hence forany z € C,

which gives (1.9) at once. d

Proof of Theorem 1.2. First we note that

[w]

_ I
Vn.

Vn+l(zl7 ) Z]C)

(3.2) Vilz1, -0y 2k)

In fact, using (1.14), we see that

vll”]—‘/m (P(@)

1 [e's]
m/ Vi@, 21, .., 25) Po () do(z)| .

— 00

‘ / z) P () P, (z) do(x)

Now, expanding the determinant inside the integral with respect to the first row and paying
attention to the orthogonality of the system (Pn)neNO, we readily obtain (3.2).

In view of (3.2), we have to estimate % “} from below. For this we can use Lemmas 2.2
and 2.3 repeatedly, taking advantage of the obvious fact that the operation of attaching a
superscript [w] is multlpllcatlve in the following sense. If w = wwv, then pil = (P[“])[ ]

and, consequently, v = (%[Z‘])[ !
Obviously, we may factor the polynomial w as

w(z) = p(x)qi(x)---qelx),

where p is a monic real polynomial of degree m such that, if m = 2, then the zeros of p
lie in different components of R \ J,, 1 |x/2)+1, and where gy (A = 1,...,¢) are monic real
polynomials of degree two, each having either a pair of conjugate zeros or a pair of real zeros
lying in the same component of R \ J,, |x/2)+1. In particular, each gy (x) is positive for
T € Jni|k/2]+1-
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Applying Lemma 2.2 m times, we readily see that
AP > A, (v=0,...,n+0).
Now we define wo(z) := p(x) and
wa(z) = pl@)q (@) a(z)  (A=1,....0).
We claim that

A
A ,
[wi] > .m ( ) 27 and ] > d
T ZT ) YoA—5T v (%) 2 Qugm4a(Z
(33) ;0 PY RS (2) +m+a(2)
0,...,

A= Lv=0,....n+L—N).

The inequality for i) (z) is an easy consequence of Lemmas 2.2 and 2.3. The inequality

for 7,[,““] may be proved by induction on X as follows.
Let ¢; and (5 be the zeros of ¢»,1. Using again Lemma 2.3, we conclude that

[ax+1] w w w w
Aol = () 2 gl el all )

[wa]

2 Y1 T YNy a1 (G) dugma g (C2)

[wa] [wa]

Z 7u+1 + T T2 .

Now the induction hypothesis applies and gives

A A
A . A _
W+ Al > S <j>%+1+xﬂ’2j + <j>%+xﬂ"2”2

J=0 Jj=0

[ A
A A 4
=" e + 3 { <j> + (j _ 1) } Noari1— 2+ Ay r2 2
J=1

A+1
A+1 -
=r Z < , )7V+A+1j7"2] :
i=o N J
This completes the proof of (3.3).
Finally, noting that w(z) = we(z), and combining (3.2) and (3.3), we readily obtain
(1.12). O

Proof of Theorem 1.4, Letsgnw(x) =: e for x € J. Itis clear, from the general theory of
orthogonal polynomials, that a recurrence formula of the form (1.18) holds, where, according
to (1.4),

w € > w 2
(3.4) olvl = T / x (Pijl(x)) w(z) do(z)
n—1 Y7
and
,Y[w]
(35) o = o
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forn € N.
¢From (3.2) and the discussion of the influence of the sign of w (see § 1), we know that

Vn+1(Zl, ey Zk)

3.6 Wl — g(=1)*~,
(3.6) gl (=1)%y TACRES

(TL € NO),

which gives (1.20) at once.
A verification of (1.19) is more sophisticated. In view of (1.14), we may write

gn—l((x)) PPn((CC)) e £n+k—1(($)) .
(] 2 B n-1(z1)  Pu(z1) ... Pppr-1(21) | (=1)kzP™, ()
Po_1(zx) Palzi) .. Poir—1(zx)

By the orthogonality of the system (P,,).cn,, We have

o . 0 if j>2
[ eprt @@ = { ) I2)

[w]

Hence, when we expand the determinant with respect to the first row and calculate «,
according to (3.4), we find that

k oo *
w _ (=1 [ Va(z1,- -+, 2k) / P Pl g L Vi(es )
o = TLpn—1\T)L, _1(x)do(x n .
5 77[;”_]1 Va-1(21,- 5 20) Jooo 1@)Fas (@) dote) = Va-1(21,... 2)

(3.7)
Next, we have to calculate the integral on the right-hand side. By the recurrence formula for
the system (P, )nen,, We have

ZCPn_l(.T) = Pn(x) + anPn—l(x) + 5n—1pn—2($)-

This implies that

oo

(3.8) /_OO :CPn_1($)P,[lui]1 (x)do(z) = anyn-1+ ﬁn_l/ Pn_g(x)P,[l“i]l (x)do(z).

It remains to calculate the integral on the right-hand side. For this, we proceed as follows.
By (1.14),
o Va—2(x, 21, .., 21)
Vn_g(zl, ey Z;g)

w(z)P(x) = (-1)

Multiplying both sides by P,[fﬂll(:c), expanding the Vandermonde type determinant in the
numerator, with respect to the first row, and integrating with respect to do'(z), we obtain

n—1

0 = /OO w(x)P[w] (x)P[w] (z)do(z) =

(—1) |:Vn1(21,...,zk) /oo Pn72(I)P,[;i]1(I) do(@) —%qvg_l(m’m’%)

Vn_g(zl,...,zk) oo Vn_g(zl,...,zk) ’
and so
o Vo (z1y. 0y 28)
3.9 P, _o(x)P™ (2)d — e TR
(3.9) /  Paaf@ P @) do(w) = it

Finally, combining (3.6)—(3.9), we arrive at (1.19). O
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