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ABSTRACT. Weighted version of two-point integral quadrature formula is ob-
tained using w—harmonic sequences of functions. Improved version of Guessab
and Schmeisser’s result is given with new integral inequalities under various reg-
ular conditions. As special cases, the generalizations of quadrature formulae of
Gauss type are established.

1. INTRODUCTION AND PRELIMINARIES

In this paper we consider the two-point quadrature formulae of the following type:

/ FOwE)At = Ay(@) (@) + Bu@) fla+b—12)+E(fz).  (11)

Here, = € |[a, aTH’], w : [a,b] — R is an integrable function called weight, f is an
integrable function defined on [a, b], E(f, z) is a remainder and A, (z), B, (x) are
coefficients such that A, (z) + B,(z) = fabw(t)dt.

Recently, A. Guessab and G. Schmeisser ([!]) studied a class of two-point formulae

for w = bL:
—a

bia/a f(t)dt:%(f($)+f(a+b—x))+E(f,:c). (1.2)
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They established sharp estimates for the remainder under various regularity con-
ditions. They proved the following theorem

Theorem 1.1. Let f be a function defined on |a,b] and having there a piecewise
continuous n—th derwative. Let (), be any monic polynomial of degree n such

that Q,(t) = (=1)"Qn(a + b —t). Define

(t—a)", fora<t<zx
K,(t) =1 Qu(t), fore<t<a+b—ux (1.3)

(t—0)", fora+b—x<t<hb.

Then, for the remainder in (1.2), we have

(@ —a)rtt QU @) fM(a+b—z)+ (=) fO)(z
E(f;z) = Z;[(<,/+)1)l a n! ()] ( b)—a< ) =
+ % bKn(t)f(”)(t)dt. (1.4)

A number of error estimates for the identity (1.4) are obtained, and various
examples of the general two-point quadrature formula are given in [3].

The goal of this paper is to establish analogous formula for the weighted case,
i.e. such case where the integrand can be written as product of two function f(t)
and w(t). The main tool used are the w—harmonic sequences of functions and
related weighted integral identity obtained in [2].

Definition 1.2. Let w : [a,b] — R be an integrable weight function and wy, :
[a,] — R be differentiable functions for k& € N. We say that {wy}, N is
a w—harmonic sequence of functions if for k& > 2, w}(t) = wg_1(t) and
wi(t) = w(t), for t € [a, b].

Given a subdivision 0 = {a = 29 < 71 < ... < x,, = b} of the interval [a, b],
let us consider different w—harmonic sequences of functions {wj}, y on each
interval [z;_1,%;], j € {1,2,...,m}. Define
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Then for every function f : [a,b] — R such that f( is piecewise continuous on
[a, b] it is proved in [2] that

[ s - Z<—1)H[wmk<b>f<k*”<b> (16)

+ / W.w(t, o) f™(t)dt.

The identity (1.6) is called weighted integral identity. It will be our starting point
in deriving weighted two-point quadrature formulas. We shall observe functions
f whose higher order derivatives belong to L, spaces, and establish sharp and
best possible constants for such inequalities. For special choices of weights w and
nodes x and a + b — x we shall get the generalization of the well-known two-point
quadrature formulas of Gauss type. Even more, some new sharp and best possible
constants will be established. We shall use a hypergeometric function

1 Y hly Bl o
B(@’Y—ﬁ)/ot (1—1) (1 — xt)~*dt,

for v — 3> 0 and |z| < 1, where B stands for the famous Beta function

1
B(u,v) = / "1 — )" da.
0

Fa, B,7;2) =

2. MAIN RESULTS

atb] - Consider a

Let w : [a,b] — R be some integrable function and z € [a, %3

subdivision
oc={rg=a,v1 =, 09=a+b—1x <x3=1>}
of [a,b]. Let {Qrax},cN be sequence of polynomials such that deg Q. < k — 1,
po(t) = Qr14(t), k € N and Qo = 0. Define functions wjx(t) on [z; 1, x;], for
j=123and k € N:
1 t
wy(t) = m/a (t — s)*1w(s)ds (2.1)

wa(t) = ﬁ / (t— 5V w(s)ds + Qua(?)

1 ’ k-1
wae(t) = —m/t(t—s) w(s)ds.

Obviously, {wj},.N are sequences of w—harmonic functions on [z;_y,z;], for
every j = 1,2,3. Let us define coefficients Ag(z) and By(x) by following:

) = (10 | [ s - ou)] . )
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and

Bi(z) = (—1)F! {ﬁ / (a+b—x—s)" w(s)ds + Qpela+b— x)} :

(2.3)
Let f : [a,b] — R be such that f("~1) exists on [a, b] for some n € N. We introduce
the following notation:

Thw(®) = 0, forn=1

n

Thw(z) = Z [Ak(x)f(k_l)(x) + By(z) f*V(a+b— z)], forn>2.
k=2

Theorem 2.1. Let f : [a,b] — R be such that f™ is piecewise continuous on
la,b], for some n € N. Then

| w00t = Ai(@)f () + Bi@)fla+ b= 1)+ Tl

b
1) / Wi(t, 2) £ (£)de. (2.4)
where

win(t)  fort € [a,x],
Whw(t,z) = won(t) forte (x,a+b— g,

wsn(t) forte (a+b—x,0b).
Proof. Put (2.1) in identity (1.6). It follows

n

[ s = S0 uu) - un@)] 1)

k=1

+ [wanla+b—2) —wyp(a+b—2)]f*a+b- )

b
+ (—1)”/ Wwo(t, ) £ (t)dt,
since wyx(a) = 0 and w3 (b) = 0. Further,
wig(w) — war(z) = (—1)" 1 Ay (2)
and
wor(a+b—x) —wap(a+b—1z) = (=11 By(2),
so the proof is finished. O

Remark 2.2. Let R, be monic polynomial of degree n such that R,(t) = (—1)"R,(a+
b—t). For w(t) = = and polynomials

(n—k) k
n () (t—a)
Qi (t) == nl(b— a) B k(b —a)’
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Guessab—Schmeisser’s identity (1.4) is recovered from (2.4). Therefore, we can
say that (2.4) is generalization of Guessab—Schmeisser’s integral identity.

Remark 2.3. The polynomials Q) , satisfy

t—x)
41

Y

ka ZQk jx

so the polynomial Q) , is uniquely determined by values Q; ,(x), for j =0,1,... k.

Theorem 2.4. Let w : [a,b] — [0,00) be continuous function on (a,b) and let

Qona(t) > —ﬁ/ (t —s)*"lw(s)ds, Vt€ [r,a+b— 1],

for some n € N. If f : [a,b] — R is function such that f®™ is continuous on
la,b], then there exists n € (a,b) such that

/Uﬁﬁ®ﬁ=&@ﬁ@+BMM@+%%HﬂhM@
+ (Agni1 () + Bania(2)) - FE(n). (2.5)

Proof. According to the relation (2.4), we have to prove the identity

/ Wanw(t, ©) fE (#)dt = (Azns1(2) + Bania(x)) - F2 (n).

Observe that Wa, (-, ) is an even function. Since Wa, (-, ) does not change
the sign, then by the mean value theorem there exists n € (a, b) such that

b
/ Wonw(t, ) f 2 (t)dt

T a+b—x b
_ ey, ( / Wy o (£)dt + / wa, 2 (£)dt + / wwn(t)dt)
o x a+b—x

= fe (1) + (012041 (%) — Wo2n41(T) + Wa2ny1(a+b—7) —w3on1(a+b— 1))
= [P() (Asnsa () + Bania (7))
O

Theorem 2.5. Assume (p,q) is a pair of conjugate exponents, that is 1 < p,q <
00, % + % = 1. Let f : [a,b] — R be such that f™ € L,[a,b]. Then we have

< CQ(nv q,7, w)”f(n) ||p7
(2.6)

b
/uﬁﬁ@w—Amwmw—&@vm+b—w—ﬂww>

where for 1 < g < oo

CZ(”J q,7, U))

il @Wﬁ+/ﬁwﬁ wWﬁ+/b| wpar
= w w w
(n _ 1)! " 17L . 2n a+b7x 3n )
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and for ¢ = oo
Cy(n, 00, x,w)
1
= ———ymaxq sup |wip(t)],  sup  |wa(t)|, sup Jwsa(t)] p -
(n - 1) tela, ] te(z,a+b—x] tela+b—z,b]

The inequality is the best possible for p = 1, and sharp for 1 < p < oco. The
equality is attained for every function f(t) = M f.(t) + pn_1(t),t € [a,b] where
M € R, p,_1 ts an arbitrary polynomial of degree at most n—1, and f, is function

on [a,b] defined by

1o = [ st W o T @)

forl <p< oo, and

70 = [ sttt e (25)

for p = oo.
Proof. Applying Holder inequality to the integral (—1)" ff Ww(t, ) f (#)dt we
ge

t
b
(1 [ Wl 0] < W5l = oz 0) - 17,

so the inequality (2.6) holds. In order to prove the sharpness, we need to find
function f such that

b
| [ Wt )£ 00t| = Caliguz,0) - [ 5

for 1 <p < ooand 1 < g < oo such that %+% = 1. The function f, defined

by (2.7) and (2.8) is n times differentiable, and its n—th derivative is piecewise
continuous function. Further, f, is a solution of the differential equation

Wn,w(t7x)f(n) (t) = |Wn,w(t7‘73)|q:

so the above identity holds.
For p = 1 we shall prove that

b b

[ Wt 0] < s Waea)l [P0 29)
a tela,b] a

is the best possible inequality. Suppose that |W,, ,(¢,z)| attains its supremum

at point ty € [a,b] and let sup;e(y b |Waw(t, )| = |[wen(to)], for some k = 1,2, 3.

First, let us assume that wy,(tg) > 0. For € small enough define fe(nfl)(t) by

0, F<ty—e
fe(n—].) (t) — t_t£+€7 t c [tO _ €7t0]
1, t >t
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if tg € (xg_1, k). Then, for e small enough,

0 1 1 [t
‘/ Wiw(t, 2)f dt’— / wkn(t)—dt‘:—/ Wt (2.10)
¢ € € Jtg—e

0—€
Now, relation (2.9) implies

1 to to 1
—/ W (2)dt < wkn(to)/ —dt = wgn(to). (2.11)
€ to—e to—e €
Since
1 [t
lim Wi (8)dt = wien (to),
=0 € to—e

the statement follows.
If t, = xx_1, then we define, for € > 0 small enough, function fe(n_l)(t) by

0, t<t,
t

FrU@) =8 Bt e [to, by + ]
1a t Z tO + €,

and we argue as above.
For the case wg,(ty) < 0 the proof is similar. O

Guessab and Schmeisser’s identity (1.4) has symmetric coefficients, while co-
efficients Ag(x) and By (x) in (2.4) are not symmetric. The next result describes
conditions which lead to symmetry.

Theorem 2.6. If
w(t)=wla+b—1t), te]a,b] (2.12)
and

(—1)*Qpo(z) — Qrola+b—z) =
then Ai(x) = (=1)* 1By (z).
Proof. Assume (2.12) and (2.13) for some k. Then we have

r b
—(k; _1 ) / (a+b—z— S)k—lw(s)ds + Qrala+b— $)}

a+b—x
(/f_;l)! / (s — )" w(s)ds, (2.13)

By(x) = (1)

= (=1)"! (kl) 0 /(a+b—x—s)k (s)ds—i—Qk@(a—l—b—x)]

= (—=1)kt ( 1) a+bx5—xk’1wa — s)as —1)* x
= o [ [ e et b= s (1)

a+b—x
- '/ (s — ) 1w(s)ds]

_ {Ek’ D — )" w(s)ds + <_1)ka’,x<x):|
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What about the degree of exactness of quadrature formula (2.4)?7 We would
like to have as great degree of exactness as possible. For fixed x we choose
polynomials Q) ,(t) which are uniquely determined by the following (according
to the remark 2.3):

Quale) = 5 </(x — syw(s)ds + /:(a bz s)w(s)ds) |

Qre(7) = ﬁ /z(if —s)"tw(s)ds, k=234

Now we have

b
Ai(x) = a—i—b;—Qx/a (a+b—2x—s)w(s)ds
and
1 b
Bi(z) = a+b——2x/a (s — x)w(s)ds.
Further,
A2(x) = Bi(r) =0, k=234 (2.14)

Now, assume (2.12) holds. So we have

Ay(z) = By(x) = % / w(t)dt.

From the condition
/btl(t)dt = Al(z)g(z) + Bi(x)gla+b—=xz), 1=2,3 (2.15)

we get the equ;tion
/b(t+x —a—b)(t — 2)w(t)dt =0, (2.16)

which has exactly one solution z € [a, . For that z we get the generalization of
the well-known quadrature formulas of Gauss type. Now identity (2.4) becomes

5

b
/ f@Qw(t)dt = Ay (x) [f(2) + fla+b— )] + T w(z)

+(=1)" / b Wi (t, ) f(t)dt,

where
n

Tou(e) = 3 [Au@) F4V (@) + Bulw) f*D(a+b— )] .
k=5
In particular, for n = 2 from the identity (2.5) we get

/f@w@ﬁ:A@ﬂﬂw+fm+mwﬂ+mww+&@»wmn (2.17)
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3. SPECIAL CASES OF THE TWO-POINT QUADRATURE FORMULAE

In this section we shall apply results from the previous section to the spe-
cial cases of weights w. First we shall give the identities, then L, inequalities
and, finally, error estimates for every weight w. Specially, we shall get Gauss
quadrature formulas and related inequalities, for appropriate choice of x. In all
examples we assume {Qr.}, cN is sequence of harmonic polynomials such that

deg Qr. < k—1and Qo =0, for fixed z € [ “H’].

3.1. Legendre—Gauss two-point quadrature formula.
Let w(t) =1,t € [a,b] and = € [a,%t’] an arbitrary and fixed node. Define

{’U)2 LG}kEN

t— k
260w = " e foa),
t—x)k
g,’fc(t)—( k‘) + Qra(t), te(z,a+b—1]
and .
t—0b
wi (1) = ( X ) ., te(a+b—uzb].
Define kernel
W(t), for t € [a, 4],
W2ES(t ) = wylC(t), fort € (v,a+b—al, (3.1)

wikC(t), forte (a+b—z,b).
For k > 1 define

r—a)k

A1) = (0 | - Q).

B (x) = (—1)! {(Hbm_ =L +Q’w<““"x)]'

In particular, A**“(z) = B (z) = b=a Let f : [a,b] — R be such that for

n €N, f"~1 exists on [a,b]. Define T%L%(x) by

n

T2 () = > |4V (@) 5D (@) + BY (@) S5 D a+ b )]

k=2

Corollary 3.1. Let f : a,b] — R be such that f™ s piecewise continuous on
. Then we have
b
/ f(t) @) + flatb— @) HT2EC (2)+(-1)" / WG (t,2) ) ().
’ (3.2)

Proof. Apply Theorem 2.1 for the case w(t) = 1. 0J
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The solution of the equation (2.16) is z = “T“’ — 37?:, so we get the generalization

of Legendre-Gauss two-point quadrature formula. Further, for the polynomials

Q. (t) such that Q.(z) = (x 9° for k = 2,3,4, we have

/abf(t)dt - b;a [f (a;b - l;;g) +/f (GTM+l)2_—\/_§)] 33
(“T” “5)

206 (p AFb b= a) b
/W < 5 2\/g)f (t)dt.

Corollary 3.2. If f : [a,b] — R is such that f@" is continuous on [a,b], and if

wSQLf(t) >0, fort € [x,a+ b— x] then there exists n € [a,b] such that

[ 50 =50 @)+ o+ - TR )+ [A3G ) + B )]£0 )
’ (3.4)

at+b

For z = 5

5 \/gv the identity (2.17) becomes Legendre-Gauss quadrature

/ff<t>dt S A (A 0

In particular, from the inequality (2.6) it follows

[rom=t5t (52 -55) o (5 )

a+b b—a n
< CQLG (n’% 92 _Q—ﬁvw) ||f( )Hpv n = 1727374a
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where
+b b—a b—a
OLG <17 ua— T = > = =
5 00, — 273 w 273
_ _ )2
O§G<1’17a+b_b a)w):(5 2v/3) (b a)7
2 2V/3 12
_ _ )2
C2LG<2,oo,a+b—b a7w>:(2 V3)(b a)’
2 23 12
oL (91 a+b_b—aw V263 —45(b — a)?
2 ) 2 2\/57 - 18 ’
_ _ —a(h_ )3
e 37w’a+b_b a’w :(2 V3)V2v3 - 3(b OL)7
2 2v/3 72
_ _ 4
e 3717a+b_b a)w :(9 44/3) (b a)7
2 2V/3 1728
_ _ )
e 47m7a+b_b a71 :(9 44/3) (b a)j
2 2v/3 3456
G at+b b-a _ (b—a)
¢, (4’1’ 2 2\/5’“))_ 4320

3.2. Chebyshev—Gauss two-point quadrature formula. .
Let w(t) = —2=,t € [-1,1] and let z € [—1, 0] be fixed node. Define {wjz.,’fl}keN

Vi
1 bt — )kt
w2Ci(t) = (k:—l)!/l — ds, te[-1,x],
1 bt — )kt
wiC(t) = = /x Vi ds + Qr(t), te (v,—1]
e 2,01\ _ 1 - S)kfld 1
Wsp (t)__(k—]_)' . m S, te(—l', ]

Define kernel
wif(t), fort e [—1,],

1n
WSt o) = wil'(t), fort e (w,—a], (3.5)

wif(t), for t € (—ax,1].
For k > 1 define

2k=1/2 (g 4 1)k—1/2 111 r+1
\2:C1 k-1 a Q
) 1 _ = =
e @=(1 [ (2k — )N (2’272 b 2 > k’x(x)} ’

B =0 [ [ S Q).

Specially, A7} (z) = By (z) = Z.



12 S. KOVAC, J. PECARIC

Let f:[~1,1] — R be such that for n € N, f®™~1 exists on [~1, 1]. Define

n

T2 () = Y | AR @) (@) + BEC @) D (<a)]

k=2

Corollary 3.3. Let f : [~1,1] — R be such that ™ is piecewise continuous.
Then we have

T
—dt = - [f(z) + f(—=
/ = G/ + f (o)
+T25( / W2, ) f (t)dt. (3.6)
_ 1

Proof. Apply Theorem 2.1 for the case w(t) = v O
The solution of the equation (2.16) is x = —ﬁ , so we get the generalization of
the Chebysev—Gauss tWO point quadrature formula Further, for the polynomials

Q. (t) such that Q. (z = G 1 , fm (“3 ) ds for k = 2,3, 4, we have
/1\/—]6(75) o= T2 s @ (3.7

V1 —t2 2 2 2 '

+ T2 (—?) + (=1)" /1 Wit (t,—?) FM(t)dt
-1

Corollary 3.4. If f : [-1,1] — R is such that f® is continuous on [—1,1],
and if wggnl (t) >0, fort € [x,—x], then there exists n € [—1, 1] such that

/_1 \/Jl%dt = g f(x) + f(—=z)] + TQQnC;}( )+ [Agnill( )+ Bgncfl( )] 'f(2n)(77)

(3.8)
For 1 = —¥2 , from the identity (2.17) we get Chebyshev—Gauss quadrature
formula
! t 2 2
/ IO g m (22 (2 4 o)
IRIRVA I 2 2 2 192

Specially, the inequality (2.6) implies

i m V2 V2
[ sl () (7))
V2

S 0201 <naQ7 _77w) “f(n)”p7 n = 1727374a
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where

5

<1 (1, 00, —i,w — T~ 0,785308,
2 1
5

o9t (L, —\/7_,10> =22 — 2 ~ 0.828427,
3

<1 2,00,—§,w> ~ 0, 151746,
5

o<1 2,1,—\/7_,@0) ~ 0,138151
>

o< 3,oo,—§,w> ~ 0,034537,
2

cst 3,1,—\/7_,10) ~ 0,037102,

C1 V2 T
01, -2 ) = = ~0,0163624.
o5t (4,1, ,w) 5 = 0,01636

3.3. Chebyshev—Gauss formula of the second kind. .

Let w(t) =1 —1t2,t € [-1,1] and let € [—1, 0] be fixed node. Define {w?,;m}keN

1 t
wf;CCQ(t) = =] /1(15 — )1 —s2ds, te€[-1,1],

WA (¢) = ﬁ / (t— ) W= 2ds + Qualt), te (z,—a]

and

1 1
wii (1) = — / (t —s)F 1 —s2ds, te(—x,1]
s Jt
Define kernel
wiy 2(t), fort € [~1,a],

Wi (t2) = ¢ wiy*(t), fort € (z, —a, (3.9)

wi(t), for t € (—x,1].
For k > 1 define

20HL/2 (g 4 1)7+1/2 133 x+1
AQ,C2 — _1 k—1 F 22 . -

B = (0 | /x1<—x—s>ﬂmds+@k,m<—x>]

Specially, A7*(z) = By “*(z) = =.
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Let f:[~1,1] — R be such that for n € N, f®™~1 exists on [~1, 1]. Define

n

T2 (@) = Y | AR @)/ @) + B (@) 4D (—a)]

k=2

Corollary 3.5. Let f : [~1,1] — R be such that f™ is piecewise continuous.
Then we have

| TOVI=dt = 3 () + f()

1
+T3;§2(:)3) + (—1)”/ WE,’SQ(t,x)f(”)(t)dt. (3.10)

-1
Proof. Apply Theorem 2.1 for the case w(t) = /1 — t2. O
The solution of the equation (2.16) is x = —%, so we get the generalization of

the Chebysev—Gauss two-point quadrature formula of the second kind. Further,
for the polynomials Q. (¢) such that Qy, .(x) = ﬁ [5 (@ —s)F1V1 — s2ds, for
k =2,3,4, we have

/_llf@)ﬂdt - % {f (—%) +f G)} (3.11)
+ T2 (—%) + (=) /1 W2 (t, —%) F™(t)dt.

1

Corollary 3.6. If f : [~1,1] — R is such that g®*™ is continuous on [—1,1], and
if wggnl (t) >0, fort € [x,—x|, then there exists n € [—1,1] such that

1
™

| sOVI=Ra =L@ + F TS @+ AR @ + B @] ),

(3.12)

For x = —%, from the identity (2.17) we get Chebyshev—Gauss quadrature

formula of the second kind
! 1 1
/_1 FOVT —2dt = Z [f (—5) +f (—é)} + %f@)(m.

Specially, the inequality (2.6) for this case looks like

s (3)1(3)]

1

< C§? <n,q, —§,w> 1£™,, n=1,2,34,
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where

1
CS? (1,00, —§,w> ~ 0, 478305,

2,1, —%,w) ~ 0.0547145,

1
CS? 3,oo,—§,w) ~ 0,012251,

1 T
CP (4,1, -z w ) = ——.
2 ( ' 2’“’) 768
3.4. Hermite—Gauss two-point formula. .
Let us consider w(t) = et € R and let # < 0. Since this weight function

is defined on infinity interval, at first we shall consider it on some finite interval
[—L, L], for some L € R, such that |z| < L.

Define
1 ! s
) (k_l)!/_L< —s)* e ds, te[-Lal,
2,HG,L 1 ' k—1_—s
wy;, () 1) (t—s)""e T ds+ Qr(t), te(v,—x
and :
1
wif Ot () = - =] /t (t—s)" e ¥ds, te(—w1]

Define kernel

wiHE(),  for t € [—L, a],
W2HGL(t, 2) = S wylfOH (1), for t € (v, —a], (3.13)

wiE (), for t € (—x, L.
For k > 1 define

A ) = (P |t [ e s - Quata)|.




16 S. KOVAC, J. PECARIC

Specially, A2"E () = BPHOL(z) = %f_LL e dt. Let f:[-1,1] — R be such

that for n € N, f(*~1 exists on [—1, 1]. Define

n

THOL (g) = 3 [APICE () [0 (0) 4 BEICH () [0 (—))
k=2

Corollary 3.7. Let f : [~L,L] — R be such that g™ is piecewise continuous.
Then we have

/ F@e e = AP ) [f(a) + £ ()]

L
TR0 @)+ (<1 [ WRHCH4,2) £ 0. (3.0

—L

Proof. Apply Theorem 2.1 forthe case w(t) = e™*".
0J

Now, assume f has all the necessary higher ordered derivatives on R. Let us
define

1 t
wifC ) = m/ (t—s)* e *"ds, te (o0,
1 t
wg;cHG(t) — m / (t - S)kileiszds + Qk,x(t)7 t < (:C, —:L‘]
1 o 2
wilC(t) = —m/t (t —s) e *ds, te€ (—z,00),

WiIC(t), for t € (—o0,a],

Wf,’fG(t, T) = w%;LHG(t), for t € (z, —x],

wiHO(1), for t € (~z,00),

A1) = (D [(k_lm | <x—s>k-1e—52ds—Qk,x<x>},

By"%(x) = (1! {ﬁ /;f(_x - s)k_16_52d3+Qk,x(_$):| ,

T2HO(@) = 37 [AR () {6 a) + BEC (a1 ()]
k=2
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Specially, A7 (z) = B>%(z) = \/T; Obviously,

I}EEOMQ HG, L(t) _ U}?kHG(t)

LIEEOAQHGL(:L_) A2 HG(LE)

I!L{iloBQHGL(:E) 2HG(.T)

[}EIO]-O,Z_QHGL(x) A2HG([E),

so in (3.14) put L — oo, and we obtain
fte_tht:ﬁfx + f(—2)+T2 0% (= W2HGtxf">tdt.
2

) (3.15)
The solution of the equation (2.16) is = —‘/75, so we get the generalization of

the Gauss-Hermite two-point quadrature formula. Further, for the polynomials

Q. (t) such that Q.(z) = ﬁ ffoo(x — s)k_le_Sst, for k = 2, 3,4, we have

[ roeea— £ (<8) () oo
+ Tg;ng( ) / WZHC’( —\/75) FM(t)dt.

Corollary 3.8. If f : [-1,1] — R is such that f@®" is continuous on R,and if

wgzic(t) >0, fort € [x,—x], then there exists n € R such that

| e = YT (@) + ST ) AR )+ BEAS@)] -5

(3.17)
For x = —\/75 from identity (2.17) we get Hermite-Gauss quadrature formula
/ fte Cdt = g [f (—é) +f (—é) + \i—g W(n),

Specially, the inequality (2.6) implies

e §1(9)(9)

\/5
< Oé“’(  q, — 1™, n=1,2,34,
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where

5

c2HE 1,oo,—§,w ~ 0, 605018,
>

C2HE 1,1,—§,w ~ 0, 670996,

2,HG V2

C: 2,00, —~—,w | ~ 0, 16266,
2

c2He 2,1,—%,10 ~ 0,10442,
2

c2He 3,oo,—§,w ~ 0,061041,

CPHY 41 —£ w :ﬁ

2 ) 9 9 48 .
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