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Abstract. We study the action and properties of a differential operator in
the polydisk, extending some classical results from the unit disk. Using so
called dyadic decomposition of the polydisk we find precise connections between
quazinorms of holomorphic function in the polydisk with quazinorms on the
subframe and the unit disk. All our results were previously well-known in the
unit disk.

1. Introduction and preliminaries

Let n ∈ N and Cn = {z = (z1, ..., zn) |zk ∈ C, 1 ≤ k ≤ n} be the n-dimensional
space of complex coordinates. We denote the unit polydisk by

Un = {z ∈ Cn : |zk| < 1, 1 ≤ k ≤ n}
and the distinguished boundary of Un by

T n = {z ∈ Cn : |zk| = 1, 1 ≤ k ≤ n}.
We usem2n to denote the volume measure on Un andmn to denote the normalized
Lebesgue measure on T n. Let H(Un) be the space of all holomorphic functions
on Un. When n = 1, we simply denote U1 by U , T 1 by T , m2n by m2, mn by m.
We refer to [15] for further details.
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The Hardy spaces, denoted by Hp(Un)(0 < p ≤ ∞), are defined by

Hp(Un) = {f ∈ H(Un) : sup
0≤r<1

Mp(f, r) <∞},

where

Mp
p (f, r) =

∫
T n

|f(rξ)|pdmn(ξ), M∞(f, r) = max
ξ∈T n

|f(rξ)|, r ∈ (0, 1), f ∈ H(Un).

For αj > −1, j = 1, · · · , n, 0 < p < ∞, recall that the weighted Bergman
space Ap

~α(Un) consists of all holomorphic functions on the polydisk satisfying the
condition

‖f‖p
Ap

~α
=

∫
Un

|f(z)|p
n∏

i=1

(1− |zi|2)αidm2n(z) <∞.

Throughout this paper, constants are denoted by C, Cα, or C(α), they are
positive and may differ from one occurrence to other. The notation A � B
means that there is a positive constant C such that B/C ≤ A ≤ CB.

Let z = (z1, . . . , zn) ∈ Un, fj(z) ∈ H(Un), j = 1, · · · , n. It is easy to see that
if

fj(z) =
∑

k1,··· ,kn≥0

a
(j)
k1,...,kn

zk1
1 · · · zkn

n , j = 1, · · ·n

is a usual Taylor expansion in Un of fj, then

S(f1, · · · , fn) = f1 + · · · fn =
∑

k1,...,kn≥0

( n∑
j=1

a
(j)
k1,...,kn

)
zk1
1 · · · zkn

n .

We consider a very particular case when

a
(j)
k1,...,kn

= kjak1,...,kn , j = 1, · · ·, n,
where ak1,...,kn is a certain sequence. We have

S(f1, · · · , fn) =
∑

k1,...,kn≥0

(k1 + · · · kn)ak1,...,knz
k1
1 · · · zkn

n .

Motivated by the above expression we define a operator in the polydisk as
follows

Rf =
∑

k1,...,kn≥0

(k1 + · · ·+ kn + 1)ak1,...,knz
k1
1 · · · zkn

n

or more general form

Rsf =
∑

k1,...,kn≥0

(k1 + · · ·+ kn + 1)sak1,...,knz
k1
1 · · · zkn

n , s ∈ R,

where
f(z) =

∑
k1,··· ,kn≥0

ak1,...,knz
k1
1 · · · zkn

n ∈ H(Un).

It is easy to see that

Rf = R1f = f +
n∑

j=1

zj
∂f

∂zj

. (1.1)
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In the case of the unit ball an analogue of Rs operator is a well known radial
derivative which is well studied (see [17]). We note that in polydisk the following
fractional derivative is well studied (see [4, 11]),

(Dαf)(z) =
∑

k1,...,kn≥0

(k1 + 1)α · · · (kn + 1)αak1,...,knz
k1
1 z

kn
n ,

where α ∈ R, f ∈ H(Un) and Dα : H(Un) → H(Un). We also note that in
polydisk the following derivative was studied in [16],

D =
n∏

k=1

(
2 + zk

∂

∂zk

)
.

Apparently the Rs operator was studied in [6] for the first time. Then in [12],
the first author studied some properties of this operator. The aim of this paper
continue to study the Rs operator.

We need the following vital formula which can be checked by easy calculation

f(τξ1, · · ·, τξn) = Cs

∫ 1

0

Rsf(τξ1ρ, · · ·, τξnρ)(log
1

ρ
)s−1dρ, (1.2)

where s > 0, τ ∈ (0, 1), Cs > 0, ξj ∈ T, j = 1, . . . , n. The integral representation
of functions via these operators will allow us to consider them in Un in close
connection with functional spaces on subframe

Ũn = {z ∈ Un, |zj| = r, r ∈ (0, 1], j = 1, . . . , n}.
The following dyadic decomposition of subframe and polydisk were introduced

in [4] and will be used by us.

Ũk,l1,··· ,ln = Ũk,l1 × · · ·Ũk,ln =
{
(τξ1, . . . , τξn) : τ ∈ (1− 1

2k
, 1− 1

2k+1
],

k = 0, 1, 2, · · ·; πlj
2k

< ξj ≤
π(lj + 1)

2k
, lj = −2k, · · · , 2k − 1, j = 1, · · · , n

}
,

m(Ĩk,lj) = m(ξ ∈ T :
πlj
2k

< ξj ≤
π(lj + 1)

2k
) � 2−k, m2n(Ũk,l1,··· ,ln) � 2−2kn,

Uk1,··· ,kn,l1,··· ,ln = Uk1,l1 × · · ·Ukn,ln =
{
(τ1ξ1, · · · , τnξn),

τj ∈ (1− 1

2kj
, 1− 1

2kj+1
], kj = 0, 1, · · · , j = 1, 2, · · · , n,

ξj ∈ (
πlj
2kj

,
π(lj + 1)

2kj
], lj = −2kj , · · · , 2kj − 1, j = 1, · · · , n,

}
.

The goal of this paper is to extend some known assertions connected with frac-
tional derivative in the unit disk to the polydisk and use the diadic decomposition
of subframe and polydisk to study the action and properties of Rs operator and
quasinorm connected with them on subframe. In section 2 we give preliminaries,
several useful inequalities for the study of Rs operators, and show connections
between Rs and Ds operators in the polydisk. In section 3, we using the Rs

operator establish some embedding theorems extending some known embeddings
for Hardy classes and weighted Bergman classes in the unit disk. In section 3 we
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also establish connections between holomorphic spaces with quasinorms in the
subframe and polydisk.

2. Some observations concerning Rs and Ds differential operators
and proofs of preliminaries

When we look at Rs operators then we have the following natural problem:
Is it possible to reduce the study of Rs operators to the study of Ds operators?
which was studied by many authors (see for example [4] and references there).
Then we will be able to use known properties of Ds to get new results for Rs

operators. The differential operator Ds is much more convenient at least because
of the following property of g function. Let

g(z) =
1

1− z
=

∑
k1,··· ,kn≥0

zk1
1 · · · zkn

n .

We have

Rsg(z) =
∑

k1,··· ,kn≥0

(k1 + · · ·+ kn + 1)szk1
1 · · · zkn

n

and

Dsg(z) =
∑
k1≥0

(k1 + 1)szk1
1 · · ·

∑
kn≥0

(kn + 1)szkn
n .

For Ds we reduce things to one dimensional differential operators for one function
in the unit disk, that why we will find ways to reduce the study of Rs to Ds.

Let

R̃sf(z) =
∑

k1,··· ,kn≥0

(k1 + · · ·+ kn)sak1,··· ,knz
k1
1 · · · zkn

n .

The following lemma is playing an important role in the study ofRs operator. We
use some known facts in the proof of Lemma 2.1 about action of one dimensional
Dα operator, for example the following estimate (see [2])∫

T

|Dαg(τξ)|pdξ ≤ C

∫
T

|Dβg(τξ)|pdξ (2.1)

(τ ∈ (0, 1), 0 < p <∞, α ≤ β, g ∈ H(U))

which can be transferred by induction to polydisk.

Lemma 2.1. Let w = |w|ξ, w, z,∈ Un, 1− wz =
∏n

k=1(1− wkzk), s ∈ {0} ∪ N,
β > 0, p ∈ (0,∞). Then we have∫

T n

∣∣∣Rs 1

(1− ξ|w|z)β

∣∣∣pdmn(ξ)

≤ C
∑
αj≥0
P

αj=s

( n∏
k=1

1

(1− |wk||zk|)p(αk+β)−1

)
, p >

1

mink αk + β
.
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Proof. Let first β = 1. Since

(k1 + · · · kn)s =
∑
αj≥0
P

αj=s

Cαk
α1
1 · · · kαn

n , ki ∈ N, i = 1, · · · , n,

kαi
i = (ki + 1− 1)αi =

αi∑
l=0

C l
αi

(ki + 1)l(−1)αi−l,

and

1

1− w
=

n∏
k=1

1

1− wk

,
1

1− w
=

∑
ki≥0

i=1,··· ,n

wk1
1 · · · wkn

n , |wj| < 1, kj ∈ N, j = 1, · · · , n,

where Cα = C(α1, · · ·αn) = s!
α1!···αn!

, we have

R̃s 1

1− w
=

∑
ki≥0

i=1,··· ,n

(k1 + · · ·+ kn)swk

=
∑
ki≥0

i=1,··· ,n

(k1 + · · ·+ kn)swk1
1 · · · wkn

n

=
∑
ki≥0

i=1,··· ,n

∑
αj≥0
P

αj=s

Cαk
α1
1 · · · kαn

n wk1
1 · · · wkn

n

=
∑
ki≥0

i=1,··· ,n

∑
αj≥0
P

αj=s

Cα

n∏
t=1

αt∑
l=0

C l
αt

(kt + 1)l(−1)αt−lwk1
1 · · · wkn

n , |wj| < 1, j = 1, · · · , n.

Therefore using polydisk version of (2.1) we have

J =

∫
T n

∣∣∣R̃s 1

(1− ξ|w|z)

∣∣∣pdmn(ξ)

≤ C
∑
αj≥0
P

αj=s

Cα

∫
T n

∣∣∣∣ ∑
ki≥0

i=1,··· ,n

(k1 + 1)α1 · · · (kn + 1)αnw̃1
k1 · · · w̃n

kn

∣∣∣∣pdmn(ξ)

≤ C
∑
αj≥0
P

αj=s

Cα

∫
T

∣∣∣∣ ∑
k1≥0

(k1 + 1)α1w̃1
k1

∣∣∣∣pdm(ξ1) · · ·

×
∫

T

∣∣∣∣ ∑
kn≥0

(kn + 1)αnw̃n
kn

∣∣∣∣pdm(ξn),

where w̃j = ξj|wj||zj|, j = 1, · · · , n. Hence by the estimate∫
T

dm(η)

|1− τη|γ
≤ C(γ)

(1− τ)γ−1
, γ > 1, τ ∈ (0, 1), (2.2)
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we finally have

J ≤ C
∑
αj≥0
P

αj=s

Cα

∫
T

∣∣∣∣Dα1g1(|w1||z1|ξ1)
∣∣∣∣pdξ1 · · · × ∫

T

∣∣∣∣Dαngn(|wn||zn|ξn)

∣∣∣∣pdξn
≤ C

∑
αj≥0
P

αj=s

( n∏
k=1

∫
T

dm(ξk)

|1− w̃k|p(αk+1)

)

≤ C
∑
αj≥0
P

αj=s

n∏
k=1

1

(1− |wk||zk|)p(αk+1)−1
,

where p > 1/(mink αk + 1), |wk| ∈ (0, 1), |zk| ∈ (0, 1), k = 1, · · · , n, and

Dαsgs(z) =
∑
k≥0

(k + 1)αszk, z ∈ U, s = 1, · · · , n.

The case of β ∈ (0,∞) needs small modification since

1

(1− z)β
=

∑
k≥0

Cβ
k z

k, Cβ
k � (k + 1)β−1, β > 0.

Lemma 2.1 is proved since∫
T n

|Rsf(τξ)|pdmn(ξ) ≤ C

∫
T n

|R̃sf(τξ)|pdmn(ξ),

for f(z) =
∏n

k=1
1

(1−zk)α , α > 0, s ≥ 0, p ∈ (0,∞), which follows from equality

(k1 + · · ·+ kn + 1)s =
s∑

j=0

Cj
s(k1 + · · ·+ kn)j

and some calculations similar to those that we used above. �

Corollary 2.2. Let 0 < p < ∞, s ∈ N ∪ {0}, l ∈ (0,∞), γ > 1/p + l, w ∈ Un.
Then∫

Un

|Rs 1

(1− wz)γ
|p(1− |z|)pl−1dm2n(z) ≤

∑
αj≥0,

P
αj=s

n∏
k=1

C

(1− |wk|)(αk+γ)p−pl−1
.

Proof. The result follows directly from Lemma 2.1 and the following estimate (see
[13]),∫ 1

0

(1− ρτ)−λ(1− τ)αdτ ≤ C(1− ρ)−λ+α+1, λ > α + 1, α > −1, ρ ∈ (0, 1).(2.3)

�

Remark 2.3. Our estimates in Lemma 2.1 and Corollary 2.2 coincide with well
known estimates in the unit disk for n = 1, they also known in ball, see for
example [8, 17].

For the proof of our main results some additional lemmas will be needed.
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Lemma 2.4. Let 1 ≤ p ≤ q ≤ ∞, p′ = p
p−1

, u(t), v(t), ϕ(t) are positive functions

on (0, 1). Then

(

∫ 1

0

u(t)
( ∫ t

0

ϕ(r)dr
)q

dt

)1/q

≤ K1

( ∫ 1

0

ϕp(t)v(t)dt

)1/p

for some constant K1 if and only if

sup
t

(

∫ 1

t

u(τ)dτ)p/q(

∫ t

0

v(τ)1−p′dτ)p−1 <∞.

Remark 2.5. These are well known so-called Hardy-type inequalities, see [9].

Lemma 2.6. Let γ > 1. Then∫
T n

1

|1− wz|γ
dmn(ξ) ≤ Cγ

(1− |w||z|)γ−1
,

where w = ξ|w|, z, w ∈ Un, 1− wz =
∏n

k=1(1− wkzk).

Proof. The proof easily follows by (2.2), we omit the details. �

We want to get the analogue of Bergman representation formula for the Rs

operator (see [4]). Using (1.2) we get

f(τz1, · · · , τzn) = fτ (z1, · · · , zn)

= C

∫
T n

fτ (ξ1, · · · , ξn)

(1− ξ1z1) · · · (1− ξnzn)
dmn(ξ)

= Cs

∫
T n

∫ 1

0

Rsf(τξ1ρ, · · · , τξnρ)(log
1

ρ
)s−1dρ

dmn(ξ)

(1− ξ1z1) · · · (1− ξnzn)

= Cs

∫
T n

∫ 1

0

f(τξ1ρ, · · · , τξnρ)(log
1

ρ
)s−1Rs

( n∏
k=1

1

(1− ξkzk)

)
dρdmn(ξ),

where τ ∈ (0, 1). Let τ → 1. Then

f(z1, · · · , zn) = Cs

∫
T n

∫ 1

0

f(ρξ)(log
1

ρ
)s−1Rs 1

(1− ξϕρ̃)
dρdmn(ξ), (2.4)

for f ∈ H(Un), s > 0, z ∈ Un, z = ρ̃ϕ.
Note for n = 1, we get the well known representation formula (see [4, 17]) after

small modifications. The last estimate is equivalent to

(R−sf)(z) = Cs

∫
T n

∫ 1

0

f(ρξ)(log
1

ρ
)s−1 1

(1− ξz)
dρdmn(ξ), (2.5)

where R−sRsf = f , s > 0, z ∈ Un, f ∈ H(Un).

The following theorem connect Ds and Rs operators.
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Theorem 2.7. Let 0 < p <∞, α > −1, s ∈ N, f ∈ H(Un). If γ > α+2
p
− 1 for

p ≤ 1 and γ > α+1
p

+ 1
n
(1− 1

p
) for p > 1, v = sp+ αn− γpn+ n− 1, then∫

Un

|Dγf(z)|p(1− |z|2)αdm2n(z)

≤ C

∫ 1

0

∫
T n

|Rsf(w)|p(1− |w|2)vdmn(ξ)d|w| ,

where w = |w|ξ.

Proof. Let f ∈ H(Un), p ≤ 1. Then (see [14])

M1(f, τ
2) ≤ C(1− τ)n(1−1/p)Mp(f, τ), τ ∈ (0, 1). (2.6)

Using (2.6) and the fact that Mp(f, r) is increasing as a function of r (see [5]) we
easily get ( ∫

T n

∫ 1

0

|f(w)|(1− |w|)tdmn(ξ)d|w|
)p

≤ C

∫
T n

∫ 1

0

|f(w)|p(1− |w|)tp+(n+1)(p−1)dmn(ξ)d|w|, (2.7)

where t > n(1−p)
p

− 1, f ∈ H(Un), p ≤ 1. By the Cauchy formula,

|Dγfρ(z1, · · · , zn)|p ≤ C

∣∣∣∣ ∫
T n

fρ(ξ1, · · · , ξn)dmn(ξ)

(1− ξz)γ+1

∣∣∣∣p, ρ ∈ (0, 1).

Using (1.2) or (2.4), (2.5) for large s and (2.7) we obtain∣∣∣∣ ∫
T n

fρ(ξ1, · · · , ξn)dmn(ξ)∏n
k=1(1− ξkzk)γ+1

∣∣∣∣p
≤ C

( ∫ 1

0

∫
T n

|Rsfρ(w)|(1− |w|)s−1dmn(ξ)d|w|
|1− wz|γ+1

)p

≤ C

∫ 1

0

∫
T n

|Rsfρ(w)|p(1− |w|)(s−1)p(1− |w|)(n+1)(p−1)

|1− wz|(γ+1)p
dmn(ξ)d|w|. (2.8)

Therefore, from (2.6)-(2.8) and using Fubini’s theorem we have∫
Un

|Dγfρ(z)|p(1− |z|2)αdm2n(z)

≤ C

∫
Un

∫ 1

0

∫
T n

|Rsfρ(w)|p(1− |w|)sp+n(p−1)−1dmn(ξ)d|w|
|1− wz|(γ+1)p

(1− |z|2)αdm2n(z)

≤ C

∫ 1

0

∫
T n

∫
Un

(1− |z|2)αdm2n(z)

|1− wz|(γ+1)p
|Rsfρ(w)|p(1− |w|)sp+n(p−1)−1dmn(ξ)d|w|.

Using the following estimate∫
Un

(1− |z|)tdm2n(z)∏n
k=1 |1− zkwk|t1

≤ C∏n
k=1(1− |wk|)t1−t−2

, t > −1, t1 > t+ 2,
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we get∫
Un

(1− |z|2)αdm2n(z)

|1− wz|(γ+1)p
≤ C(1− |w|)(2+α−pγ−p)n(

γ >
α+ 2

p
− 1, α > −1, |w| ∈ (0, 1)

)
.

Using limit argument we can get the desired result.
Consider now the case p > 1. The arguments are partially the same as in the

case p ≤ 1. Let ε be positive and small enough. Using (1.2), Cauchy formula,
Hölder inequality we have

|Dγf(z)|p ≤
( ∫ 1

0

∫
T n

|Rsf(w)|(1− |w|)s−1dmn(ξ)d|w|
|1− wz|γ+1

)p

≤ C

∫ 1

0

∫
T n

|Rsf(w)|p(1− |w|)(s−1)pdmn(w)d|w|
|1− wz|(γ−1)p+2+pε

( ∫
T n

∫ 1

0

dmn(ξ)d|w|
|1− wz|2−p′ε

)p/p′

= CM1M
p/p′

2 .

Furthermore by Lemma 2.6,

M2 ≤
∫ 1

0

dR∏n
k=1(1−R|zk|)1−εp′

≤
( ∫ R0

0

+

∫ 1

R0

)
dR∏n

k=1(1−R|zk|)1−εp′
, (2.9)

where R0 = max1≤k≤n |zk|. In addition,∫ 1

R0

dR∏n
k=1(1−R|zk|)1−εp′

≤ (1−R0)
1/n+···1/n∏n

k=1(1− |zk|)1−εp′

≤ C∏n
k=1(1− |zk|)1−εp′− 1

n

= M̃. (2.10)

Using (2.3), ∫ R0

0

dR∏n
k=1(1−R|zk|)1−εp′

=

∫ R0

0

(1−R)
1
n
−1 × (1−R)

n−1
n dR∏n

k=1(1−R|zk|)1−εp′

≤ C

∫ R0

0

(1−R|z1|)1/n · · · (1−R|zn−1|)1/n

(1−R|z1|)1−εp′ · · · (1−R|zn|)1−εp′
(1−R)1/n−1dR

≤ C∏n−1
k=1(1− |zk|)1−εp′− 1

n

∫ R0

0

(1−R)1/n−1dR

(1−R|zn|)1−εp′
≤ CM̃. (2.11)

Combing (2.9) with (2.10), (2.11) and repeating the arguments that we used for
p ≤ 1, we can get the desired result at the case of p > 1. �

Remark 2.8. As we see from Theorem 2.7, the Rs operator are closely connected
with quasinorms defined on subframe. Theorem 2.7 is an extension of result on
the action of fractional derivatives on weighted Bergman spaces in the unit disk,
see [2].
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3. Embedding theorems for some analytic spaces connected with
Rs operator

In this section we state some new embedding theorems for various quasinorms
where the Rs operator is participating, note that practically all results are well
known or obvious in the unit disk. Proofs of our results are heavily based on
definitions and preliminaries from previous sections.

Theorem 3.1. i) Let 0 < q < ∞, α ∈ [0,∞), s ∈ N, 1 < p < ∞, f ∈ H(Un).
Then ∫

T n

( ∫ 1

0

(1− |z|)α|f(z)|p|z|spd|z|
)q/p

dmn(ξ)

≤ C

∫
T n

( ∫ 1

0

|Rsf(uξ)|p(1− u)sp+αdu

)q/p

dmn(ξ).

ii) Let 0 < q <∞, α ∈ [0,∞), s ∈ N, 1 < p <∞, γ ∈ (−1/p, 1/p′), 1/p′ +1/p =
1, f ∈ H(Un). Then∫

T n

( ∫ 1

0

(1− r)γ|f(rξ)|prpdr

)q/p

dmn(ξ)

≤ C

∫
T n

( ∫ 1

0

|Rsf(rξ)|p(1− r)sp+γdr

)q/p

dmn(ξ) .

Proof. Using (1.2) we have

M =

( ∫ 1

0

(1− |z|)α|f(z)|p|z|spd|z|
)1/p

≤ C

( ∫ 1

0

( ∫ 1

0

|Rsf(ρz)|(1− ρ)s−1dρ
)p

(1− |z|)α|z|spd|z|
)1/p

= C

∫ 1

0

∫ 1

0

|Rsf(ρz)|(1− ρ)s−1(1− |z|)α/pψ(|z|)|z|sd|z|dρ ,

where ψ(|z|) ∈ Lp′(d|z|), 1/p′ + 1/p = 1.
Changing the variables we have∫ 1

0

|Rsf(ρz)|(1− ρ)s−1dρ ≤
∫ |z|

0

|Rsf(uξ)|(1− u)s−1 du

|z|s
.

Using the last inequality and Hölder inequality, we get

M ≤ C

∫ 1

0

∫ |z|

0

|Rsf(uξ)|(1− u)s−1(1− |z|)α/pψ(|z|)d|z|du

≤ C

∫ 1

0

|Rsf(vξ)|(1− v)s

1− v

∫ 1

v

(1− |z|)α/pψ(|z|)d|z|dv

≤ C

( ∫ 1

0

( 1

1− v

∫ 1

v

ψ(|z|)d|z|
)p′

dv

)1/p′( ∫ 1

0

|Rsf(uξ)|p(1− u)α+psdu

)1/p

.

From the last inequality and Lemma 2.4 we easily get the first part of the theorem.
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Now we prove the second part. From (1.2) and changing the variables we have

f(τξ) = f(τξ1, · · · , τξn) =

∫ 1

0

Rsf(τξ1ρ, · · · , τξnρ)(log
1

ρ
)s−1dρ

=

∫ τ

0

Rsf(uξ1, · · · , uξn)(log
τ

u
)s−1du

τ

≤ C

∫ τ

0

Rsf(uξ1, · · · , uξn)× (1− uτ)−1

τ
(1− u2)sdτ, s ≥ 1 .

Using duality argument, (2.3) and Hölder inequality we have( ∫ 1

0

f(τξ)pτ p(1− τ)γdτ

)1/p

≤ C

( ∫ 1

0

( ∫ 1

0

|Rsf(uξ)|(1− u)s(1− τu)−1du
)p

(1− τ)γdτ

)1/p

= C

∫ 1

0

∫ 1

0

|Rsf(uξ)|(1− u)s(1− τu)−1(1− τ)γψ(τ)(
1− u

1− τ
)
−1
pp′ (

1− u

1− τ
)

1
pp′ dudτ

≤ C

( ∫ 1

0

∫ 1

0

ψp′(τ)(1− τu)−1
(1− u

1− τ

)− 1
p
(1− τ)γdudτ

)1/p′

×
( ∫ 1

0

∫ 1

0

(1− u)sp|Rsf(uξ)|p
(1− u

1− τ

) 1
p′

(1− τ)γ(1− τu)−1dudτ

)1/p

≤ C

( ∫ 1

0

ψp′(τ)(1− τ)γdτ

)1/p′( ∫ 1

0

(1− u)sp+γ|Rsf(uξ)|pdu
)1/p

,

where ψ ∈ Lp′((1− τ)γdτ), 1/p+ 1/p′ = 1. We can get the desired inequality by
integrating both sides on T n. The proof is completed. �

Remark 3.2. Our Theorem 3.1 extends the well-known Hardy-Littlwood theo-
rems(case n = 1 and p = q) with fractional derivative (see [2, 5]) to the case of
mixed norm spaces with Rs operators.

Next we give an application of Lemma 2.1. For measurable function f in the
disk we define

Ap(f)(ξ) =
( ∫

Γδ(ξ)

|f(z)|p

(1− |z|)2
dm2(z)

)1/p

, p <∞;

A∞(f)(ξ) = sup{|f(z)| : z ∈ Γδ(ξ)}, ξ ∈ T, δ > 1;

Cp(f)(ξ) = sup
ξ∈I

( 1

|I|

∫
S(I)

|f(z)|p

1− |z|
dm2(z)

)1/p

, p <∞, ξ ∈ T,

where S(I) = {z ∈ U, z
|z| ∈ I, 1− |z| ≤

1
2π
|I|}, I ⊂ T,

Γδ(ξ) = {z ∈ U : |1− ξz| < δ(1− |z|), δ > 1}.

The following result can be found in [1] or [10]:
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For any functions f(z) and g(z) measurable in the unit disk∫
U

|f(z)||g(z)|
1− |z|

dm2(z) ≤ C

∫
T

Ap(f)(ξ)Cp′(g)(ξ)dm(ξ), 1 < p ≤ ∞,
1

p
+

1

p′
= 1.(3.1)

The above result can be easily by iteration extended to polydisk.
Using the polydisk version of (3.1), by Cauchy formula in polydisk, Littlewood-

Paley inequality (see [1]) and 2.1 we have for any holomorphic function f in the
polydisk,

|Rsfρ(ϕτ
2)| = C

∣∣∣ ∫
T n

f(τξ)Rs 1

1− τρξϕ
dmn(ξ)

∣∣∣
≤ C

∫
Un

|DαRs 1

1− wϕρ
|f(w)|(1− |w|)α−1dm2n(w)

≤ C

∫
T n

sup
w∈Γt(ξ)

|DαRs 1

1− wϕρ
(1− |w|)αdmn(ξ)× ‖C1(f)‖L∞

≤ C

∫
T n

sup
w∈Γt(ξ)

|Rs 1

1− wϕρ
|dmn(ξ)× ‖C1(f)‖L∞ .

Here α > 0, ϕ, ξ ∈ T n, ρ ∈ [0, 1]n, ϕτ 2 = (ϕ1τ
2
1 , · · ·, ϕnτ

2
n), τj ∈ (1/2, 1), j =

1, · · · , n. We used in the last inequality a maximal theorem for Ds operators, see
[7]. Therefore

|Rsf(ρϕ)| ×
( ∑

αj≥0
P

αj=s

n∏
k=1

(1− ρk)
−αk

)−1

≤ C‖C1(f)‖L∞

and

sup
ρ∈[0,1]n

M∞(D−1Rsf, ρ)| ×
( ∑

αj≥0
P

αj=s

n∏
k=1

(1− ρk)
−αk

)−1

≤ C‖C1(f × (1− |z|))‖L∞ , (3.2)

where

C1(f × (1− |z|))(ξ1, · · · , ξn) = sup
ξ1∈I

1

|I|

∫
S(I)

· · · sup
ξn∈I

1

|I|

∫
S(I)

|f(z)|dm2n(z).

Remark 3.3. Estimates (3.2) extends known one dimensional inequality which
can be found in [10]. We just give one application of Lemma 2.1. Various other
generalizations can be obtained with the help of Lemma 2.1. Estimate (3.2) is
just an example.

We see that the Rs operator are connected with the quasinorms on subframe
via integral representations (2.4) and (2.5). So it is natural to find new estimates
for quasinorms on subframe. In the polydisk we consider the following three
expressions∫ 1

0

∫
T n

|f(rξ1, · · · , rξn)|p(1− r)αrdrdmn(ξ), 0 < p <∞, α > −1;
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T n

∫
[0,1]n

|f(τ1ξ1, · · · , τnξn)|p
n∏

k=1

(1− τk)
αkτ1 · · · τndτ1 · · · dτndmn(ξ);

and∫
T

∫
[0,1]n

|f(τ1ξ, · · · , τnξ)|p(1− τ1)
α1 · · · (1− τn)αnτ1 · · · τndτ1 · · · dτndm(ξ),

where 0 < p < ∞, αj > −1, j = 1, · · · , n, f ∈ H(Un). Our intension is to show
some connection between these quasinorms using so-called dyadic decomposition
of the polydisk and subframe, see [4]. First, we have the following result.

Theorem 3.4. Let f ∈ H(Un), 0 < p <∞, α > −1, n ∈ N. Then∫ 1

0

∫
T n

|f(z)|p(1− |z|2)αdmn(ξ)d|z|

≤ C

∫
Un

|f(z)|p(1− |z1|2)
α
n
−1+ 1

n · · · (1− |zn|2)
α
n
−1+ 1

ndm2n(z) .

Proof. Using diadic decomposition that were introduced in introduction and the
subharmonicity of the |f(z)|p(0 < p <∞) function, we have∫ 1

0

∫
T n

|f(z)|p(1− |z|2)αdmn(ξ)d|z|

=
∑
k≥0

∫ 1−2−k−1

1−2−k

∑
l1,··· ,ln

∫
Ik,l1

· · ·
∫

Ik,ln

|f(z)|p(1− |z|2)αdmn(ξ)d|z|

≤ C
∑
k≥0

∑
l1,··· ,ln

max
eUk,l1,··· ,ln

|f(z)|p · 2−k · 2−kα · (2−k · · · 2−k)

≤ C
∑
k1≥0

· · ·
∑
kn≥0

∑
l1,··· ,ln

max
Uk1,··· ,kn,l1,··· ,ln

|f(z)|p ·
n∏

i=1

2−
ki
n ·

n∏
i=1

2−
kiα

n

n∏
i=1

2−ki

≤ C

∫
Un

|f(z)|p(1− |z1|2)
α
n
−1+ 1

n · · · (1− |zn|2)
α
n
−1+ 1

ndm2n(z).

In the last inequality we used two facts. The first is that we used the following
inequality

max
z∈Uk1,··· ,kn,l1,··· ,ln

|f(z)|p ≤ C22(k1+···+kn)

∫
U∗

k1,··· ,kn,l1,··· ,ln

|f(z)|pdm2n(z) ,

which follows from the subharmonicity of |f(z)|p(0 < p < ∞, f ∈ H(Un) (see
[4]). Here U∗

k1,··· ,kn,l1,··· ,ln = U∗
k1,l1

× · · · × U∗
kn,ln

is a family of enlarged dyadic
cubes, see [4]. The second is that the family of enlarged dyadic cubes is a finite
covering of polydisk (see [4])( ∑

k1,··· ,kn≥0

)( ∑
l1,··· ,ln≥0

) ∫
U∗

k1,··· ,kn,l1,··· ,ln

|f(z)|p(1− |z|2)γdm2n(z)

≤ C

∫
Un

|f(z)|p(1− |z|2)γdm2n(z), 0 < p <∞, γ > −1.
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The proof of the theorem is completed. �

Remark 3.5. It is easy to see that the assertion of Theorem 3.4 is true for n = 1.

The following theorem can be obtained using the same ideas by small modifi-
cation of methods that we used above.

Theorem 3.6. Let f ∈ H(Un). Then the following assertions are true.
i) Let p ∈ (0,∞), αj > −1, j − 1, · · · , n, n ∈ N. Then∫

U

|f(z, · · · , z)|p(1− |z|2)
Pn

j=1 αj+n−1dm2(z)

≤ C

∫
T

∫
[0,1]n

|f(|z1|ξ, · · · , |zn|ξ)|p
n∏

k=1

(1− |zk|2)αkd|z1| · · · d|zn|dm(ξ).

ii) Let 0 < p <∞, α > −1. Then we have∫
U

|f(z, · · · , z)|p(1− |z|2)α+n−1dm2(z)

≤ C

∫
T n

∫ 1

0

|f(|z|ξ1, · · · , |z|ξn)|p(1− |z|2)αdmn(ξ)d|z|.

iii) Let p ∈ (0,∞), αj > −1, j − 1, · · · , n, n ∈ N. Then∫
T

∫
[0,1]n

|f(|z1|ξ, · · · , |zn|ξ)|p
n∏

k=1

(1− |zk|)αk+n−1
n d|z1| · · · d|zn|dm(ξ)

≤ C

∫
Un

|f(z)|p
n∏

k=1

(1− |zk|2)αkdm2n(z).

Proof. We prove only the second inequality. We use diadic decomposition of U
and subframe and the same ideas that we used in the proof of Theorem 3.4. We
have ∫

U

|f(z, · · · , z)|p(1− |z|2)α+n−1dm2(z)

=
∑
k≥0

∑
j

∫
Uj,k

|f(z, · · · , z)|p(1− |z|2)α+n−1dm2(z)

≤ C
∑
k≥0

∑
j

max
Uj,k

|f(z, · · · , z)|p2−2k2−k(α+n−1)

≤ C
∑
k≥0

∑
j1,···jn

max
z∈Uk,j1,··· ,jn

|f(z, · · · , z)|p2−k(α+n+1)

≤ C
∑
k≥0

∑
j1,···jn

22knM2−k(α+n+1) ,

where

M =

∫
eU∗

k,j1,··· ,jn

|f(z1, · · · , zn)|pdm2n(z),
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Ũ∗
k,j1,··· ,jn

is a enlarged version of dyadic cube on dyadic decomposition of subframe
(see [4])

Ũ∗
k,j1,··· ,jn

= Ũ∗
k,j1

× · · · × Ũ∗
k,jn

=
{

(τξ1, · · · , τξn), τ ∈ Ĩk = (1− 1

2k−1
, 1− 1

2k+2
],

ξi ∈ Ĩk,ji
= [

π(ji − 1/2)

2k
,
π(ji + 1/2)

2k
)
}
.

We have

M =

( ∫ 1−2−k−2

1−2−k+1

∫
eIk,j1

)
· · ·

( ∫ 1−2−k−2

1−2−k+1

∫
eIk,jn

)
|f(z1, · · · , zn)|pdm2n(z)

≤ C2−k · · · 2−k

∫
eIk,j1

· · ·
∫
eIk,jn

|f(τ̃1ξ1, · · · , τ̃nξn)|pdmn(ξ),

where |f(τ̃1ξ1, · · · , τ̃nξn)| = maxτj∈eIk,j=1,··· ,n. |f(τ1ξ1, · · · , τnξn)|. Therefore,∫
U

|f(z, · · · , z)|p(1− |z|2)α+n−1dm2(z)

≤ C
∑
k≥0

2−kα
∑

j1,···,jn

∫
eIk,j1

· · ·
∫
eIk,jn

|f(τ̃1ξ1, · · · , τ̃nξn)|pdmn(ξ)

∫ 1−2−k−3

1−2−k−2

dτ.

Since ∫
T n

|f(τ̃1ξ1, · · · , τ̃nξn)|pdmn(ξ) ≤
∫

T n

|f(τξ1, · · · , τξn)|pdmn(ξ),

for 0 < p <∞, τj ∈ [1− 2−k−2, 1− 2−k−3), j = 1, · · · , n, we obtain∫
U

|f(z, · · · , z)|p(1− |z|2)α+n−1dm2(z)

≤ C
∑
k≥0

2−kα

∫ 1−2−k−3

1−2−k−2

∫
T n

|f(τξ1, · · · , τξn)|pdmn(ξ)dτ

≤ C

∫
T n

∫ 1

0

|f(|z|ξ1, · · · , |z|ξn)|p(1− |z|2)αdmn(ξ)d|z|.

The proof of this theorem is finished. �

Remark 3.7. The assertions of Theorem 3.6 are obvious for n = 1.

From Theorem 3.6, we easily get the following result, which was proved in [4].

Corollary 3.8. Let p ∈ (0,∞), α > −1, n ∈ N, f ∈ H(Un). Then∫
U

|f(z, · · · , z)|p(1− |z|)αn+2n−2dm2(z)

≤ C

∫
Un

|f(z1, · · · , zn)|p(1− |z1|)α · · · (1− |zn|)αdm2n(z).



16 R. SHAMOYAN, S. LI

Corollary 3.9. Let u ∈ H(Un), q ∈ (0,∞), αj > 0, j = 1, · · · , n, n ∈ N. Then∫
U

|u(z, · · · , z)|q(1− |z|2)
Pn

j=1 αj−1dm2(z)

≤ C

∫
T

∫
Γt(ξ)

· · ·
∫

Γt(ξ)

|u(z1, · · · , zn)|q
n∏

k=1

(1− |zk|2)αk−2dm2n(z)dm(ξ).

Proof. Fix ξ ∈ T , then (see [3])∫ 1

0

|ũ(ρξ)|q

1− ρ
dρ ≤ C

∫
Γt(ξ)

|ũ(z)|qdm2(z)

(1− |z|2)2
.

Choosing ũ = u(ρξ)(1− ρ)α/q, u ∈ H(U), α, q ∈ (0,∞), we have∫ 1

0

|u(ρξ)|q(1− ρ)α−1dρ ≤ C

∫
Γt(ξ)

|u(z)|q(1− |z|2)α−2dm2(z).

Using the last inequality, by each variable we get the following∫ 1

0

· · ·
∫ 1

0

|u(ρ1ξ, · · · , ρnξ)|q
n∏

k=1

(1− ρk)
αk−1dρ1 · · · dρn

≤ C

∫
Γt(ξ)

· · ·
∫

Γt(ξ)

|u(z)|q
n∏

k=1

(1− |zk|2)αk−2dm2n(z).

Integrating both sides by T and using i) of Theorem 3.6, we have∫
U

|u(z, · · · , z)|q(1− |z|2)
Pn

j=1 αj−1dm2(z)

≤ C

∫
T

∫ 1

0

· · ·
∫ 1

0

|u(ρ1ξ, · · · , ρnξ)|q
n∏

k=1

(1− ρk)
αk−1dρ1 · · · dρndm(ξ)

≤ C

∫
T

∫
Γt(ξ)

· · ·
∫

Γt(ξ)

|u(z1, · · · , zn)|q
n∏

k=1

(1− |zk|2)αk−2dm2ndm(ξ).

This completes the proof of Corollary 3.9. �

Remark 3.10. For n = 1, the assertion of Corollary 3.9 is contained in [3, 18].
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