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ABSTRACT. We study the action and properties of a differential operator in
the polydisk, extending some classical results from the unit disk. Using so
called dyadic decomposition of the polydisk we find precise connections between
quazinorms of holomorphic function in the polydisk with quazinorms on the
subframe and the unit disk. All our results were previously well-known in the
unit disk.

1. INTRODUCTION AND PRELIMINARIES

Let n € Nand C" = {z = (21, ..., z) |2z € C,1 < k < n} be the n-dimensional
space of complex coordinates. We denote the unit polydisk by

Ut={ze€C": |z| <1,1<k<n}
and the distinguished boundary of U™ by
T"={2eC": |z =1,1<k<n}.

We use ma,, to denote the volume measure on U™ and m,, to denote the normalized
Lebesgue measure on 7". Let H(U™) be the space of all holomorphic functions
on U™. When n = 1, we simply denote U' by U, T by T, ma, by ms, m, by m.
We refer to [15] for further details.
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The Hardy spaces, denoted by H?(U™)(0 < p < o0), are defined by
Hp(Un) = {f € H<Un> - sup Mp(f7 7’) < OO},
0<r<1
where
M) = [ S0 dma(©), Melf.r) = max S0E). v € (0.1), S € HE").

For a; > —1,7 = 1,---,n,0 < p < oo, recall that the weighted Bergman
space AZ(U™) consists of all holomorphic functions on the polydisk satisfying the
condition

n

11, = [ 1P TI0 = | Py dma ) < oo
" i=1
Throughout this paper, constants are denoted by C, C,, or C(«a), they are
positive and may differ from one occurrence to other. The notation A < B
means that there is a positive constant C' such that B/C < A < CB.
Let z = (21,...,2,) € U™, fj(2) € H{U™), j =1,--- ,n. It is easy to see that
if
f](Z) = Z a](i{...,k’nzlfl ...Zs"7 j = ]_7n
/ﬂ,“',anO

is a usual Taylor expansion in U" of f;, then

n
_ _ () k kn
S )= firfu= D (el etk
ki,..kn>0 j=1
We consider a very particular case when
() _ -
ak ek kjalﬂ,...,kn? J= 17 N,

where ay, . 1, is a certain sequence. We have

n

S(fr )= ) (ki kn)an g, 2yt 2y

klv--wanO

Motivated by the above expression we define a operator in the polydisk as
follows

Rf= > (ki +ky+ Dag, g, 202
k1ye.kn >0
or more general form

Rf= Y (bt +kot Dk g2tz seER,

where
f(z) = Z Ay, 2t e 2 € H(U™).
k1, kn>0
It is easy to see that

n

Rf:le:f+sz%. (1.1)
=1 !
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In the case of the unit ball an analogue of R*® operator is a well known radial
derivative which is well studied (see [17]). We note that in polydisk the following

fractional derivative is well studied (see [1, 11]),
(D f)(2) = D (kA1) (b + 1)y, k228
oty >0

where « € R, f € H(U") and D* : H{U™) — H(U™). We also note that in
polydisk the following derivative was studied in [10],

D = ﬁ (2—1—2%%).
k=1

Apparently the R® operator was studied in [0] for the first time. Then in [12],
the first author studied some properties of this operator. The aim of this paper
continue to study the R* operator.

We need the following vital formula which can be checked by easy calculation

1
f<7—517 T T§n> - OS/O Rsf(T§1p7 T Tgﬂp)(log %)s_ldp7 (12)

where s > 0,7 € (0,1),Cs > 0,& € T,j = 1,...,n. The integral representation
of functions via these operators will allow us to consider them in U™ in close
connection with functional spaces on subframe

Ur={zeU" |z|=rre(01],j=1,...,n}

The following dyadic decomposition of subframe and polydisk were introduced
in [1] and will be used by us.

- . ~ 1 1
Uk,l1,~~-,ln = Ule X oo 'Uk,ln = {(7‘51, Ce ,Tfn) T E (1 — ?’ 1-— 2k+1]’

l; m(l;+ 1) X ) ,
k=0,1,2,--; 2_zj<5j§]2—k’ lj=—=2%..- 2" -1, ]:1,...771}7
~ wl; w(l; + 1 _ ~ —2kn

m([klj) = m(f eT: 2—’: < £j < %) = 2 k, mgn(Uk’lh...’ln) = 2 2k ,
Ui pniygn = Ukpy X0 Upp1, = {(7151, o Tabn),
1 1 .
Tje(l—%,l—m], kj:O717"'aj:1727"'7n7
nl; m(l;+1) s ks .
5]6(27]7 ij ]7 lj:_QJa"'72j_17.]:1’"'777’7}'

The goal of this paper is to extend some known assertions connected with frac-
tional derivative in the unit disk to the polydisk and use the diadic decomposition
of subframe and polydisk to study the action and properties of R® operator and
quasinorm connected with them on subframe. In section 2 we give preliminaries,
several useful inequalities for the study of R*® operators, and show connections
between R°® and D?® operators in the polydisk. In section 3, we using the R?®
operator establish some embedding theorems extending some known embeddings
for Hardy classes and weighted Bergman classes in the unit disk. In section 3 we
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also establish connections between holomorphic spaces with quasinorms in the
subframe and polydisk.

2. SOME OBSERVATIONS CONCERNING R® AND D*® DIFFERENTIAL OPERATORS
AND PROOFS OF PRELIMINARIES

When we look at R® operators then we have the following natural problem:
Is it possible to reduce the study of R* operators to the study of D° operators?
which was studied by many authors (see for example [1] and references there).
Then we will be able to use known properties of D* to get new results for R?*
operators. The differential operator D* is much more convenient at least because
of the following property of g function. Let

1

k n
k1, kn>0
We have
Rg(z) = Z (ky+ -+ ky +1)520 .
kl,"',anO
and

Dog(z) = Y (ki +1)%2f - > (ko +1)°20m.

For D* we reduce things to one dimensional differential operators for one function
in the unit disk, that why we will find ways to reduce the study of R* to D?.
Let

Ref(z)= Y (kit et k) a2t 2

k1, kn>0

The following lemma is playing an important role in the study of R® operator. We
use some known facts in the proof of Lemma 2.1 about action of one dimensional
D* operator, for example the following estimate (see [2])

[ praopas < c [ 10 (21)
T T

(1€(0,1),0<p<oo,a<f,gec HU))
which can be transferred by induction to polydisk.

Lemma 2.1. Let w = |w|§, w,z,€ U™, 1 —wZz = [[}_;(1 —wyZx), s € {0} UN,
B>0,p€ (0,00). Then we have

/ 1
1

(1= ¢ulz)
1
< E— .
< ¢ 2 () 7> werts

a;>0 k=1
Eaj:s

R Ao (€)

n
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Proof. Let first 3 = 1. Since

(ky + - Z Ok ko eN, i=1,--- n,
Za =s
ko= (k1= 1) = CL (ki + 1) (—1)™,
1=0
and
_:ﬁ 1 1 :Zwkl-- Bnwsl <1, kj €N, j=1,---,n
1—w, 1—w ! I T
k=1 k; >0
i=1,,n
where C, = C(aq, - ay) = al,s—'an,, we have
~ 1
Re—— = > (k4 ) wt
—w k;>0
i=1,---,n
S X etk
k>0
= Z Z (O R S R g
k; >0
i=1 74..7120‘ —s
- Z Z C HZ 1)at_lwlfl"'wfzn7 |wj| <1, j:l)---
.k>0 t=1 [=0
it ,..Anza .

Therefore using polydisk version of (2.1) we have

1
J = RS— (&)
(1 — EJw|2)
P
< C Z Cy (ky + 1) o (b + D)% w01 - - w0, | dimg ()
o=y
p
<cya / Sy + D@ dm(&) -
;>0 T1g>0
Yaj=s
<[ ot it dme),
Tl k>0
where w; = &;|w,||2;], 7 =1,---,n. Hence by the estimate
dmm) __C0) 7€ (0,1), (2.2)

rl—mP = (L=7)p"
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aj i >0

p
dfl X/
T
Ea'—s

€2 (H/ |1—wk\p(°"“+1)

aj i >0
Za-—a

C Z H 1_|wk||2k| plart+1)—1

>0 k=1
Ea =s

IA

IA

where p > 1/(ming oy, + 1), |wy| € (0,1), |2 € (0,1), k=1,---
DY gs(z) = Z(k+ 1)czszl’f7 2€U, s=1,---,n

k>0

The case of 5 € (0, oo) needs small modification since

1—2
k>0

Lemma 2.1 is proved since

[ R 1opan© <€ [ 1R 5coPn.©).

=Y Ol Ol < (k+1)7, B>0.

p
D gy (|wnl|20[n) | d€n

,n, and

for f(z) =1, ﬁ, a>0,s>0,p€ (0,00), which follows from equality

(ky + -+ 4k +1)° ZC’”IaJr + k)

and some calculations similar to those that we used above.

Corollary 2.2. Let 0 < p < 00, s € NU{0}, I € (0,00),7y > 1/p+L,w € U™

Then

s 1 -1
/n IR m|p(1 — |2])P" dma,(2) < Z H (1 — [wy]) ak—‘,—’y)p pl—1"

a;>0,> aj=s k= 1

Proof. The result follows directly from Lemma 2.1 and the following estimate (see

[13]),

1
/ (1—pr) 1 —=7)%dr <C(1—p) M A>a+1,a>—1,pc (0,1).(2.3)
0

Remark 2.3. Our estimates in Lemma 2.1 and Corollary 2.2 coincide with well
known estimates in the unit disk for n = 1, they also known in ball, see for

example [3, 17].

For the proof of our main results some additional lemmas will be needed.



PROPERTIES OF DIFFERENTIAL OPERATOR ON THE POLYDISK 7

Lemma 2.4. Let 1 <p<g<o0,p = ]%, u(t),v(t), p(t) are positive functions
n (0,1). Then

( /0 1 u(t) /0 tgo(r)dr>th) " Kl( /0 1 SOp(t)v(t)dt) "

for some constant Ky if and only if

sup(/t1 U(T)dT)p/q(/Ot"U(T)l_pldT)p_l < 0.

t

Remark 2.5. These are well known so-called Hardy-type inequalities, see [9].

Lemma 2.6. Let v > 1. Then

1 C
- - < i
/Tn T=wzp ™) < T el

where w = {lw|, z,w € U, 1 —wz = [[}_; (1 — wyZx).

Proof. The proof easily follows by (2.2), we omit the details. O

We want to get the analogue of Bergman representation formula for the R*
operator (see [1]). Using (1.2) we get

f(Tzlv T 77_271) = f‘r(zla to 7zn)

_ Flen &)
= O e ey

_ ! s 1 s—1 dmn( )
- o [rfea ,rgnm(logp) U w0 =
— . s—11s
= (), /n/ f(r&p, - 7€) (log — ) R ( o) >dpdmn
where 7 € (0,1). Let 7 — 1. Then
! 1 1

L 2) = O, log =) 'R ————dpdm,, (£), A4

Sz =G [ [ fpe0s )R s dpdm@), (24)

for fe HU"),s>0,z€U", z=pp.
Note for n = 1, we get the well known representation formula (see [1, 17]) after
small modifications. The last estimate is equivalent to

—s o ! l s—1 1
®NE=C [ [ 008 ) o dmie), @9
where R*R°f = f,s>0, ze€ U", f € HU").

The following theorem connect D°® and R*® operators.
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Theorem 2.7. Let 0 <p < oo, « > —1,s €N, fe HU"). [f7>"TjL2—1for
p<l1 and7>%+%(l—%) forp>1,v=sp+an—ypn+n—1, then

[P0 = 2Py 2

1
< c / R Fw)P (L — [w]?)dma(€)duw],
0 Tn

where w = |w|¢.

Proof. Let f € H({U™), p<1. Then (see [11])

Mi(f,7%) < C(L—7)"YPM(f,7), 7€ (0,1). (2.6)
Using (2.6) and the fact that M,(f,r) is increasing as a function of r (see [5]) we
easily get
1 P
([, [ 1rla = ol an ol
1
<c [ [ - e dm, @del, 1)
Tn

where t > ( —1, f € H{U™), p < 1. By the Cauchy formula,

fp(gla e 7£n)dmn<£) P
™ (1=g)Ht
Using (1.2) or (2.4), (2.5) for large s and (2.7) we obtain

fol&, - &n)dmn (€) |
A Hk 1 (1 _szk)wl

< o [ [ AU bl tiniuly
n |1—wz|’Y+l

< 0/ / R ()P0 = ) 01— )00 o)

- |1 —wz|O+Dp

‘D’yf,O(Zla e wzn)’p S C

€ (0,1).

Therefore, from (2.6)-(2.8) and using Fubini’s theorem we have

/ D £ (2)P(L — |22 diman(2)

|Rs |p 1 _ |w|)sp+n(p 1)— 1dmn( )d|w| .
= / / / 1 —wz|(7+1 (1= [2*)*dmzn(2)

Using the following estimate
(1 — |2])"dman(2) C
o TTimy 11—z = Thm (= =2

t>—1, t1 >t+ 2,
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we get

/ (1 _ |Z‘2>adm2n(z) < C(l . |w|)(2+a—p7—p)n

|1 —wz|O+p -

+2
(’y>a —1,a>—1,\w\€(0,1)>.
p

Using limit argument we can get the desired result.

Consider now the case p > 1. The arguments are partially the same as in the
case p < 1. Let € be positive and small enough. Using (1.2), Cauchy formula,
Holder inequality we have

()P R f(w) (X — [w])* " dma (§)d|w]\
D7)l <(/ /n |1 — wz|r+! )

5 )P(1 — |w|)*= )P m, (w)d|w m, (§)d|w
o R*f s=rdm,, (w)d Y dm,(€)d
n |1—wz|(7 )p+2+pe n |1—wz|2 p'e
= CMlMg’/P.

Furthermore by Lemma 2.6,

1 dR Ro 1 dR
v [ o g(/ +/) L 29)
*= Jo TTioi (1 — Rlz|)i-e 0 ro / 1Tt (1 — Rlzg|)=P

where Ry = maxj <<y, |2x|. In addition,

IA

1 dR _ (1 _ Ro)l/n+~~~1/n
o [lema (U= RIz[)' =" = [Ty (1 = [ze)' =
C —~

. =M. (210)
[T (1= )

Using (2.3),
flo dR
o [limi (I = Rlzef) =
B /RO (1-R)v'x(1—R)dR
0 L= (1 = Rlze])! =
Ro (1 _ n. .. (1 — 1/n
C/ (1 R|le)1 / (1 R"Zn*lll) ,<1 _ R)l/nfldR
o (1=R[zn[)'="- (1= Rlz[)=
C /Ro (1 R)l/n—ldR
i o) Sy (TRl
Combing (2.9) with (2.10), (2.11) and repeating the arguments that we used for
p < 1, we can get the desired result at the case of p > 1. 0J

< CM. (2.11)

Remark 2.8. As we see from Theorem 2.7, the R*® operator are closely connected
with quasinorms defined on subframe. Theorem 2.7 is an extension of result on
the action of fractional derivatives on weighted Bergman spaces in the unit disk,
see [2].
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3. EMBEDDING THEOREMS FOR SOME ANALYTIC SPACES CONNECTED WITH
R% OPERATOR

In this section we state some new embedding theorems for various quasinorms
where the R® operator is participating, note that practically all results are well
known or obvious in the unit disk. Proofs of our results are heavily based on
definitions and preliminaries from previous sections.

Theorem 3.1. i) Let 0 < ¢ < 00, a € [0,00), s € N, 1 <p < oo, f € HU").

Then
[([a- |Z|)a|f(2)|p|2|5pd|z|>q/pdmn(g)

<cf (] R ) (1 W) " in®).

ii) Let 0 < g < 00, « € [0,00), se N, 1 <p<oo,v€ (=1/p,1/p), 1/p+1/p =
1, f€ H{U™). Then

[ ([ a-rriseopma)ane
< o (['meseora—rroa) e

Proof. Using (1.2) we have

</01(1 B |Z|)a|f(z)|p|z|spd|z|>1/p
C(/l /1 e p>$_1dp>p(1 - IZ|)a|Z\Spd|z|)1/p

_ / / R F(p)|(L = ) (L = o)™/ 7(|2] |l d]=|dp

where 1(|z]) € L¥ (d|z]), 1/p' +1/p = 1.
Changing the variables we have

1 g u
/0 R f(pz)|(1 = p)*~'dp < /0 Rl =)™ |i|5'

M

IN

Using the last inequality and Holder inequality, we get
1 rl7|
Mo o< © / / RS FE)|(1 = )= (1 — o)/ (|2])d] 2l du
R PO =) [ .
< o[ TRICOUOT [l ppysog(elyieian

<o ([ (5 / e )" ([ R sert —wra)

From the last inequality and Lemma 2.4 we easily get the first part of the theorem.
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Now we prove the second part. From (1.2) and changing the variables we have

1
[(rE) = flrér - r6) = /O RSf(rslp,---,rfnm(log/%)s1dp

- /T Rsf(uglv"' 7u§n)(10g Z)S_I@
0 u T
< C/TRSf(u§1,~~- ,uy) X %(1 —u?)dr, s> 1.
0

Using duality argument, (2.3) and Holder inequality we have

1 f(re)PrP(1 — 7)dr "
( )

= C(/o1 </01 R f(u)|(1 = w)*(1 - TU)’ldU>p(1 - T)”dr) "’
= C/Ol /01 R f(u)|(1 —u)*(1 —7u) (1 — TWMT)G — z);;/(i - z)ﬁdudf
< C(/Ol /OI%UPI(T)(l — Tu)_IG — i>;(1 _ T)vdudT)l/p/

1
v

’ (/01/01(1 ‘“>S”|R8f<us>|p(ti>p
< C’(/Olwp’(ﬂ(l — T)Wdr) e (/01(1 _ u)spﬂmsf(ugﬂpdu) 1/p’

where 1) € LP ((1 — 7)%d7),1/p + 1/p' = 1. We can get the desired inequality by
integrating both sides on T™. The proof is completed. 0

1/p
(1—-7)7(1— Tu)_ldud7'>

Remark 3.2. Our Theorem 3.1 extends the well-known Hardy-Littlwood theo-
rems(case n = 1 and p = ¢) with fractional derivative (see [2, 5]) to the case of
mixed norm spaces with R*® operators.

Next we give an application of Lemma 2.1. For measurable function f in the
disk we define

@ =([ G m) " p <o

Ao (N)(E) = sup{[f(2)] : 2 € T5(&)}, £ €T, 6> 15

G = (7 [ e am)” p<oc cem

cer \[1| 1 — 2]
where S(I) = {z € Ugell- 2| < =)}, I CT,

[s()={z€U:|]1-£&|<d(l—]z]), 6 > 1}.

The following result can be found in [1] or [10]:
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For any functions f(z) and g(z) measurable in the unit disk

[P o) < € [ A6 @) Oam©).1 <p < o0, 4 =131
1— !ZI T p P
The above result can be easily by iteration extended to polydisk.
Using the polydisk version of (3.1), by Cauchy formula in polydisk, Littlewood-
Paley inequality (see [1]) and 2.1 we have for any holomorphic function f in the
polydisk,

Ref(er) =] [ eOR T —dm (@

< O/n |DaRsl_;uw‘f(w>|(1 _ |w|)a_1dm2n(w)

1
< C/ sup [D*R°—
T weTy(€) L —wep

1
= O/ i R — dmn x ||C .
Tn wely(§) | 1-— wgpp| (5) H 1(f>||L

(1 = |w[)*dmn (&) x [[C1(f)| =

Here a@ > 07 9075 € Tnvp € [Ovl]na 907—2 = (@17—127' : '7@”7—3)7 Tj € (1/2?1)’ J =
1,---,n. We used in the last inequality a maximal theorem for D* operators, see
[7]. Therefore

R foel < (3 [10 - o0 < Clc(p

;20 k=1
Eaj:s
and
n -1
s Mo(D' RS p) % (30 T0=p) )
p€(0,1]™ aj>0 k=1
Yaj=s
< OIS x (1= [2]) |z, (3.2)
where
s > (= D)@ &) = sy [ oo [l
aer 1| e ]
Remark 3.3. Estimates (3.2) extends known one dimensional inequality which
can be found in [10]. We just give one application of Lemma 2.1. Various other

generalizations can be obtained with the help of Lemma 2.1. Estimate (3.2) is
just an example.

We see that the R*® operator are connected with the quasinorms on subframe
via integral representations (2.4) and (2.5). So it is natural to find new estimates
for quasinorms on subframe. In the polydisk we consider the following three
expressions

1
/ |f(r&y, - r&)P(1—r)%rdrdm,(€), 0 <p < oo, a > —1;
o Jrn
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L[ g mgdP TI0 = e mudn - dradm, )
n J10,1] k1

// |f(Ti& o )P = m)™ - (L= 7)1 T - - drdm (),
7 J[0,1]"

where 0 < p < 00,a; > —1,5 =1,--- ,n, f € H({U™). Our intension is to show
some connection between these quasinorms using so-called dyadic decomposition
of the polydisk and subframe, see [1]. First, we have the following result.

Theorem 3.4. Let f € HU™),0<p<oo, a>—1,n€N. Then

/ / . — |e*)*dm (€)d] |
<

< FEPQ =[50 (1= [z )5 dman ().
Un

Proof. Using diadic decomposition that were introduced in introduction and the
subharmonicity of the |f(2)|P(0 < p < 0o) function, we have

/ / 2)P(1 = |2*)*dmy, (€)d]z]

-y z o) e ey dmea

k>0 Ii1q

|f(2)]P - 9~k  g—ka (2*’6 . 2*’6)

IN
Q
M
;.
>

k>0 11, L Ukl oin
n n n
_ ki _ ki k.
<Oy Y Z max |f(z)"- [T - T2 ]2
v
k10 kn>01lp,- k1 obn i=1 i=1 i=1

< Cf IfGEPa- |21\2)%*”% (L= fzal?) AT g (2).
Un
In the last inequality we used two facts. The first is that we used the following
inequality

max (o) < c2tr | F )P dman(z),

z€Ug ekl ol *
1 ot " Uk’ly"'akn,lly"',ln

which follows from the subharmonicity of |f(2)[P(0 < p < oo, f € H(U™) (see
[1]). Here Uy, gy, = Upiy, X - - x Up ;- is a family of enlarged dyadic
cubes, see [1]. The second is that the family of enlarged dyadic cubes is a finite
covering of polydisk (see [1])

(X)) FP(L— < dma, (2

o dn >0 YUk e ety el

< [ PO R ), 0<p<oc, v > -1
Un
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The proof of the theorem is completed. O
Remark 3.5. Tt is easy to see that the assertion of Theorem 3.4 is true for n = 1.

The following theorem can be obtained using the same ideas by small modifi-
cation of methods that we used above.

Theorem 3.6. Let f € H(U™). Then the following assertions are true.
i) Let p € (0,00), a;j > —1,7—1,--- ,n, n € N. Then

/ o 2P 2S5 dy (2)
/ /[ a6, 1zl TI = ) dizn] - dlzaldm(E).

k=1

ii) Let 0 < p < 00, « > —1. Then we have
LU 2p = 2y tama )
< o [1tele Fera - oy am, )

iii) Let p € (0,00), o > —1,5—1,--- ,n, n € N. Then

/ /[01]" ’21|£7 |Zn’£)‘p H(l - |Zk’)ak+7d|21’ d’zn’dm(é‘)

n

< [ 1P IO fa)dma o).

k=1

Proof. We prove only the second inequality. We use diadic decomposition of U
and subframe and the same ideas that we used in the proof of Theorem 3.4. We
have

LU 2p = 2y tama(e)
) / P = o)+ dma(2)

’ Z) |p2—2k2—k(a+n—1)

N
Q
g
M
SE G
- 5
:

k>0 j
< e po—k(atn+1)
< Ck; Z L (2, 2)]
Jiy
S Cz Z 22an2—k(a+n+1)’
k>0 ji,jn

where

M o= / e z)Pdma(2),

kg1, sin
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U ki1 g 18 aenlarged version of dyadic cube on dyadic decomposition of subframe
(see [1])

s 7% s T 1 1
Uk gn = Ukgs X = X U, = {(751> T, T e = (1 - 2k71’1 - 2k+2]’

> m(ji — 1/2) 7(ji +1/2)
& € Iy, = | oF ) oF )}
We have
1—2— k—2 1—2— k—2
vo= ([ ) e i
2— k+1 Ikajl 2— k+1 Ik n

< C2_k o Q_k /}Vk,jl - /]Vk,jn |f(ﬂ§1’ e >ﬂ£n)|pdm”(§)’

where |f(T1&1, -+, Tan)| = MaX_ (7 iy, |f(11&1, -+, ma&n)|. Therefore,

[z, 2)P(L = |2 dmy ()

U
1—2-k=3
NINEDY Y L Ry
k20 Ik ]1 Ik in 1—27k72
Since
/ ‘f(ﬂfla e >ﬁl£n)|pdmn(€> < / |f(7—€17 e 7T€n)|pdmn<€>7
for0<p<oo,7;€[1—2"721-27%3) j=1 - n, we obtain
[ U 2P = 2y o)
1— 2—k 3
< oY ot / [ 1566+ e amyin
k}>0 2— k—2 n
< 0 [ [ 150246 P~ o) dma e,
T Jo
The proof of this theorem is finished. OJ

Remark 3.7. The assertions of Theorem 3.6 are obvious for n = 1.
From Theorem 3.6, we easily get the following result, which was proved in [1].

Corollary 3.8. Let p € (0,0), a > —1,n €N, f € HU"). Then
[ U 2 = e ma(e)
/ f G 2P ) (1= [zl 2).
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Corollary 3.9. Letue H({U"), g€ (0,00), a; >0, j=1,---,n, n € N. Then

/ [ulz, -, 2)| (L = [2f?)2i= 4 dmy (2)
U

C o Loz 1 — |z 2dmag, (2)d .
< / /w /M@'“(Z )1 TT(1 = |y 2dimn(2)dm(€)

k=1
Proof. Fix £ € T, then (see [3])
Ha(pg)| [u(2)|%dmy(2)
P gy < ¢ | AZITAm2l2)
/o 1—p 7 = /m(s) (1 —1[2[*)?
Choosing @ = u(p&)(1 — p)*, uw € H(U), a, q € (0,00), we have
1
/0 u(p1(1 = p) Hdp <€ [ ful20(1 ) o).

I't(§)
Using the last inequality, by each variable we get the following

n

1 1
/0 /0 [ulprl, - paf) | T [ (1 = pr)™dpy -+~ dpn

k=1

< C’/ . / ‘U<Z>|QH(1 — |z 2dmag, (2).
() ¢(€)

k=1
Integrating both sides by T" and using i) of Theorem 3.6, we have

[ e = ) e o)
U

1 1
c / / / u(pr&, - pu) | T = o) dpy - - dpodm(€)

k=1

< C// / |u(zl,...,zn)\qH(l—|zk|2)“k‘2dm2ndm(£)-
T JT(¢) T'¢(§) k=1

This completes the proof of Corollary 3.9. O

IA

Remark 3.10. For n = 1, the assertion of Corollary 3.9 is contained in [3, 18].
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