Eléments de Géomeétrie Riemannienne Infinitésimale

Cristian N. Costinescu

Résumé

Le but de cette note est de pousser un peu plus loin 'étude fait dans [2] et [3]
sur les points infiniment petits situés sur des courbes et des surfaces.
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1 Introduction

On va utiliser les métodes infinitésimales de I’analyse non standard pour aborder
certains problemes de géométrie.

L’étude d’un simple point, non situé a priori sur un objet géométrique, est résumé
par Michel Goze dans son ”théoréme de décomposition du point” (voir [2] et [3]). Ce
point, supposé non standard et limité, définit un repeére standard (i.e. une géométrie)
et détermine un développement analytique.

Si le point est situé sur des courbes et surfaces, il est naturel de comparer les
deux géométries: celle définie par le point et la géométrie intrinséque des objets en
question. Par exemple, le repére orthonormé engendré par un point coincide avec le
repére mobile de Frenet, associé au point considéré & une variété riemannienne.

Dans la section 3 on donne aussi (pour la premiere fois & ma connaissance) une
généralisation - dans le cadre envisagé - des formules classiques de Frenet.

En ce qui concerne le cas des points situés sur des surfaces, I’étude est beaucoup
plus compliqué. Dans la section 4 on trouve seulement une approche de problémes
difficiles qui y peuvent paraitre.

J’ai eu des nombreuses discussions avec mon ami Viorel Petrehug sur I’analyse non
standard et ses applicarions. Je le remercie vivement pour sa permanente disponibilité.

2 Decomposition d’un point infiniment petit
(d’apres Goze [1], [2] et [3])

On se place dans le cadre de la théorie des ensembles internes d’Edward Nelson ([4]).
Il est utile & ce sujet de rappeler la terminologie et quelques remarques:
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- les nombres entiers standard sont les éléments de N.

- dans R on distinge les nombres limités (i.e. inférieurs en valeur absolue & un
nombre standard), les nombres non limités (ou infiniment grands) et les nombres
réels infiniment petits (i.e. les réels non standard plus petits en valeur absolue que
tout réel standard positif). On va noter:

z ~y pour z infiniment proche de y

(i.e. |z — y| infiniment petit).

- pour n standard, un vecteur de R" est infiniment petit si toutes ses composantes
(relatives & une base standard) sont infiniments petites.

- si  est un nombre réel limité il existe un unique réel standard noté %z et appelé
ombre de z, tel que x —°  soit infiniment petit.

- I’ ombre d’une partie A de R (ou de R™) est 'unique ensemble standard noté
par A dont les éléments standard sont infiniment proches des éléments limités de A.

Soit maintenant M un point infiniment proche de l’origine O dans R™ (ou dans
C") et soit p la dimension du plus petit sous espace vectoriel standard Ejs contenant
le point M.
Théoréme ([3]). 1) Il existe une base standard {vi,...,v,} de Enr telle que le point
M admet la décomposition

(1) M = e1v1 + €169U2 + ... + €1€2...pVp

avec g; ~ 0 dans R (on C),i=1,...,p.
2) La décomposition précédente est unique & équivalence prés dans le sens suivant:
st {U{, ...,U;)} est une autre base standard dans laquelle

M = gjv; +€1€5vy + ... +€165...6,0, avec € =0

alors on a:

Za v; aveca standard et af #0 pour j=1,..,4

1€y = E aleiey...gj

Démonstration. Soient xi,%2,...,%, les coordonnées du point M (i.e. le vecteur
(21, ..., 2,) est infiniment petit dans R™) et on désigne par ¢; le plus grand en valeur
absolue des 1, ..., Z,. Alors on a

T1 Tji-1 , Zj+1  Tn
M = 51(—, ey —, 1, —— . —
€1 €1 €1 €1

z; .
Les rapports — étant limités, le vecteur de ci-dessus admet une ombre (la partie
€

1
standard) v, non nulle et on peut écrire:

M = eg1v1 + €10, avec v] ~ 0 dans R"
1 1
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D’autre part, si 2 = 0 il résulte que la k-iéme composante (avec k # j) du vecteur
vj est aussi nulle et de ’égalité e = x; il vient que la j-iéme composante de v] est
nulle; ces relations montrent que les vecteurs v; et v} sont linéairement indépendants.

En itérant ce procédé engagé sur le point M au vecteur vj on obtient

' '
V] = E9Ug + €20y

d’ol s’ensuit:
]
M = eg1v1 + £169v2 + E1E2Vy

L’indépendance linéaire des vecteurs v; et vi implique I'indépendance linéaire des
vecteurs vy et vy; par construction les vecteurs vy, v} et vh sont linéairement indépendants
d’ot il vient que les vecteurs vy, vs et vh sont aussi linéairement indépendants.

Par itération on obtient

M = e1v1 + €16203 + ... + €162...EpUp + €1€2...6p0),

avec vi,...,Vp standard et v;, infiniment petit; mais il suit que v;, est nul, au cas
contraire il résulte que les vecteurs vy, ..., Vp, v;, sont linéairement indépendants. Donc
le point M admet justement la décomposition (1).

Pour "unicité (& équivalence pres) de la décomposition, voir [3], p.94.
Remarques 1. L’entier standard p associé a la décomposition du point M est appelé
longueur de la décomposition ou longueur de M.

2. Si le point M n’est pas infiniment petit mais limité, le théoreéme reste valable
pour le point M’ = M —° M, ou °M est la partie standard (I’'ombre) de M, puisque
M' est un point infiniment petit. Alors on a la décomposition

M =" M + v + 18902 + ... + E1€2...EpUp
3. La k-ieéme étape de la démonstration précédente donne
M =¢gv1 +e163v2 + ... + €1...60 + 61...6191};c
avec v;, ~ 0 dans br™ et vy, ..., Ug, v}, linéairement indépendants. Le repere {v1,...,vx}
peut étre complété & une base
{1)1, veny Uk Uk+1, aeey Up}
de E)p et le vecteur v}, se décompose par rapport & cette base comme suit:
V), = Ekp1Vk41 + - + EpUp

avec €; ~ 0.

En portant cette expression dans la décomposition du point M, on obtient une
décomposition moins fine ot les degrés des monomes en ¢; sont on plus égales a k+ 1.
Cette décomposition est appelée décomposition de degré k, a savoir:

M =e1v1 +€16202 + ... + €1...ERVE + €1+ Ef—1ER+1Vk+1 + - + E1--.EL—1EpUp

€ .
avec £; ~ 0 et —Z non standard pour k+ 1 <r # j < p.

Er
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4. Tl existe une unique décomposition orthonormée du point M infiniment proche
de Dorigine dans R™ (i.e. la base {v1,...,vp} est orthonormée).

Ici on va indiquer la construction pour n = 3 mais le résultat se généralise facile-
ment pour n standard quelconque.

Soient deux décompositions du point M ~ 0 dans R>:

M =e1v1 +E162v2 + €16283v3 et M = 0] + eleyvly + elehelv]

avec v} = alvy, etc.

Dans un premier temps on pose ai = et puis on choisit le signe de a} de

+1
[loa ]
o ’ N ~ . . =

telle fagon que le vecteur unitaire v; possede la méme orientation que OM. Dans un
LB . by rd !

deuxiéme temps on consideére dans le plan engendré par v; et va,un verseur v, tel que
\ . . LIEEN ! . .

le repere {v],v5} soit direct. Le troisieme vecteur v; sera le produit vectoriel v} x v}

et ainsi l'orientation du repere orthonormé {v{, v}, v} est positive.

3 FEtude des courbes dans br”

Soit (C) une courbe réguliere standard dans R™ et pour simplifier la présentation, on
suppose que (C) passe par origine O.

Proposition 1 [2]. Pour tout point M infiniment proche de Uorigine sur la courbe
(C), son repére orthonormé intrinséque coincide avec le repére Frenet de la courbe en
0.

Démonstration. Nous allons utiliser la caractérisation géométrique du repéere mobile
de Frenet par rapport a la construction de 'unique repere orthonormé direct définit
par le point M envisagé: le premier vecteur unitaire v} (voir remarque 2.4.) est ’'ombre
de la droite OM et donc il est le vecteur unitaire tangent & la courbe (C) en origine.
Quant au plan engendré par les verseurs v] et v}, il est 'ombre du plan engendré par la
droite OM et la tangente en O & la courbe - i.e. il est, par définition, le plan osculateur;
alors v est le vecteur unitaire de la normale principale. Le troisiéme verseur du repére
de Frenet est le produit vectoriel des premiers deux, c’est-a-dire exactement le vecteur
unitaire v5. De méme pour les autres verseurs vy, ..., v},.

Remarques 1. On peut définir un repere associé au point M quelle que soit la nature
de Dorigine sur la courbe (C), méme si O est un point singulier pour (C).

2. Sous les hypotheéses précédentes, on suppose en plus que la décomposition du
point M est de longueur égale a 2; il résulte que M est contenu dans un plan standard
et donc la courbe (C) est localement plane. Pour obtenir une généralization de ce
résultat, on utilise la décomposition de degré k du point M (voir remarque 2.3.); alors
il existe un k-plan standard contenant M.

3. En comparant le développement limité de la courbe (C) C R? en origine (obtenu
en prenant I’abcisse curviligne comme parametre) avec la décomposition orthonormée
du point M€ (C), M~ O dans R?

M = e1v1 + €169V + €162€303

on montre dans [2] que:
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€
i) le rapport ea/e; est limité et © (5_2)
1

1
= 5]6(0), ou k(0) désigne la courbure de
(C) en origine;

1
ii) le rapport €3/e1 est limité et ° (6—3> = - x(0), ot x désigne la torsion de la

€1 3
courbe (C).

Pour la courbe envisagée (C) dans R™, on considere la paramétrisation 7 = 7 (s)
ou s est ’abcisse curviligne; on suppose que les vecteurs

av &7 4T

ds’ ds? 77 dsnt

sont linéairement indépendants.

Pour trouver la base mobile de Frenet, premieréement on applique aux vecteurs
précédents le procédé d’orthonormalisation de Gram-Schmidt en obtenant les vecteurs
unitaires 77 (s), 73 (5), ..., Tn—1 (s). Dans un deuxiéme temps on choisit le verseur

unique 7, (s) tel que {ﬁ)(s), ey T_n)(s)} soit une base orthonormée directe, appelée
base du repere mobile de Frenet.

Les relations suivantes (voir [5], p.38):

(d7
ds1 - kl(s)ﬁ
d—)
= k)T + k(o)
S
(1) L S
d7
L =k a(8) T a2 + kne1(s) T
ds
A7y
\ 2 = —kn_1(8) T n1

sont dites les formules de Frenet pour la courbe (C) dans R" et les fonctions k; =
k1(8), .-y kn—1 = kn—1(s) s’appellent courbures de (C).

Théoréme. Soit M un point infiniment proche de l’origine sur la courbe (C') C R",
dont la décomposition orthonormée est de la forme

(2) M =¢gqv1 +€162v3 + ... + €1€9...€,Vp
avec €5 > 0 pour tout j =1,...,n.

Sous les hypothéses et notations précédentes, il résulte que le repére orthonormé
{v1,...,0n } coincide avec le repére mobile de Frenet et on a les relations
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Démonstration. Soit le développement limité de la courbe (C) en origine, prenant
I’abcisse curviligne s comme parametre

d? d2?> gn—1 dn—l?
— _ 2 .
T(s) = s I (0) + s°2 FE 0)+...+ =1 dsn (0)+
3
¥ + il dn?(O)Jrsw(s)
n! | ds®

avec w(s) ~ 0 (on a supposé initialement 7 (0) = 0).
En utilisant les formules (1), on a dans un premier temps:

dr &7 dm _

® =T g O=g =k

&7

F(O) = KB +k(—khT +kT)=—kT +k57 +kik T

Par récurrence il vient:
a7

dap (0) = Oép71?1> + ap,g?{ + oot app1Tp-1 + klkg...kp_l?g

ou p =4,...,n. En portant ces relations dans le développement limité (3) on obtient:

1 1
7)(3) = s (1 — gkfsz + ..+ Hap,lsp_l + ) 7+
k k!
(4) + 8 (71 gyt apastTl 4 ) =+
sm N Sn—i—l
+ ...... + Fkle...knTn + TUJ(S)

On décompose & présent le vecteur w(s) par rapport a la base mobile de Frenet:
w(s) = w1 T + ...+ w, T, et on va utiliser les notations:

1 1

B = —ﬁkfs + ..+ mwls"*l;
kb 1

B2 = 2ot o+ —wys™ !
3! n!

et ainsi de suite.
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Alors le développement (4) s’écrit

1 1
T(s) = s(1+B18)7 + s <§k1 + ﬂ28) T3 + 53 (glﬂkz + ﬂ38> 3+
1 =
+ ... + s™ Eklkz...kn-i—wns Tn

Tenant compte que le repére orthonormé {vy,...,v,} coincide avec la base mobile
de Frenet {Ff,,T_n)} associée a la courbe (C) (cf. proposition 1), on compare le

développement limité antérieur avec la décomposition (2) du point M situé sur (C);
il vient que:

g1 = (14 pis)s
. = (Rt Bs)s
? 1+ Bis
’ %kl + fBss
(ﬁklkz---kp_l + Bps)s
£ =
b ﬁkl---kp—2 —+ ﬂpfls
avec p > 4.
Mais le point M est infiniment proche d’origine (c.a.d. que s ~ 0) et alors on a:
1
62 §k1+/325 Y N s . 0(52) ].
T LAz d’oti il vient =) =2k
€1 (1 + BlS)Q €1 2 1
= = o ks + s d’ou il résulte que ° (5—3> =2
€1 (5k1 + B28)(1 4 Bis) €1 3

(c’est-a-~dire k1 et ko sont la courbure, respectivement la torsion ”classiques” - voir
remarque 3).
En géneral on a les relations:
E_p _ %kle...kp,1 -+ ﬂps
&1 [ﬁklkz...kp_z +,8p_18](]. +131$)

pour p=4,5,....,n

et donc les ombres des rapports limités de ci-dessus sont

€ 1
0 (i) = o pour p=4,...n

Remarque 4. Si Porigine est un point singulier de la courbe (C), les courbures
k1,ka,...kp—1 ne sont plus définies en O; quand méme on peut étudier les rapports

. .., &2 En . - . s . < s

limités —, ...... , — ce qui donne justement la notion de courbure généralisée en des
€1 €1

points singuliers.
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4 Cas des surfaces

Soit (S) une surface standard dans R?3, passant par Porigine et on suppose que dans
un voisinage de O, (S) est définie par ’équation z = f(x,y), ou f est une fonction de
classe C* (k > 3).
Pour un point M infiniment proche de 'origine dans R?® on a la décomposition
orthonormée suivante
M = g1v1 + €162V + £162E3V3;

si on note par (v}, vZ,v?) les composantes des vecteurs v; (avec i = 1,2, 3) par rapport
a la base canonique, la condition que le point M appartienne & (S) se traduit par

1 1 1 2 2 2
E1U% + 8162113 + 5162631)3 = f(e1vy + €16205 + €162€3V3, €107 + €1€205 + €1€2E303)
En utilisant maintenant le développement de la fonction f en série de MacLaurin:

f(@,y) = 2p + yg + 2°r + 2zYs + Yt + .....

(avec les notations de Monge: p = %(0, 0), ¢g= %(0, 0),
2 2 2
r= %(0,0), s = 68535; (0,0), t= %(0,0), etc) on obtient:
vf = pvi + qvf
respectivement:

3

3 1 1 2 2
E9U5 + E2€30V3 (€203 + €2€3v3)p + (€205 + €263v5 )q+

1(v} + a0l + esez0l)?r+

2e1 (’U% + EQ'U% + 6283’1)?1,)(1)% + EQ'U% + 62631)3)8+

+ o+ +

£1(v] + €203 + £9e303) %t + ...
Du fait que le vecteur v1 = (v},v?, pv} + qu?) est unitaire, il s’ensuit que:
(01)*(1+p%) + (v1)* (1 + ¢*) + 2pgui v} =1

Donc on a obtenu (cf.[3]) que pour un vecteur v; dont les composantes vérifient la
condition précédente ils existent un repére orthonormé direct {v,v2,v3} et un point
M infiniment proche de lorigine sur (S) tel que M = e1v1 + £162v2 + €1€2e3v3. Clest
une généralisation, dans le cas des surfaces, de la notion de repeére Frenet associé a
une courbe dans R2.

Dans ce qui suit nous allons considérer des surfaces du second ordre; analytique-
ment, choisissons pour origine le point O (situé sur (S)), prenons la normale en O &
la surface (S) pour l'axe des z et supposons les axes des z,y dans le plan tangent &
(S) en origine. Alors I’équation de la surface est:

2+ az® + 2bzy + cy? + 2dzz + 2eyz + g22 =0

mais en utilisant un changement de coordonnées on peut la ramener a la forme
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(1) z = Az* + 2Bzy + Cy?

Pour déterminer le plan tangent au point M infiniment proche de I’origine sur la
surface (S), on reprend le calcul de ci-dessus dans le cas particulier (1); en considérant
seulement la partie linéaire de 1’équation transformée on obtient 1’équation du plan
tangent en M:

z = 2z(Az' + By') + 2y(Bz' + Cy')

ol par x' et y' on désigne e1v] + £162v3 + £1626303, respectivement €107 + 16203 +
£1€2€3V3.
La normale menée & ce plan par le point M, a les équations:
-1 y—1

= = -2
Ax'+ By' Bz'+Cy' ?

Elle rencontre ’axe des z (i.e. la normale originale & la surface) si on a:

! !

z _ Yy
Az’ + By’ Bgz' +Cy'

Donc la direction du point M dont la normale rencontre la normale & (S) en origine,
est donnée par I’équation:

(2) B(a2')* +(C - A)a'y' - B(y')* =0

Nous allons maintenant examiner la courbure d’une section normale quelconque &
(S), c.a.d. de la section par un plan passant par ’axe des z. On peut montrer aisément
(voir [6]) que le rayon de courbure est dans ce cas la moitié de 'inverse de

3) Acos? 6 + 2B cosfsinf + C'sin” 6

ou on désigne par 6§ I'angle formé par le plan de la section avec le plan y = 0.
On sait que les valeurs de 8 qui correspondent au maximum et au minimum de la
quantité (3) sont données par 1’équation

Bcos?f + (C — A)cos#sinf — Bsin?6 =0

et qu’elles déterminent des directions rectangulaires entre elles. Mais 1’équation
précédente coincide avec 'équation (2); donc en un point quelconque d’une surface
ils existent deux directions perpendiculaires entre elles et telles que la normale en un
point infiniment proche pris sur 'une ou sur 'autre rencontre la normale originale
a (S). Ces deux directions sont celles des deux sections principales de la surface au
point considéré.

Alors on a obtenu le résultat suivant: une ligne de courbure d’une surface (S) est
une courbe située sur (S) telle que les normales en deux points infiniment proches
quelconques se rencontrent.

Exemple. Soit le cas d’une surface de révolution engendrée par la rotation d’une
courbe plane autour d’un axe situé dans son plan. En un point M quelconque d’une
telle surface, une ligne de courbure est justement la courbe génératrice qui passe par
M puisque toutes les normales & cette courbe sont aussi des normales & la surface et,
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comme elles sont situées dans un méme plan, elles se rencontrent. Le rayon principal
correspondant en M est évidemment le rayon de courbure de la section plane au point
M.

L’autre ligne de courbure (en M) de la surface de révolution est le cercle passant
par M, dont le plan est perpendiculaire & ’axe de la surface (car les normales en tous
les points de ce cercle se coupent évidemment au méme point de 1’axe). Le segment
déterminé sur la normale par M et 'axe est exactement le second rayon principal de
la section.

La courbe génératrice qui passe par M est une section principale de la surface
puisqu’elle contient la normale en M. Mais la section perpendiculaire & ’axe n’est
pas, en général, une section principale; la deuxieme section principale de la surface
(au point M) serait la section plane déterminée par la normale en M et la tangente
au cercle décrit par le point M.

Alors on peut vérifier le théoréme de Meusnier: le rayon du cercle décrit par M
(section oblique de la surface) est la projection sur ce plan du segment de la normale
compris entre M et ’axe, et nous venons de prouver que ce segment est justement le
rayon de courbure de la section normale correspondante.
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