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Abstract

In the last decade, contact, almost contact, paracontact cosymplectic, and
conformal cosymplectic manifolds carrying k > 1 structure vector fields £ have
been studied by many authors, e.g. [2], [7], [11], [15].

In the present paper we consider a (2m + 2)-dimensional Riemannian mani-
fold carrying two structure vector fields £ (r € {2m+1, 2m+2}), a (1, 1)-tensor
field ®, and a structure 2 - form Q of rank 2m, such that for " := (&)’

B =-Idtn @&  B6=0, 1 (E&)=4
Q(Z, Z’) =g(q) Z, Z’)7 Qm An2m+1 /\n2m+2 £0

holds. Here the (2m)-dimensional subspace Im® of the tangent space is supposed
to be Kahlerian (see eq. (2.12) below). If the 3-forms

(0.1)

(0.2) v =n"Ady
satisfy
(0.3) dy" =0,

they are called Godbillon-Vey forms [6]. On the other hand, if

VX€r=er

(0.4)
r=2m+1, 2m + 2

holds for all X orthogonal to &, and for some f, € A°M, the structure vector
fields define a concircular pairing [1]. It will turn out that (0.3) follows from (0.1)
and (0.4). Therefore we call such manifolds M(®, Q, 5", &) 2-framed Godbillon-
Vey manifold (abbreviated 2FG- V). We shall prove that they have the following
properties:

Any 2FG-V manifold is equipped with a conformal symplectic structure
CSp(m+ 1, R) with £ := ) f, & as vector of Lee, i.e.

(0.5) dQ =22 AQ
and M is the local Riemannian product

M=M"xM"
such that
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1. Mt is a flat surface tangent to the structure vector fields &,;

2. M7 is a 2m-dimensional Kihlerian submanifold, and the immersion
z:M" — M has the following properties:

(a) The mean curvature vector field H associated with = is —& and satisfies
|| H||?>= const.

(b) The immersion z is umbilical. In section 3, the existence of a horizontal
skew symmetric conformal (abbreviated SC) vector field C is proved
by an exterior differential system in involution (in the sense of E.
Cartan [3]). Denote by K and R the scalar curvature of M and the
Ricci tensor field of V, respectively. Then

LcK=—-pK; LcR(Z,Z)=0; p=const.; Z, Z € XM
and C is a module commuting vector field, i.e.
[C,V]C|*] =0, V : gradient of a scalar .

(c) C defines an infinitesimal homothety of all (2¢ + 1)-forms (C*), :=
C* ANQY, e
£o(C")g = (a+1)(C")a,

and ® C defines an infinitesimal automorphism of €:
LocN=0.
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1 Preliminaries

Let (M, g) be a Riemannian C*-manifold and V the covariant differential operator
with respect to the metric g. We assume that M is oriented and V is the Levi-Civita
connection. X

Define I(TM) =: XM and let TM = T*M be the musical isomorphism defined
i

O TMST*M; Z——iQ=:"Z
the symplectic isomorphism defined by (2. Following Poor [10], we set

by g and

AY(M, TM) := Hom(A“T M, TM)

and notice that the elements of A?(M, T'M) are vector valued g-forms. The local field
of orthonormal frames on an n-dimensional Riemannian manifold is denoted by

O={eq; A=1,---,n}
and the associated coframe by

O ={wt A=1,---,n}.
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The soldering form dp is expressed by
(1.6) dp=w’®eq

and Cartan’s structure equations in index-free notation are written as

(1.7) Ve = 0®e
(1.8) dv = —0ANw
(1.9) dd = —6A0+0.

Here the 1-forms 8 and the 2-form © are the connection forms in the tangent bundle
TM and the curvature form, respectively.

Now let W be a conformal vector field, i.e. a vector field satisfying the conformal
version of Killing’s equation

(1.10) Lwg=pg,
where the conformal scalar p is defined by

We recall some basic formulas [14] which will be needed in the last section:

(1.12) LwK=mn-1)Ap—Kp; n = dim M
(1.13) 2LwR(Z, 7"y =g(Z, Z') Ap — (n — 2)(Hessy p)(Z, Z"),
where

(Hessy p)(Z, Z') = 9(Z, V z grad p) .

In these equations Ly, K, A and R denote the Lie derivative with respect to W, the
scalar curvature of M, the Laplacian and the Ricci tensor field of V respectively.

2 2-Framed Godbillon - Vey manifolds

Let M(®, Q, 9", &, g) be a (2m + 2) - dimensional Riemannian manifold carrying
two structure vector fields & (r € 2m + 1, 2m + 2) and let 5" be their associated
covectors. Suppose that the structure tensors (®, Q, 1", &) satisfy (0.1). Then M
carries a 2-framed structure in the sense of Yano and Kon [15]. We further assume
that (0.4) holds. Defining e, := &. and w” := 5", this yields

(2.1) fro®=0%,  fr€AM, a=1,---2m
and

dp?mtl =y A p?2mt2
(2.2)

dn2m+2 = —uA ,,72m+1

where u is some closed 1-form. In the same way, (0.4) ensures that dy" = 0 holds.
(2.2) can be written as

(2.3) u=03m17 .
Connections satisfying (2.1) are called principal connections [12].
One may split the soldering form dp in a unique manner as

(2.4) dp=dp" ®dp*,
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where dp” = w? ® e, and dpt = " ® &, are called the horizontal and the vertical
component of dp, respectively. From (2.3) and (2.1) one finds

V&mt1 = fomi1dp’ +u ® Eomaa

(2.5)
Vém+i2 = fomi2dp’ —u® Eom1

Hence we have

v£2m+2§2m+1 = u(£2m+2) §2m+2
VE2m+1§2m+2 = _u(§2m+1) §2m+1,

and referring to [1] one may say that the structure vector fields &, define a concircular
pairing. Then (2.5) and the well-known formula

2m—+2
divZ =tr(VZ) Zw Ve.Z)+ > 0 (Ve 2), ZeXM

r=2m+1
yield
div&ami1 = 2m famt1 + u(€om2)
div&omy2 = 2m fomio + u(€am1)

If u is a basic form, i.e. if u(&.) =0, then (2.2) entails
iEr dnr =0.

Therefore, according to a well known definition, we may say that &. move to Reeb
vector fields (in the large).

In the general case, ie. u(§) # 0, we shall say that the manifold
M(®, Q, 9", &, g) is endowed with a 2-framed Godbillon - Vey structure, (abbre-
viated 2FG-V structure). Referring to [11] we call the distribution Dt := {&.;r =
2m + 1, 2m + 2} the vertical distribution, and its orthogonal complement DT :=

{eq,a =1,---,2m} the horizontal distribution on M. Similarly
(PJ_ = ,,72m+1 A n2m+2

and

(2.6) el =W A AW

are called the wvertical and the horizontal form, respectively. With these definitions,
(2.2) gives immediately

det =0.

Therefore it follows from Frobenius’ theorem that the horizontal distribution DT
is involutive. Setting

2m+2
(2.7) ni= Y, fou,
r=2m+1
(2.6) and (2.1) yield
(2.8) de" =2mnAe’

This shows that ¢ is an exterior recurrent form [5] and consequently D+ is also
involutive. Hence any 2FG-V manifold is the local Riemannian product
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M=M"xM*,

where M T is a 2m-dimensional manifold tangent to DT and M+ is a surface tangent
to D+.

Since 7 is the recurrence form of ' (see (2.8)), it is closed. (Generally, we shall
call an exterior recurrent form strictly recurrent, if its recurrence form is closed.) This
fact together with (2.7) and (2.2) give

dforn1 =  fomy2u
(2.9)
df2m+2 = —f2m+1 u.

Therefore the Poisson bracket { }p of the function f,, i.e.

{fam+1, famra}p == QAV fam+1, Vfamt2)

vanishes. Defining

2m—+2 2m—+2
€= > fb&; n= )Y, fn=¢
r=2m+1 r=2m+1

one easily deduces from (2.9) that

(2.10) I€1> = (famt1)? + (Fomy2)® =: 2 f = const.
and further from (2.9), (2.4), and (2.5):
(2.11) VE=2fdp'.
On the other hand using (2.3), (2.1), (1.9), du = 0 (see (2.2)) and the fact that
63,10 = —02™+2 holds because of g(eam+2,€q) = 0, one finds
oIt = 0.

It is easily seen that ©317 is the curvature form of M. Therefore this surface

is flat. Further, because of (0.1), the horizontal connection forms satisfy the Kéhler
relations

. _ 3 . .k _ j* A . A % .
(2.12) 0; =6 ; 0; =0; ; i=1,---,m; i =i+ m.
Recalling the standard expression for the structure 2-form 2
m
(2.13) Q:Zwi/\wi*; i =1i+m,
i=1

we find with the help of (2.1) and (2.7), after some calculation,
(2.14) Q=29 A Q.

This shows the important fact that the 2FG-V manifold under discussion is en-
dowed with a locally conformal symplectic structure CSp(m + 1, R), with n = £ as
covector of Lee. Since i¢ 2 = 0 and f = const. (see (2.10)), one gets from (2.13):
(2.15) LeQ=2fQ,
which shows that £ defines an infinitesimal homothety of ().

On the other hand, €| . is of rank 2m. Therefore it is the symplectic form of

the Kahler submanifold M T of M. Next let H be the mean curvature vector field
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associated with the immersion = : M T — M. If v4, denote the coefficients of the
connection 6, the vector field H is given by

2m
1
om Z’Yga £ .
a=1

(We denote the induced elements by the same letters.) Now using (2.1) and (2.10),
an easy calculation gives

H=-¢ = |H|?=2f=const.

Hence one deduces the following important fact: M T is a Kéhler submanifold of

M of constant mean curvature. Moreover, since dp' is the soldering form of M T,
it follows from (2.4) that the second quadratic forms associated with the immersion

z: MT = M are
l,=—<dp", V& >=—frg'
This means that the immersion z : MT — M is umbilical.
Summing up we state

Theorem 1. Let M(®,Q,&..m",g) be a (2m + 2)-dimensional Riemannian manifold
endowed with a 2 FG-V structure defined by (0.1) - (0.8). Such a manifold admits a

locally conformal symplectic structure with £ as covector of Lee, i.e.
d=2A0.
Furthermore M 1is the local Riemannian product
M=M"xMT,
where
1. M* is a flat surface tangent to the structure vector fields &,.

2. M7 is a 2m-dimensional Kihlerian submanifold, and the immersionx : M T —
M has the following properties:

(a) M7 is of constant mean curvature.

(b) The immersion x: M — M is umbilical.

3 Skew symmetric conformal vector fields

In this section we assume that the 2FG-V manifold under consideration carries a
horizontal skew symmetric conformal (abr. SSC) vector field C. The generative of C

is assumed to be the Reeb vector field £. This means [9]
(3.1) VC =Xdp+ CAE.

Here A denotes the wedge product of vectors: C A€ := £ ® C — C® ® €. One may
set

C=C%, € D" a, be{l,---, 2m}.
Then it follows from (2.1), (3.1), and (1.7):
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(3.2) dC® +C% 62 = \w* +Cp .
Clearly, from
2m
(3.3) C' =) Cw"
a=1
one obtains
(3.4) dC* =29 AC" .
This agrees with Rosca’s lemma [9]. As a simple consequence of (3.2), one derives
(3.5) d|C|* =2XC" = 2||C|* -

Denote now by ¥ the exterior differential system which defines the vector field
C. Then because of dnp = 0, (3.4) and (3.5), the characteristic numbers of ¥ are
r =3, so =1, s = 2. Since r = s¢ + s1 holds, it follows that ¥ is in involution (in
the sense of E. Cartan [3]). Therefore Cartan’s test states that C exists and depends on
two arbitrary functions of one argument. On the other hand, recall that the symplectic
isomorphism (see also [8]) is expressed as

(3.6) Z - —izgQ="Z2=Q(2), QZ Z)=<2Z',Z> .

So one may write
m . . . .
icQ=-"0=) (C'w" -C"uw)=:8,
i=1

where we have set 3 := —"C. From (2.12), (2.14), and (3.2), one derives:
A =2XQ4+2nA0.

Again an exterior derivation yields A = const (remember dn = 0.) On the other
hand, from

2divZ
= = ; ZeXM
Lzg= = 9= P95 € X (M)
(cf. (1.11)) and from (3.1), one quickly finds
(3.7 p=2A

This means that C defines an infinitesimal homothety of M, because using (2.13)
and (2.15), one obtains at once

LoQ=pQ
and
LQ=2f0
(remember f = const.). Furthermore, let L be the operator of type (1,1) given by
Lu:=unQ; uw e A'M
and define (cf. [6])

Liy:=uy:=unQ? € A2+ pr
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Coming back to the case under discussion, (3.4) yields
LcC'=pCh.
This shows that C” is a self-conformal form. A standard calculation gives
Lo(C)y = (a+1)(C"),q -

Therefore C' defines an infinitesimal homothety of all these (2¢q + 1)-forms.
With Yano’s formulas (1.12) and (1.13), one finds

LoK=—pK

and
LcR(Z,Z)=0; Z,7' € X(M),

where K and R denote the scalar curvarure of M and the Ricci tensor field, respec-
tively. Now, for any vector field Z, one has

(V®)Z=V(®Z)-dVZ.
Therefore (0.1) and (3.1) yield

(V&)C = (E-r-n(0)edp—(2C) @€
= V(@®C)-\ddp—n(®C).
Hence
v@e) = (£-n(0) @dp+n(2C) - (20) ¢
(3.8) - @—nw0¢®+¢0A§

(A: wedge product of vector fields). From the inner product < Z, ®dp >= & Z,
and from (3.8), one derives

<Vz®C,Z'>+<Vz®C,Z>=0; Z,7' € X(M) .

Furthermore, since C' is a horizontal vector field, it is easily seen that

"C = C”
holds. So together with (2.13), this leads to
Loc2=0.

Therefore ® C' defines an infinitesimal automorphism of Q.
It should be noticed that (2.10), (3.1), and (3.8) entail

g, eCl=0; [, eC]=0; [C,¢=-L¢.

So ¢ and C commute with ®C, and ¢ admits an infinitesimal homothety of gen-
erators C' [4]. .

Let now C : (M, g) — (M, g) be a conformal diffeomorphism (abr. CD) of
argument t, i.e.
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One has (see also [10])
VC =VC+ (Vi) ®C —C* @Vt +g(C, Vt)dp,
and the scalar curvature K of M is given by
K=e¢% (K+22m+1)divVt+ (2m + 1) 2m ||Vt]?) .

Since K = const., the manifold M is homothetic to M, if it satisfies | V#||? = const.
and div Vt = const. Furthermore

d|CII> = pC* +2|ICI°n

and the gradient (which will also be denoted by V) of the function ||C||? is expressed by
(3-9) VICI? =pC +2]ICIP¢.
Thus from

divC = (m+ 1) p= const. ; divEé =4m f = const.

(see (2.5), (2.9), and (2.10)) one quickly derives
(3.10) AlCI? = =divV|IC|P ==k f|ICIP = (m+1)p*; kKeER.

Therefore as an extension of a well-known definition (see e.g. [13]), we may say
that ||C]|? is an almost eigenfunction of A with —k f as eigenvalue. We notice that
if C' is a Killing vector field, i.e. if p = 0 (see (3.1) and (3.7)), then ||C||> becomes
an eigenfunction of A. Since the eigenvalue is negative definite, the corresponding
manifold cannot be compact.

We recall that a function v : IR — IR is isoparametric, iff both, ||[Vv|? and
div (gradv) are functions of v [13]. Then from (3.9) and (3.10), it is quickly seen that
[|C]|? is an isoparametric function.

Finally, setting

V2|C|? = V grad ||C|?
in (3.1), one deduces after a short calculation
[C, VIICIP]=0.

This shows that C is a module commuting vector field. Thus we have proven
Theorem 2. Let C be a horizontal skew symmetric conformal vector field on the 2FG-
V manifold defined by conditions (0.1) - (0.3). Such a C always exists; it is determined
by an exterior differential system in involution. C infinitesimal homothety on M, i.e.

LocK=—-pK; K: scalar curvature of M; p = const.

Moreover:
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1.
LocR(Z,Z')Y=0, Z,7' € XM ,
where R denotes the Ricci tensor field, and
Lo(C)g = (g +1)(O)y -
Here L : C* — (C”), := C® A QY is the (1,1) - Weyl operator.
2. ®C' defines an infinitesimal automorphism of €, i.e.
Loc=0 >
and & and C' commute with ®C'. In addition, & admits an infinitesimal homothety
of generators C, i.e.
p
3. ||C||? is an almost eigenfunction of A, as well as an isoparametric function, and
C is a module commuting vector field.
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