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Abstract

When the gravitational field is regarded as the time-sequence of space-slices
(i.e., the evolution space), the gravitational field itself is treated by means of the
differential geometry of total space of the vector bundle whose base manifold is
the one-dimensional time-axis and fibre at each time is the three-dimensional
space. From this vector bundle-like standpoint, new field equations and new
conservation laws are proposed.
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1 Introduction

In this paper, the gravitational field is regarded as the ensemble of space-time events
and then, as the time-sequence of space-slices. That is to say, the four-dimensional
gravitational field itself is decomposed into the one-dimensional time-part and the
three-dimensional space-part and the three-dimensional space evolves along the time-
axis. This idea arises from the concept of evolution space in the theory of dynamical
systems (cf. [1]). Therefore, from the vector bundle-like standpoint, the gravitational
field can be adapted to the total space of the vector bundle whose base manifold is
the one-dimensional time-axis (z° = t:time) and the fibre at each time is the three-
dimensional space spanned by points {z*} (i = 1,2, 3).

Therefore, the gravitational field can be treated by means of the differential ge-
ometry of total space of the vector bundle [2], [3]. From this standpoint, the metrical
and connection structures will be introduced and then, new field equations and new
conservation laws will be proposed in the following.

2 On the vector bundle-like structures - 1

Now, in the total space mentioned above, the so-called adapted frame is set as follows:
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where X4 = (29 2)(A = (0,4); i = 1,2,3) and z° = t (time). The quantity N}
denotes the nonlinear connection playing physically the role of velocity.

On the basis of (2.1), the connection structures is introduced by
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Namely, the following four kinds of covariant derivatives can be defined, for an arbi-
trary vector VA4 = (VO, V%)

etc.
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On the other hand, the metrical structure is introduced by
(2.4) G = GapdXAdX® = goodz® ® da® + g;;02" ® 62,

where ggo and g;; are metric tensors depending on (2°,z%). The connection (2.2) can
be made metrical by imposing the metrical conditions such as goojo = 0, goolx = 0,
gijlo = 0 and g;;|x = 0. In the metrical case, the canonical connection coefficients can
be determined as follows [2], [3]
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where g% and g are the inverse of ggo and g;; respectively and the torsion tensor

Si(= Ciy = C};) is assumed to vanish (see (3.5)). C% is nothing but the three-

dimensional Christoffel symbol formed with g;;. And also, in (2.5), if goo = constant,
then L}, = 0 and C, = 0.
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3 On the vector bundle-like structures - 11
Now, the torsion and curvature tensors are defined by [2], [3], respectively,

(3.1) The =Tpe —Top +whes
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where wf means the non-holonomic object defined by

o 91 4 0
(33) [aXB’ aXC] ~“BCHxA

No

5g) Appears (because wiy = Ré, =0,

i i
In our case, only one component wy; = —wjy =

see below).
Five components of the torsion tensor

TJ?C = (Tgo = 0, Rgo =0, Cy;, ng: ;k)

and six components of the curvature tensor

Risep = (Rigo =0, Rjoo =0, Pioj» Foosr S0 Siu)
appear explicitly in the following Ricci-identities:
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The concrete definitions of those components are given as follows
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In the canonical case of (2.5), the tensor S;: kh 18 just the three-dimensional Riemann-
Christoffel curvature tensor and also, if goo = constant, then Pgy, =0 and Sg,, =0
in (3.6).

From R4, p, the Ricci-tensor is given by
(3.7)

A — po L _ pi 2 o po 0 — qk
Rpc = Ripoa = (Roo = Rogo =0, Pjo= Pjo;, — Por= —Foro = Foor> Sij = Sijn)-
Namely, three non-vanishing components appear. And the total scalar is given by
(3.8) R = RABGAB = Roogoo + Sijgij = Sijgij =8

(3.7) and (3.8) will be used in the next Section.

4 On the field equations and the conservation laws

As the field equation for the total space (i.e., the gravitational field), we shall put
it in the form [2], [3], with use of the Ricci-tensor Rap (3.7) and the total scalar R
(3.8),

1
(4.1) RaB — ERGAB = TAB,

where T4p represents the energy-momentum tensor with four components 74 =
(700, Tjo, T0i, Tij)- Then, by use of the components of (3.7) and (3.8), we can obtain
the following four kinds of field equations
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These are new equations, different from those obtained in [2], [3]. In the case of the
canonical connection (2.5), the last equation is just the (three-dimensional) Einstein’s
field equation.

As to the conservative law, we can formulate it in the form [2], [3] (i.e., the
divergence-zero of (4.1))
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Therefore, we can obtain the following two kinds of conservation laws
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These are new conservation laws, different from those obtained in [2], [3]. In some

2 2
special cases where P)= 0 or P | = 0, we can obtain the pure conservation law

% 1 ]

which is the same as the Einstein’s one. In those special cases, the conditions such as

(900 = goo(wo)&gij = 9ij (xi)) or (goo = goo(xi)&gij = Gij ($i)),

etc. must be taken into account.

5 Conclusion

Thus, we can treat the gravitational field by means of the differential geometry of
total space of the vector bundle whose base manifold is the time-axis and fibre at
each time is the space-slice. And we can propose new field equations (4.2) and new
conservation laws (4.5). (Some physical aspects of these subjects are referred to [4]).
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