Electromagnetic Field in Non-Linear Media
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Abstract

It is well-known that the non-linearity of the constitutive relations of the
electromagnetic field must be often taken into account in order to compute the
performances of the electromagnetic devices. Some qualitative aspects concern-
ing the electromagnetic field analysis in non-linear media are presented in this
work: uniqueness, existence and stability. The polarization method for the treat-
ment of the nonlinearity is analyzed, focusing on the convergence criteria, errors
and numerical convergent procedures.

1 Stationary magnetic field

1.1 TUniqueness, Existence and Stability

The Equations of the Magnetic Field

Let ©Q be a domain and 912 its boundary. In  the magnetic field verifies the
following equations:

(1) VxH=J
(2) VB =0
3) H = F(B)

Non-linear function F: L*(Q) — L?(Q) refers to the domains with ferromagnetic
bodies and permanent magnets. Usually the relation B - H is local defined in almost
all points of the domain 2,

(4) H(P) = f(P,B(P))

(Sometimes, we note B(P) = B). If the function fis Lipschitzian:
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IAB") — f(B")| < A|B'-B"|, (V)B',B"
and uniform monotone:
(fB") — f(B"))(B' —B") > A(B' - B")*, (V)B',B",

where A < Apr and A > A, > 0 in ©, then the function Fis Lipschitzian and uniform
monotone. For example, is an isotropic medium we have

. f(8) — f(B") 1
= 8su = Vmax = H
B',]g” |BI - B”| * Hmin
N DI -
I’BII |B/ _ BII| min Pmax -

The boundary conditions

For the sake of the simplicity we choose in the following only simply connected
domain having on the boundary 92 the conditions: Hy = f on the connected surface
S’, and B, = g on the rest S” =90\ S'.

The L*(Q) - Mathematical Model of the Magnetic Field

The magnetic field is a pair (B, H) with B,H € L*(9).

Because of this the above boundary condition must be modified, the surface 92
having zero measure. Let s4 = (B, H) be the magnetic field fulfilling the condition:

BecI*’(QNC°), curlB=0, divB=0, nxB(P)=0 forPeS'

He(QNC®Q), curlH=0, divH=0, nxHP)=0 forPecS".

The field B is determined by its normal component on S” and H by its tangential
component on S’. Therefore we can say that the magnetic field s4 represents the
boundary conditions. Let S4 be the space of the fields s4.

Because B, H € L*(Q), the internal sources of the magnetic field are distributions.
We note: Q = {DivZ|Z € L?} and C = {CurlZ|Z € L*}, where (< DivZ,p >) =<
Z.gradp >, V)¢ € K, and (< CurlZ,yp >) =< Z,rotyp >, (V) € K, K and
K being the spaces of the scalar and vectorial functions oo-differentiable and with
compact support in €, respectively.

The existence and uniqueness theorem. There are given:

1) the constitutive relation F Lipschitzian and uniform monotone;

II) the sources p € Q, J € C;

I11) the boundary conditions s4.

It results one and only one magnetic field (H, B) so that:

a) its component on the space S 4 is sa;

b) DivB=p, CurlH=J;

¢) B= F(H).

Stability theorem. There are given:

1) the constitutive relations: Fl, .i"-'g, where Fy is Lipschitzian and uniform mono-
tone and || Fy (H) — Fy(H)|| <ep, (V)He L*(Q);

II) the boundary conditions: sa1 = (Ha1, Ba1, 8Sa2 = (Haa, Baz), where || Ha1 —
Hys|| < em, ||Bar — Baz|| < eB;
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III) the current densities J1,J> € C that verify: | < ¢, J1 — Jo > | < gg||curly)],
)y € K;

IV) the magnetic charges p1, p2 € Q that verify: | < ¢,p1 — p2 > | < &,||grady||,
M)y € K;

V) the magnetic fields (Hy, By), (H», B2), which have the component Sa1,Sa2 on
S4 and verify the equations:

A~

B1 = F(Hl), CUTlHl = J1, Di’UBl = pP1

A

BQ = F(Hg), Curle = Jg, Di’UBQ = p2.

Then:

a) |[Hy —Ha|| < 14+ Ap/Am) (e +€5) + (er +€p +€B) [ Am ;

b) ||B: — Bal| < Aum|[Hy — Ha|| + 7,
where Apr and Ay, are Lipschitz and uniform monotony factors of the relation F,.
Remarks. 1) Condition I represents the distance between two constitutive relations.
The above theorem gives the stability v. constitutive relation and allows to evaluate
the error in the numerical computation, where the real B - H relation is replace by
a linear one (fig. 2a) or by a piece-wise linear one (fig. 2b).

Fig.2a
Fig.2b

2) Conditions IIT and IV represent the distance between two sources. In principal
the stability theorem allows to evaluate the error v. the sources. For example, if FEM
uses first order finite elements, than the sources have a surface distribution. The
distance between this approximate distribution and the real distribution leads to the
FEM error.

3)If er,eB,€H,€,6, = 0, then (B, Hy) — (By,Hy).
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Theorem of orthogonality (Tellegen). If the magnetic field (B, H) has zero
boundary conditions (zero component on Sa) and zero sources (divB = 0, curlH =
0), then < H, B >= 0.

1.2 The Polarization Method
We replace relation (3) by

(5) B=pH+I,

where the non-linearity is hidden [1] in the polarization

(6) I=B - uFB) = G(B).

We can choose s so that the function G defined by the relation (6) is a contraction:
|G(B') - &B")|l, <0|[B' -~ B"|,, (¥)B,B",

where § < 1 and < X,Y >,=< X,vY > and v = 1/u. For example, for p €
(0,2Xm/A3;), we have § < 1 — 2u),, + pu?A%;. The smallest value for contraction
factor 6 is upperbound by the value 1 — (Ap,/A)? and it is obtained for g = A, /A%,.
This contraction factor is very close to unit (look, for example, to a ferromagnetic
medium having A = 1/p9 and A = 1/1000y, for which the smallest upperbound of
the contraction factor is 1 —107°). Other procedures for chose the permeability u are
more convenient [2]. In the case of an isotopic media we can choose & < 2fimin, SO
that the function G is a contraction. The contraction factor 6 verifies: § = Maz(1 —
wlpnr, p/pm — 1). Because pimin > po we can replace the nonlinear medium by a
linear one having the permeability of the vacuum. In this case 8 = 1 — pg/unr. (For
Mmax — Mmin

above example 6 < 0.999). The smallest value is § < , and it is obtained

Mmax + Hmin

for = Y = Vmin + Vmax
Mopt v 2
The Iterative Method
The non-linear problem is solved with the following iterative scheme:
a) We give an arbitrary value I(?.
b) We compute magnetic field (B, H)) which verifies the equations

VxHY =7
vBM =0
B = yHD 41O,
¢) We calculate IV with the relation (6):
1V = GBM).

We repeat steps b) and c¢) until we have

AT, = [T — 1=, = \/ [ va® -1Vydn <,
Q
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where ¢ is an imposed error.

For any I we have one and only one field B which verifies the equations (1), (2),
(5) (the uniqueness theorem). From the theorem of orthogonality it results that the
function I — B = B(I) is nonexpansive [1], i.e.,

|1 B') - BA")[l, < |1 =T,

Because the function G is contractive, the above iteration scheme is a Picard-Banach
fixed point procedure to find the fixed point of the function W= GoB. Therefore:

The First Theorem of Convergence. We can choose u so that the function G
is a contraction and then the Polarization Method using B-correction is convergent.
Remark. If we use M = I/, then we have ||M]||, instead of ||I||,.

The H-correction.

A dual formulation may be used for treatment of the non-linearity. Instead of
relations (5) and (6), we have

H=vB-M,

where the non-linearity is hidden in the magnetization M = H — uF_I(H) = G’I(H)
Because F is Lipschitzian and uniform monotone, it is inversable and o is also
Lipschitzian and uniform monotone. We can choose v so that G' is a contraction. For
example, in the case of an isotropic media we have v < 2umin, namely g > fmax/2.
From the existence and uniqueness theorem it results that the function M — H =
H(M) is well defined and from the orthogonality theorem it results that the function
His nonexpansive,

| HM') — HM")||, < [[M' — M|,

The iterative scheme corrects the magnetization M as an H-function. It is also a
Packard-Banach fixed point procedure to find the fixed point of the function W =
G’ o H. Therefore:

The Second Theorem of Convergence. We can choose p so that the function
G’ s a contraction and then the Polarization Method using H-correction is conver-
gent.

Attention. The choise 1 = pp do not ensure the contractivity of the function G
and the convergence of the H-correction iterative method.

Errors.

Some important advantages may be pointed out:

- the convergence of the iterative scheme is sure;

- for each iteration we have the same permeability u;

- the errors in comparison with the exact solution (B*, H*) can be easily evaluated
for n-th iteration

1
(7) 1B - B™|l, < T lIAT™]l,;

* n 1 n
®) B~ HO|, < (A1),
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in subdomains Q,;, with air we have

0
2v1-146

the error at the n-th iteration is placed to the constitutive relation F

©) / »(B* —BM)%d0 < |AI™)| |,
Qair

(10) IH™ — FB™)||, = [|AI™)]],.

The Overrelaxation

The convergence of the above iterative procedure may be improved using the
overrelaxation described in [4]. From relations (7), (8), (9), (10) it results that we need
a very small value for [|AI™||, in order to have acceptable errors. If I®*) = W(Ik—1)),
then we seek I®*) = I*=1 4 o,@® — 1:=1)y 56 that h(w) = || WIH®) — 1|2 is as
small as possible. The numerical overrelaxation procedure has the following steps:

1) B® = Ba*-1)

2) 1) = (B™)

3) B = Ba®)

4) h(1) = [|GBE) 1V,
and if h(1) < € where ¢ is fixed, we stop the iteration, otherwise:

5) AIR — (k) _ I(k'H), ABGHY) — gk+1) _ gk)

6) The solving of the equation

1h'(w) = < G (AB('““) - AI(’“)) ,

2 dB

B(k)+wAB(k+1)
G (B(’“) + wAB(’““)) _ (I(’H) + wAI(’“))> =0

7) I+ = GB® + wABHHY) g0 to 1).
B and I are numerically defined by the values in a finite number of subdomains.

. A dG
Because the function G is made by the local function g, it results that G and B

can be easily calculated. Equation (14) is solved by the secant method, a number of
3 to 5 iterations being enough. The overrelaxation factors w have values between 1,2
and 50.

1.3 The Solving of the Linear Field Problem by the Finite
Element Method

For each iteration we have to calculate the magnetic field (B, Hy) which verifies the
equations: VxHr =J, VBr = p, By = uH7r + I7. We can obtain easily a magnetic
field (Bs, Hy) so that CurlH; = J and DivB; = p (For example, using Biot-Savart-
Laplace and Coulomb formulae). Also we can build a magnetic field (B4, H4) having
CurlH4 = 0 and DivB4 = 0 and the boundary conditions Hy4 = f—H;, and B, 4 =
g — Bys (For example using a scalar potential for H4 and a vector potential for B 4).
The magnetic fields (B, H,) and (B4, H4) do not have any constitutive restrictions.
It remain to compute the magnetic field (B,H) = (B, Hr) — (B, H;) — (B4, H4)
having zero boundary conditions and zero sources. It verifies the equations
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(11) VxH=0, VB=0, B+ (—uH)=1,

where I =Ip + B, + B, — u(H; + Hy).
Let L’ be the closure of the space of the fields H which have the boundary condition
H; = 0 on the surface S'. Let L" be the closure of the space of the fields B which have
the boundary condition B, = 0 on the surface S”. From the theorem of orthogonality
we have
(B,H) = (B, uH), = 0.

Hence it results that L', L" are orthogonal in L*(Q) and uL’, L' are orthogonal in
LZ(Q). From relation (11) it results that the solving of the magnetic field problem
(B,H) consists in the decomposition of the polarization I in the spaces uL' and L”
[5]. This is the same with the minimzation of the distance d?(X) = ||I — X||?, or of
the functional

(12) F(X)=-2<LX>, +|X|]?

in the space L, when we obtain X = B or in the space uL’, when we obtain X =
—puH. When X € pL’, we can use the formulation in scalar potential X = —pugrad®,
with the boundary condition ® = 0 on the surface S’. When X € L, we can use the
formulation in vector potential X = curlA, with the boundary condition A; = 0 on
a

Fig. 3
In FEM the minimization of the functional (12) is done in finite subspace L. of L"
(fig. 3) or in subspace Lj of uL'. The component By, of the polarization I on the finite
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subspace L, is the same as the component of B on this subspace. Therefore the FEM
numerical computation of the approximate solution B,, results as a composed function
P, o B, where P,(B) = B,. The numerical scheme of the polarization method is

oo 100 By g Pog Gy
Because Pa and B are nonexpansive, the above method leads to the Picard-Banach
sequence of the contractive function G o P, o B.

Convergence Theorem of FEM and B-correction. If the polarization I is
corrected by B and the functional (12) is minimized in subspace L., then the numerical
approzimation of the polarization method is convergent.

The dual numerical scheme of the H-corrected polarization method is

oM B g Py HY) Gy :

where the component Hg of H on the finite subspace Lj is Hg = Ps(H).

Convergence Theorem of FEM and H-correction. If the magnetization M
is corrected by H and the functional (12) is minimized in subspace LI@’ then the
numerical approximation of the polarization method is convergent.

2 Eddy current problems

2.1 The Equations of the Quasistationary Electromagnetic
Field

The conducting ferromagnetic bodies 2 move in the air 2y of the domain 2 with
the known speed v. The electromagnetic field verifies the following equation:

(in Q) VB =0, H= FB),
B
(in Q) rotE:—aa—t, rotH=J, J=0E,
B
(in Qo) rotE = _68_15’ rotH = Jo,

where the current density is imposed. The equations are written in the local frame of
the bodies and of the air.
On the body surfaces the passing conditions are:

Jn = 07 Bn]Q = Bn]Qoa Ht]Q = Ht]Qo-

The last relation results by neglecting the surface current and the Hertzian current.
The boundary conditions are the same as the stationary field boundary conditions.
The initial condition is B]i—g = B;.

The Uniqueness Theorem. We have at the most one electromagnetic field which
verifies the above equations, passing conditions, boundary conditions and initial con-
dition.
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2.2 The Method of Polarization

Let 2F be the domain of the ferromagnetic bodies. Let L and L, be the Hilbert spaces
t

having inner products < u,v >= / / uv dvdr and < u,v >,=< u,vv >,
o /Dp

respectively, where v > 0. So how we have shown at the stationary magnetic field,
the Lipschitzian and uniform monotone constitutive relation H = F(B) is replace by

(13) H=vB-M,

where
M = vB - F(B) = G(B).

The iterative procedure for the treatment of the non-linearity consists in the following
two steps, for arbitrary M(© (k > 1) [6], [7], [8]:

(k—1)

1) For a given magnetization M , we compute the quasistationary field defined

by equations:

(14) V x E® = —oB® /5t
(15) v x H® = 3®
(16) IW = E® 1 3,
(17) B = po(H® + MW),

2) We correct M, using function G:
(18) M®*®) = GBM).

If
e® = ||Mm® — M(k—l)”H

is small enough, we stop the iterations.
The function M — B = W(M), defined as the solution of equations (14) ,..., (17),
is non-expansive, (Appendix A):

(19) IB' = B"||, = || W(M') — W(M")[|, < []M' = M"||p.

The iterative procedure leads to the fixed point M of the contractive function GoW:
L,—~1L,.

The linear convergence of Picard-Banach iteration can be efficiently accelerated
by the overrelaxation methods described in §1.
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2.3 Eddy-Current Integral Formulation for Computing the
Linear Electromagnetic Field

If B=V x A then the Faraday law is
(20) E =—(A+gradV)

where E is the time integral of the electric field
t
E = / E(r)dr.
0

1
We choose in relation (13) ¥ = vy = — and from Ampere theorem we have
Ho

VXVXA=u0(J+J0+VXM)

and

J J
A=Ho [ S B f Lo, B [ XY,

21 =
(21) O 4T Jo, T ar Jq, 1

where (¢ is the conducting domain, and Qf is the region of ferromagnetic materials.
From relation (20) and (21) we obtain the integral equation of eddy current:

Ho

Ho J—Ody—@ Mxr
47T Qc

J
;dy + gradV = ——

dv
47T Qo T 47T Qr 7'3

(22) pI+
Numerical Solving of the Eddy Current Equation
Condition VJ = 0 is assured by introducing the electric potential 7" such as
(23) VxT=1J.
On the boundary Q¢ we have the condition
nJ=nVxT=0.

Obviously, relations (23) and (24) cannot define uniquely the potential T. We must
add a gauge condition for T.

Let Ny, be n¢ functions defined on Q¢ and having V x Ny, linear independent.
We consider

nc
(25) T=>) ap(t)Ng.
k=1
Therefore
nc
(26) J=>"ox(t)V x Ny.
k=1

Using V x Ny, as shape and weight function, the Galerkin method applied to equation
(22) leads to the following linear system of ordinary differential equations
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LI+RI =U+V,

where
I= (Oél, a2, a3)T7

Rkj = / p(V X Nk)(V X Nj)dl/,
Q¢

_ M 1 .
Ly =42 /Qc /Qc (7 X N)(V x Ny)dvd,

U, = K VxNk/ 30 qvav,
47 Q¢ Q¢ r

M
—& (VXNk) ;(I'
47 Q¢ Qp T

Vi = dvdy.
In the numerical approximation M is supposed to be uniform in every element wj, of
the ferromagnetic domain Q. In this case above relation becomes

nr
Vk = E akpMp,
p=1

where np is the number of subdomains in ferromagnetic bodies and

o r
ag, = o /QC(V x Ny,) x / r—3dud1/.

Wp

In the discrete edge element approximation, the uniqueness of T is assured by
introducing tree-cotree decomposition of the graph made by the edges and the nodes
of finite element mesh [9], [10], [11], [12], [13]. In particular, loop integrals of T uniquely
define J-fluxes across the faces linked with the loops but the edges values of T cannot
be uniquely obtained from the loop integrals of T. To do that, in acoord with basic
circuit theory, we may define for the tree edges any value with the condition that on
the cotree edges we enforce the values required to satisfy the analogue of Kirchhoff
voltage law. In particular, the edges values of the tree can all be set to zero. Thus, for
any values of J-fluxes across the faces, edges values of T can always be found which
are zero on the tree edges. Obviously, the set of these values is unique. This technique
is the discrete analogue of the gauge condition T w = 0, where the field lines of w
are given by the edges of the tree.

To impose the boundary condition (22), a boundary tree must be firstly defined.
For simply connected domains, the edges values of T belonging to the boundary cotree
must be zero.

For multiply connected domains we cannot annul all T-integrals laying on the
boundary. We have loops surrounding the surface Q¢ and their T-integrals cannot
be enforced to be zero. It can be shown that in this case we must add a number of
additional degress of freedom and associated shape functions N’, equal to the genus
np of the multiply connected domain [14],

nr ne
T=Y a;(t)N;+ Y ir(t)N},
j=1 k=1
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where nj is the number of the cotree edges inside the domain Q¢ and np is the
number of the boundary sets of edges. In this case

I = (al,az, ...,an,il,iQ, ...,/L'nB).

Computation of B.
Ferromagnetic bodies are divided in ny subdomains. In each subdomain w; we
take the average value of B

Vi

Bz' = —f (Il X A)dS,
Ow;

where A is given by relation (21). Having assumed M constant in each element, we
obtain

_ 1 nc 1 ng _
Bi:V_iZ/Bz’k XJk—;iZ'VipMp‘FBo;
k=1 p=1

Bik:f / 2 dvydsS;
dw; Juwi, T

Vip= f 7{ Doiti — Ao 43, dS;.
Ow;i J Owp r

Here ; is the dyadic product and By is given by the imposed current density. In each
ferromagnetic subdomains w;, the magnetization M is corrected by average value B;.
The numerical approximation of B by its average value is nonexpansive (Appendix
B) and the convergence of the polarization method is ensured.

where

Appendix A. Nonexpansivity of the function W
Let (AB,AH, AE, AJ) be the difference of the electromagnetic fields yields by
M’ and M". With E = [ Edr we have

t t
/ / (AH x AE )ndSdr = / / ABAHdvdr + / o AR dy,
0 Jon * 0o Ja 2 Ja .

where 2 is whole domain of the electromagnetic field. For boundary conditions cor-
rectly imposed, the left hand side of the above equality is zero and using relation (13)
it results

¢
/ / AB(vAB — AM)dvdr = ||AB|>— < AB, uAM >,< 0,
0o Jo

and
|AB||, < [|[AM]|,.

Appendix B. Convergence of the numerical procedure.
The scheme of the numerical procedure is

k) G

oMt Wopm A g0 Goqw :
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where the functions W and G was above defined. In numerical procedures we need
the average function A which is nonexpansive. Indeed

~ 2 ~ 2 1 2
= = YN <
/wk vB dS = o(wi)vAB a(wk)uaz(wk) (/wk lABdS) <

< L, / 1dS | AB?dS = / vAB?dS,
U(wk) Wk Wk W

where o(wyg) is the volume (or surface) of the subdomain wy. It follows that the

composed function Go A o Wis a contraction and the iterative numerical procedure

is convergent.
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