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Abstract

In this paper we find the necessary and sufficient conditions that a family of
functions to represent a change of coordinates in a Cauchy atlas over the mani-
fold of all maximal solutions of an ODE system. The proof is constructive. The
case of autonomous and the case of linear ODE system are discussed separately.
The relation to the Sincov functional equation is clarified.
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1 Introduction

It is well-known that the set of all maximal solutions of Cauchy problems attached
to homogeneous linear ODE system is isomorphic to Rn. Also, an autonomous ODE
system generates a local group with one parameter of diffeomorphisms. Our aim is
to organize the set of all maximal solutions for Cauchy problems attached to a first-
order non-autonomous ODE system, with n equations and n unknown functions, as
a manifold of dimension n.

Section 2 proves the existence of a Cauchy atlas on the set of all maximal solutions
of Cauchy problems attached to a first-order non-autonomous ODE system. For that
we emphasize five necessary and sufficient conditions that must be satisfied by a
family of functions F = {Fτσ}τ,σ∈R in order to be the coordinate transformations in
a canonical atlas. The necessity is obtained from ODE theory (see, e.g., [2], [5], [9])
and the Sincov functional equation (see [1, section 8.1]), whereas the sufficiency is
presented here, as far as the authors know, for the first time.

Sections 3, 4 and 5 contain special cases of first-order ODE systems. More precisely,
we discuss here autonomous equations, linear non-homogeneous equations, and linear
constant coefficient equations. Section 6 contains examples.
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2 The Cauchy atlas

Let M be a set, n a natural number, and I an index set. The set M is a differentiable
manifold of dimension n if [3]:

(i) M is provided with a family of pairs {Mτ , ϕτ}, τ ∈ I;
(ii) {Mτ} is a family of sets which cover M , i.e.,

⋃
τ∈I Mτ = M ; each ϕτ is a

bijection ϕτ : Mτ → Uτ from Mτ to an open subset Uτ of Rn;
(iii) given Mρ,Mτ such that Mρ ∩ Mτ 6= ∅, the map ϕτ ◦ ϕρ

−1 from the subset
ϕρ(Mρ ∩Mτ ) of Rn to the subset ϕτ (Mρ ∩Mτ ) of Rn is a C∞ diffeomorphism.

The family {Mτ , ϕτ} satisfying (i), (ii), (iii) is called a C∞ atlas. The individual
members (Mτ , ϕτ ) of this family are called coordinate charts. The C∞ map ϕτ ◦ϕρ

−1

is called a change of coordinates.
Let X(τ, x) be a τ -dependent C∞ vector field on Rn. More precisely, X is a C∞

function, where Dom(X) is a non-empty open subset of R×Rn and Codom(X) = Rn.
We attach the Cauchy problem

dx

dτ
= X(τ, x(τ)), x(ρ) = a,(2.1)

where (ρ, a) ∈ Dom(X).
Let M be the set of all maximal C∞ solutions of these Cauchy problems (the

maximal solutions are points in M). To organize M like a differentiable manifold of
dimension n, it is enough to build some mathematical ingredients satisfying (i)-(iii).

First, for each τ ∈ R, we define a C∞ map ϕτ as follows:
- Dom(ϕτ ) = {x ∈ M | τ ∈ Dom(x)};
- Codom(ϕτ ) = {a ∈ Rn | (τ, a) ∈ Dom(X)};
- ϕτ maps a maximal solution x to the initial value x(τ).
The bijectivity of ϕτ follows from the existence and uniqueness of maximal solution

of a Cauchy problem.
Second, we introduce the family of functions

Fτρ = ϕτ ◦ ϕρ
−1,

Fτρ : ϕρ(Dom(ϕτ ) ∩Dom(ϕρ)) 3 a 7→
ϕτ (ϕρ

−1(a)) ∈ ϕτ (Dom(ϕτ ) ∩Dom(ϕρ)).
(2.2)

Theorem. The functions {ϕτ}τ∈R and the maps Fτρ = ϕτ ◦ϕρ
−1 determine an atlas

on M , having the following properties:
1) K = {(τ, ρ, a) ∈ R× R× Rn | a ∈ Dom(Fτρ)} is a non-empty

open set;
2) each function from the family F = {Fτρ = ϕτ ◦ ϕρ

−1} is a bijection;
3) the map K 3 (τ, ρ, a) 7→ ∂Fτρ(a)/∂τ ∈ Rn is of class C∞;
4) J(ρ, a) = {τ ∈ R | a ∈ Dom(Fτρ)} is an open interval for each

ρ ∈ R, a ∈ Rn;
5) the relation

Fτσ(Fσρ(a)) = Fτρ(a)(2.3)

holds for each τ, σ, ρ ∈ R and for each a ∈ Fσρ
−1(Codom(Fσρ) ∩ Codom(Fστ )).
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Proof. The map ϕτ is a coordinate chart on M and the C∞ maps Fτρ = ϕτ ◦
ϕρ
−1, τ, ρ ∈ R work as change of coordinates.
From (2) the map

x : J(ρ, a) 3 τ → Fτρ(a) ∈ Rn(2.4)

is the maximal solution of the Cauchy problem (1), and consequently its domain is
open (see [9, Chapter 4, §23]). The statement 1) follows from the non-emptiness of
Dom(X). The statement 2) is obtained from the definition of Fτρ. From [2, Chapter
4, §32] it follows that the map K 3 (τ, ρ, a) 7→ Fτρ(a) ∈ Rn is of class C∞. The
map X is C∞ by assumptions. Therefore (τ, ρ, a) 7→ X(τ, Fτρ(a)) is also of class C∞.
The statement 3) follows from (1), (4). Since J(ρ, a) is the domain of the maximal
solution (4), the statement 4) follows from the openness of Dom(X). The statement
5) is coming from the definition of change of coordinates.2

Let F = {Fτρ}τ,ρ∈R be a family of C∞ functions, where the domain and the
codomain of each function from F are subsets of Rn. The following Theorem gives
the necessary and sufficient conditions for F to represent the change of coordinates
in a C∞ atlas of the form {ϕτ}τ∈R.

Theorem. For each family of functions F = {Fτσ}τ,σ∈R satisfying the properties 1-5
from the previous Theorem there exists a vector field X(τ, x) generating a manifold
M with the atlas {ϕτ}τ∈R.

Proof. Assume that F is a family of coordinate transformations of the {ϕτ}τ∈R atlas
on M . Then the statements 1-5 from Lemma are satisfied.

Let us prove the sufficiency. From (3) we get Fσρ(Fρσ(a)) = Fσσ(a) for each
a ∈ Dom(Fρσ). If we put ρ = σ, then from the statement 2) of Lemma we obtain
a = Fσσ(a) for each a ∈ Dom(Fσσ). Since Fσσ is the identity and

Dom(Fρσ) ⊆ Dom(Fσσ),(2.5)

we obtain

Fρσ = Fσρ
−1(2.6)

for each ρ, σ ∈ R.
The family F defines the vector field X from the Cauchy problem (1):

X(τ, a) =
∂Fτσ(a)

∂τ

∣∣∣∣
σ=τ

.(2.7)

From the statement 3) of Lemma we see that the function X is of class C∞.
Let (ρ, a) ∈ Dom(X) be fixed. Then a ∈ Dom(Fρρ). Moreover, J(ρ, a) is non-empty

according to the statement 4) of Lemma. Let σ ∈ J(ρ, a). Then a ∈ Dom(Fσρ). Let τ ∈
J(σ, Fσρ(a)). This set is non-empty, since from (2.5), (2.6) we have σ ∈ J(σ, Fσρ(a)).
From (2.6) a ∈ Fσρ

−1(Codom(Fσρ)∩Codom(Fστ )). Therefore the condition (3) holds
for such a. Differentiating (3) with respect to τ , putting σ = τ and using (7) we get

∂Fτρ(a)
∂τ

= X(τ, Fτρ(a)).
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That is why the map x defined by (4) is the solution of the Cauchy problem (1).
We must check that x is a maximal solution. Let us suppose x is not maximal. Then
there exists a maximal solution x̄ such that x = x̄|J(ρ,a). At least one of the values
sup(J(ρ, a)), inf(J(ρ, a)) is an element of Dom(x̄). Let us suppose ω = sup(J(ρ, a)) ∈
Dom(x̄) (the case inf(J(ρ, a)) ∈ Dom(x̄) is analogous). Then (ω, x̄(ω)) ∈ Dom(X).
Further, from (2.7), we obtain x̄(ω) ∈ Dom(Fωω). Therefore (ω, ω, x̄(ω)) ∈ K. By the
statement 1) of Lemma, there exists ε > 0 such that, for each σ from an open interval
(ω−ε, ω), we have (ω, σ, x̄(σ)) = (ω, σ, x(σ)) = (ω, σ, Fσρ(a)) ∈ K. Using (2.6) we get
a ∈ Fσρ

−1(Codom(Fσρ) ∩ Codom(Fσω)). From (3) we obtain Fωσ(Fσρ(a)) = Fωρ(a).
Therefore sup(J(ρ, a)) = ω ∈ J(ρ, a). Nevertheless, from the statement 4) of Lemma,
J(ρ, a) is an open set. This contradiction proves that x is the maximal solution. Thus
for each Cauchy problem (1) with (ρ, a) ∈ Dom(X), the unique maximal solution
is given by (2.4). Then we can construct the {ϕτ}τ∈R atlas and Fτρ identifies to
ϕτ ◦ϕρ

−1 as maximal solutions of the same Cauchy problem. From (4), (6) and from
the statement 4) of Lemma, the condition (2) holds. 2

The C∞ atlas on M defined by the conditions in the previous Theorems will be
called Cauchy atlas.

Corollary. The set M of all maximal solutions of a non-autonomous ODE system
is a manifold of dimension n.

3 Case of autonomous ODE system

Let U ⊂ Rn be an open set. Let X be a C∞ function with Dom(X) = R× U , where
X : (τ, a) 7→ ξ(a) and ξ : U → Rn. Then the map J(ρ, a) 3 τ 7→ Fτ−ρ,0(a) ∈ Rn is the
maximal solution of the Cauchy problem (1), satisfying the same Cauchy condition
as the solution (2.4). Denoting Gτ = Fτ0, we have

Gτ−ρ = Fτρ,(3.8)

where Gτ = Fτ0. From (3), (3.8) we obtain

Gα(Gβ(a)) = Gα+β(a)

for each a ∈ G−1
β (Codom(Gβ) ∩ Codom(G−α)). The map G : (α, a) 7→ Gα(a), where

Dom(G) = {(α, a) ∈ R × Rn | a ∈ Dom(Gα)}, is the maximal flow of the vector
field ξ (see, e.g., [7, Chapter 17]). The maps Gτ form a local one-parameter group of
transformations (for C∞ case see, e.g., [8, Section 1.2]). If Dom(Gτ ) = U for each
τ ∈ R, then Gτ ’s form a group of transformations of U .

Corollary. The set M of all maximal solutions of an autonomous ODE system
is a manifold of dimension n.

4 Case of linear ODE system

Let I be an open interval. Let us consider the affine functions Fτσ, where

Dom(Fτσ) =
{
Rn for τ, σ ∈ I,
∅ otherwise.
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The condition (3) was suggested by the Sincov’s functional equation (see [1, section
8.1])

Fτσ ◦ Fσρ = Fτρ, τ, σ, ρ ∈ I,

with the general solution

Fτσ(a) = Wτ (W−1
σ (a) + hτ − hσ),

where Wτ : Rn → Rn is an arbitrary linear automorphism and hτ is an arbitrary
element of Rn for each τ ∈ I. If the conditions from Theorem are satisfied, then the
vector field X(τ, x) is also affine and Dom(X) = I × Rn. Moreover, τ 7→ Wτ is the
Wronski matrix and τ 7→ Wτhτ is the particular solution of this equation.

Corollary. The set M of all maximal solutions of a linear ODE system is a
manifold of dimension n.

5 Case of linear constant coefficient ODE system

Let the map Gτ : Rn → Rn defined by (3.8) be affine for each τ ∈ R. We can rewrite
the condition (3) as

Gα ◦Gβ = Gα+β .(5.9)

Therefore Gτ ’s form a group of affine transformations of Rn. Let us suppose the map
β 7→ Gβ is continuous. We define

H : ε 7→ 1
2ε

ε∫

−ε

Gβ dβ.

Since limε→0 Hε = idRn , from continuity, there exists ε > 0 such that Hε is invertible.
By integrating (5.9) and substituting γ = α + β we obtain

Gα =
1
2ε

α+ε∫

α−ε

Gγ ◦H−1
ε dγ.

From this and from (7) we have the statement 3) of Lemma. From (5.9) and from
Theorem we see that functions from the family F = {Gτ−σ}τ,σ∈R are the coordinates
transformations of the Cauchy atlas on the manifold M of the maximal solutions
of Cauchy problems attached to a linear nonhomogeneous ODEs system with con-
stant coefficients. From (2.7), (3.8) the equation (1) is linear non-homogeneous with
constant coefficients.

Corollary. The set M of all maximal solutions of a linear constant coefficient
ODE system is a manifold of dimension n.

6 Examples

1) Let us consider the Cauchy problem (1), where X : R2 3 (τ, a) 7→ a2 ∈ R. It is easy
to see that
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Fτσ(a) =
a

1 + (σ − τ)a
,

where Dom(Fτσ) = {a ∈ R | (τ − σ)a < 1}, Codom(Fτσ) = {a ∈ R | (τ − σ)a > −1}.
The map G : (τ, a) 7→ a/(1− τa) is the maximal flow of the vector field ξ : a 7→ a2.

2) The Cauchy problem dx
dτ = 2τx(τ), x(σ) = x0 has the maximal solution

x(τ, σ, x0) = x0e
τ2

e−σ2
. This determines a Cauchy atlas on the set M .
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