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Abstract. Let φ be an analytic self-map of the open unit disk D in
the complex plane. Such a map induces through composition a linear
composition operator Cφ : f 7→ f◦φ. We are interested in the combination
of Cφ with the differentiation operator D, that is in the operator DCφ :

f 7→ φ ′ · (f ◦ φ) acting between weighted Bergman spaces and weighted
Banach spaces of holomorphic functions.

1 Introduction

Let D denote the open unit disk in the complex plane. For an analytic self-map
φ of D the classical composition operator Cφ is given by

Cφ : H(D) → H(D), f 7→ f ◦ φ,

where H(D) denotes the set of all analytic functions on D. Combining this
with differentiation we obtain the operator

DCφ : H(D) → H(D), f 7→ φ ′ · (f ′ ◦ φ).

2010 Mathematics Subject Classification: 47B33, 47B38

Key words and phrases: composition operator, differentiation operator, weighted

Bergman spaces, weighted Banach spaces of holomorphic functions

107



108 E. Wolf

Composition operators occur naturally in various problems and therefore have
been widely investigated. An overview of results in the classical setting of the
Hardy spaces as well as an introduction to composition operators is given in
the excellent monographs by Cowen and MacCluer (cf. [6]) and Shapiro (cf.
[13]).
Next, let us explain the setting in which we are interested. Bounded and
continuous functions v : D →]0,∞[ are called weights. For such a weight v we
define

H∞

v := {f ∈ H(D); ‖f‖v := sup
z∈D

v(z)|f(z)| < ∞}.

Since, endowed with the weighted sup-norm ‖.‖v, this is a Banach space, we say
that H∞

v is a weighted Banach space of holomorphic functions. These spaces
arise naturally in several problems related to e.g. complex analysis, spectral
theory, Fourier analysis, partial differential and convolution equations. Con-
crete examples may be found in [4]. Weighted Banach spaces of holomorphic
functions have been studied deeply in [3], but also in [5] and [2].

The weighted Bergman space is defined to be the collection of all analytic
functions f ∈ H(D) such that

Av,p := {f ∈ H(D); ‖f‖v,p :=

(∫

D

|f(z)|pv(z) dA(z)

)
1
p

< ∞}, 1 ≤ p < ∞

where dA(z) denotes the normalized area measure. The investigation of
Bergman spaces has quite a long and rich history. An excellent introduction
to Bergman spaces is given in [9].
In this article we characterize boundedness and compactness of operators
DCφ : Av,p → H∞

w in terms of the involved self-map φ and the weights v

and w.

2 Basics

We study weighted spaces generated by the following class of weights. Let ν

be a holomorphic function on D that does not vanish and is strictly positive on
[0, 1[. Moreover, we assume that limr→1 ν(r) = 0. Then we define the weight v
in the following way

v(z) := ν(|z|2) for every z ∈ D. (1)

Examples include all the famous and popular weights, such as
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1. the standard weights v(z) = (1− |z|2)α, α ≥ 1,

2. the logarithmic weights v(z) = (1− log(1− |z|2))β, β > 0,

3. the exponential weights v(z) = e
− 1

(1−|z|2)α , α ≥ 1.

For a fixed point a ∈ D, we introduce a function

va(z) := ν(az) for every z ∈ D.

Since ν is holomorphic on D, so is the function va. Moreover, in particular, we
will often assume that there is a constant C > 0 such that

sup
a∈D

sup
z∈D

v(z)

|va(z)|
≤ C. (2)

In the sequel we analyze which role condition (2) plays in the zoo of conditions
on weights. Lusky (cf. [12]) studied weights satisfying the following conditions
(L1) and (L2) (renamed after the author) which are defined as follows

(L1) inf
n∈N

v(1− 2−n−1)

v(1− 2−n)
> 0 and (L2) lim sup

n→∞

v(1− 2−n−j)

v(1− 2−n)
< 1 for some j ∈ N.

Actually, weights which enjoy both conditions (L1) and (L2) are normal weights
in the sense of Shields and Williams (see [14]). Obviously, condition (2) is con-
nected with condition (L2) in the following way. If we change (2) as follows

sup
a∈D

sup
z∈D

v(z)

|va(z)|
< 1, (3)

then (L2) is equivalent with (3), if we assume that |ν(z)| ≥ ν(|z|) for every
z ∈ D. To show this, let us first assume that (L2) holds. Hence we can find
j ∈ N such that

v(1− 2−n−j)

v(1− 2−n)
< 1 for every n ∈ N.

Next, we fix z ∈ D and a ∈ D. Then we can find n ∈ N such that

|z| ≥ 1− 2−n−j and |az| < 1− 2−n.

Now,
v(z)

|ν(az)|
≤

v(1− 2−n−j)

v(1− 2−n)
< 1 for every n ∈ N.
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Finally

sup
a∈D

sup
z∈D

v(z)

|va(z)|
< 1.

Conversely, we suppose that (3) is satisfied. We take j = 1, fix n ∈ N and
select

an :=
(1− 2−n)2

(1− 2−n−1)
.

We obtain
v(1− 2−n−1)

v(1− 2−n)
≤

v(z)

|ν(anz)|
≤ sup

a∈D

sup
z∈D

v(z)

|va(z)|
< 1.

Thus, under some additional assumptions (2) is a weaker version of (L2). Cal-
culations show that the standard weights as well as the logarithmic weights
satisfy condition (2), while the exponential weights do not fulfill condition (2).
Finally, we need some geometric data of the unit disk. A very important tool
when dealing with operators such as defined above is the so-called pseudohy-
perbolic metric given by

ρ(z, a) := |σa(z)|,

where σa(z) := a−z
1−az , z, a ∈ D, is the Möbius transformation which inter-

changes a and 0.

3 Results

Lemma 1 Let v(z) = f(|z|) for every z ∈ D, where f ∈ H(D) is a function
whose Taylor series (at 0) has nonnegative coefficients. We assume addition-
ally that v satisfies condition (2). Then there is a constant C > 0 such that

|f(z)| ≤ C
1
p

‖f‖v,p

v(0)
1
p (1− |z|2)

2
p v(z)

1
p

.

Proof. Recall that a weight v as defined above may be written as

v(z) := max{|g(λz)|; |λ| = 1} for every z ∈ D.

We will write gλ(z) := g(λz) for every z ∈ D. Next, fix λ ∈ C with |λ| = 1.
Moreover, let α ∈ D be an arbitrary point. We consider the map

Tα,λ : Ap
v → Ap

v , Tα,λf(z) = f(σα(z))σ
′
α(z)

2
pgλ(σα(z))

1
p .
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Then a change of variables yields

‖Tα,λf‖
p
v,p =

∫

D

v(z)|f(σα(z))|
p|σ ′

α(z)|
2|gλ(σα(z))| dA(z)

≤

∫

D

|f(σα(z))|
v(z)

v(σα(z))
|σ ′

α(z)| dA(z)

≤ C

∫

D

∫

D

|f(σα(z))|v(σα(z))|σ
′
α(z)|

2 dA(z)

≤ C

∫

D

v(t)|f(t)|p dA(t) = C‖f‖pv,p.

Now put hλ(z) := Tα,λ(z) for every z ∈ D. By the mean value property we
obtain

v(0)|hλ(0)|
p ≤

∫

D

v(z)|hλ(z)|
p dA(z) = ‖hλ‖

p
v,p ≤ C‖f‖pv,p.

Hence
v(0)|hλ(0)|

p = v(0)|f(α)|p(1− |α|2)2|gλ(α)| ≤ C‖f‖pv,p.

Since λ was arbitrary we obtain that

v(0)|f(α)|p(1− |α|2)2v(α) ≤ C‖f‖pv,p

Thus,

|f(α)| ≤ C
1
p

‖f‖v,p

v(0)
1
p (1− |α|2)

2
p v(α)

1
p

.

Since α was arbitrary, the claim follows. �

Lemma 2 Let v(z) = f(|z|) for every z ∈ D, where f ∈ H(D) is a function
whose Taylor series (at 0) has nonnegative coefficients. We assume addition-
ally that v satisfies condition 2. Then for every f ∈ A

p
v there is Cv > 0 such

that

|f(z) − f(w)| ≤ Cv‖f‖v,pmax

{
1

(1− |z|2)
2
p v(z)

1
p

,
1

(1− |w|2)
2
p v(w)

1
p

}

ρ(z,w)

for every z,w ∈ D.

Proof. The proof is completely analogous to the proof given in [17]. Hence we
omit it here. �
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Lemma 3 Let v(z) = f(|z|) for every z ∈ D, where f ∈ H(D) is a function
whose Taylor series (at 0) has nonnegative coefficients. We assume addition-
ally that v satisfies condition (2). Then for f ∈ H∞

v and z ∈ D:

|f ′(z)| ≤
M

v(0)
1
p (1− |z|2)

1+ 2
p v(z)

1
p

‖f‖v,p.

Proof. By Lemma 2 we have that

|f(z) − f(w)| ≤
M

v(0)
1
p

{
1

(1− |z|2)
2
p v(z)

1
p

,
1

(1− |w|2)
2
p v(w)

1
p

}

ρ(z,w)‖f‖v,p.

Now
∣

∣

∣

∣

f(z+ h) − f(z)

|h|

∣

∣

∣

∣

≤
M

v(0)
1
ph

max

{
1

(1− |z+ h|2)
2
p v(z+ h)

1
p

,
1

(1− |z|2)
2
p v(z)

1
p

}

ρ(z+ h, z)‖f‖v,p

=
M

v(0)
1
p |h|

max

{
1

(1− |z+ h|2)
2
p v(z+ h)

1
p

,
1

(1− |z|2)
2
p v(z)

1
p

}

∣

∣

∣

∣

∣

z+ h− z

1− (z+ h)z

∣

∣

∣

∣

∣

‖f‖v,p

=
M

v(0)
1
p

max

{
1

(1− |z+ h|2)
2
p v(z+ h)

1
p

,
1

(1− |z|2)
2
p v(z)

1
p

}

∣

∣

∣

∣

∣

1

1− (z+ h)z

∣

∣

∣

∣

∣

‖f‖v,p.

Finally, let h tend to zero and obtain

|f ′(z)| ≤
M

v(0)
1
p (1− |z|2)

1+ 2
p v(z)

1
p

‖f‖v,p.

�

Proposition 1 Let v(z) = f(|z|) for every z ∈ D, wehre f ∈ H(D) is a function
whose Taylor series (at 0) has nonnegative coefficients. We assume addition-
ally that v satisfies condition (2). Then DCφ : Av,p → H∞

w is bounded if and
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only if

sup
z∈D

w(z)|φ ′(z)|

(1− |φ(z)|2)
1+ 2

p v(φ(z))
1
p

< ∞. (4)

Proof. First, we assume that (4) is satisfied. Applying Lemma 1 we obtain

‖DCφf‖w = sup
z∈D

w(z)|φ ′(z)||f ′(φ(z))| ≤ C sup
z∈D

w(z)|φ ′(z)|

(1− |φ(z)|2)
1+ 2

p v(φ(z))
1
p

.

Hence DCφ : Av,p → H∞

w must be bounded.
Conversely, let a ∈ D be arbitrary. Then there exists fpa in the unit ball of H∞

v

such that |fa(a)|
p = 1

ṽ(a)
. Now put

ga(z) := fa(z)ϕa(z) for every z ∈ D.

Hence ‖ga‖
p
v,p =

∫
D
|ga(z)|

pv(z) dA(z) ≤ supz∈D v(z)|fa(z)|
p
∫
D
|ϕa(z)|

p dA(z) ≤
K. Moreover,

g ′
a(z) = f ′a(z)ϕa(z) + fa(z)ϕ

′
a(z) for every z ∈ D.

Next, we assume that there is a sequence (zn)n ⊂ D such that |φ(zn)| → 1 and

w(zn)|φ
′(zn)|

(1− |φ(zn)|2)
1+ 2

p v(φ(zn))
1
p

≥ n for every n ∈ N.

Thus consider now gn(z) := gφ(zn)(z) for every n ∈ N as defined above. Obvi-
ously (gn)n is contained in the closed unit ball of Av,p and

c ≥ w(zn)|φ
′(zn)||g

′
n(φ(zn))| =

w(zn)|φ
′(zn)|

v(φ(zn))
1
p (1− |φ(zn)|2)

1+ 2
p

≥ n

for every n ∈ N which is a contradiction. �

Proposition 2 Let v(z) = f(|z|), z ∈ D, where f ∈ H(D) is a function whose
Taylor series (at 0) has nonnegative coefficients. Moreover, we assume that v
satisfies (2). Then the operator DCφ : A

p
v → H∞

w is compact if and only if

lim sup
|φ(z)|→1

w(z)|φ ′(z)|

(1− |φ(z)|2)
1+ 2

p v(φ(z))
1
p

.
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Proof. Let (fn)n be a bounded sequence in Av,p that converges to zero uni-
formly on the compact subsets of D. Let M := supn ‖fn‖v,p < ∞. Given ε > 0

there is r > 0 such that if |φ(z)| > 0, then

w(z)|φ ′(z)|

(1− |φ(z)|2)
1+ 2

p v(φ(z))
1
p

≤
ε

2Cv
.

On the other hand, since fn → 0 uniformly on {u; |u| ≤ r}, there is an n0 ∈ N

such that if |φ(z)| ≤ r and n ≥ n0, then w(z)|f ′n(φ(z))||φ
′(z)| < ε

2 . Now, an
application of Lemma 3 yields

sup
z∈D

w(z)|f ′n(φ(z))||φ
′(z))| ≤ sup

|φ(z)|≤r

w(z)|f ′n(φ(z))||φ
′(z)|

+ sup
|φ(z)|>r

w(z)|f ′n(φ(z))||φ
′(z)|

≤
ε

2
+ sup

|φ(z)|>r

Cvw(z)|φ ′(z)|

(1− |φ(z)|2)
2
p
+1
v(φ(z))

1
p

< ε.

Thus, the claim follows.
Conversely, we suppose that DCφ : Av,p → H∞

w is compact and that there are
δ > 0 and (zn)n ⊂ D with |φ(zn)| → 1 such that

w(zn)|φ
′(zn)|

(1− |φ(zn)|2)
1+ 2

p v(φ(zn))
1
p

≥ δ.

Since |φ(zn)| → 1 there exist natural numbers α(n) with limn→∞ α(n) = ∞
such that |φ(zn)|

α(n) ≥ 1
2 for every n ∈ N.

Next, for every n ∈ N we consider the function

gn(z) := fn(z)σ
1+ 2

p

φ(zn)
(z)zα(n),

where f
p
n ∈ H∞

v such that ‖fpn‖v ≤ 1 and |fn(φ(zn))|
p = 1

ṽ(φ(zn))
. Then we

obtain

‖DCφfn‖w ≥ w(zn)|φ
′(zn)||f

′
n(φ(zn))|

≥
w(zn)|φ

′(zn)||φ(zn)|
α(n)

ṽ(φ(zn))
1
p (1− |φ(zn)|2)

1+ 2
p

≥
1

2

w(zn)|φ
′(zn)|

ṽ(φ(zn))
1
p (1− |φ(zn)|2)

1+ 2
p

≥
1

2
δ.

This is a contradiction. �



Composition followed by differentiation between . . . 115

References

[1] J. M. Anderson, J. Duncan, Duals of Banach spaces of entire functions,
Glasgow Math. J. 32 (1990), 215–220.

[2] K. D. Bierstedt, J. Bonet, A. Galbis, Weighted spaces of holomorphic
functions on balanced domains, Michigan Math. J. 40 (2), 271–297.

[3] K. D. Bierstedt, J. Bonet, J. Taskinen, Associated weights and spaces of
holomorphic functions, Studia Math. 127 (2) (1998), 137–168.

[4] K. D. Bierstedt, R. Meise, W. H. Summers, A projective description of
weighted inductive limits, Trans. Am. Math. Soc. 272 (1) (1982), 107–
160.

[5] K. D. Bierstedt, W. H. Summers, Biduals of weighted Banach spaces of
holomorphic functions, J. Austral. Math. Soc. Ser. A. 54 (1993), 70–79.

[6] C. Cowen, B. MacCluer, Composition operators on spaces of analytic
functions, CRC Press, Boca Raton, 1995.
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