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Abstract. In this short note we consider the oriented vertex Turán
problem in the hypercube: for a fixed oriented graph

−→
F , determine the

maximum cardinality exv(
−→
F ,
−→
Qn) of a subset U of the vertices of the

oriented hypercube
−→
Qn such that the induced subgraph

−→
Qn[U] does not

contain any copy of
−→
F . We obtain the exact value of exv(

−→
Pk,
−→
Qn) for the

directed path
−→
Pk, the exact value of exv(

−→
V2,
−→
Qn) for the directed cherry

−→
V2 and the asymptotic value of exv(

−→
T ,
−→
Qn) for any directed tree

−→
T .

1 Introduction

One of the most studied problems in extremal combinatorics is the so-called
Turán problem originated in the work of Turán [15] (for a recent survey see
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[9]). A basic problem of this sort asks for the maximum possible number of
edges ex(F,G) in a subgraph G ′ of a given graph G that does not contain F as
a subgraph.

Much less attention is paid to the vertex version of this problem. This
problem can be formalized as follows: what is the the maximum cardinal-
ity exv(F,G), of a subset U of vertices of a given graph G such that G[U] does
not contain F as a subgraph.

We will consider Turán type problems for the n-dimensional hypercube Qn,
the graph with vertex set Vn = {0, 1}n corresponding to subsets of an n-element
set and edges between vertices that differ in exactly one coordinate.

Edge-Turán problems in the hypercube have attracted a lot of attention.
This research was initiated by Erdős [6], who conjectured that ex(C4, Qn) =
(1+ o(1))n2n−1, i.e., any subgraph of Qn having significantly more than half
of the edges of Qn must contain a copy of C4. This problem is still unsolved.
Conlon [5] showed, extending earlier results due to Chung [3] and Füredi and
Özkahya [7, 8], that ex(C2k, Qn) = o(n2

n) for k 6= 2, 3, 5.
Concerning the vertex Turán problem in the hypercube Qn, it is obvious

that we can take half of the vertices of Qn such that they induce no edges.
Kostochka [14] and later, independently, Johnson and Entringer [12] showed
exv(C4, Qn) = maxj{

∑
i6≡j mod 3

(
n
i

)
}. Johnson and Talbot [11] proved a local

stability version of this result. Chung, Füredi, Graham, Seymour [4] proved
that if U contains more than 2n−1 vertices, then there is a vertex of degree at
least 1

2 logn− 1
2 log logn+ 1

2 in Qn[U]. This shows that for any star Sk with k
fixed, we have exv(Sk, Qn) = 2

n−1 for large enough n. Alon, Krech, and Szabó
[1] investigated the function exv(Qd, Qn).

Let us note that there is a simple connection between the edge and the
vertex Turán problems in the hypercube.

Proposition 1 exv(F,Qn) ≤ 2n−1 + ex(F,Qn)
n .

Proof. If a subgraph G of Qn contains more than 2n−1 + ex(F,Qn)
n vertices,

then it contains more than ex(F,Qn)
n edges in every direction, thus more than

ex(F,Qn) edges altogether, hence G contains a copy of F. �

For every tree T , this observation implies that exv(T,Qn) =
(
1
2 +O

(
1
n

))
2n,

using the well-known result from Turán theory which states that ex(n, T) =
O(n) (and so ex(F,Qn) = O(2n)). Also, together with Conlon’s result on the
cycles mentioned earlier, we obtain exv(Ck, Qn) =

(
1
2 + o(1)

)
2n for k 6= 2, 3, 5.
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In this paper, we consider an oriented version of this problem. There is a
natural orientation of the edges of the hypercube. An edge uv means that u
and v differ in only one coordinate; if u contains 1 and v contains 0 in this
coordinate, then we direct the edge from v to u. We denote the hypercube

Qn with this orientation by
−→
Qn. With this orientation it is natural to forbid

oriented subgraphs. We will denote by exv(
−→
F ,
−→
Qn) the maximum number of

vertices that an
−→
F -free subgraph of

−→
Qn can have. As vertices of the hypercube

correspond to sets, instead of working with subsets of the vertices of
−→
Qn we

will consider families G ⊆ 2[n] of sets. We will say that G ⊆ 2[n] is
−→
F -free if for

the corresponding subset U of vertices of
−→
Qn the induced subgraph

−→
Qn[U] is

−→
F -free.

For example, there is only one orientation of C4 that embeds into the hy-

percube, we will denote it by
−→
C4. Hence we have exv(

−→
C4,
−→
Qn) = exv(C4, Qn),

which is known exactly, due to the above mentioned result of Kostochka and
Johnson and Entringer. However, there are three different orientations of P3,

according to how many edges go towards the middle vertex:
−→
V2 denotes the

orientation with a source (i.e.,
−→
V2 is the path abc such that the edge ab is

directed from b to a and the edge bc is directed from b to c). The directed

path
−→
Pk is a path on k vertices v1, . . . , vk with edges going from vi to vi+1 for

every i < k. The height of a directed graph is the length of a longest directed
path in it.

If we consider the hypercube as the Boolean poset, then each edge of the
hypercube goes between a set A and a set A ∪ {x} for some x 6∈ A. Then

in
−→
Qn the corresponding directed edge goes from A to A ∪ {x}. A directed

acyclic graph
−→
F can be considered as a poset F; we will say that F is the poset

of
−→
F . The poset corresponding to a directed tree is said to be a tree poset.

Forbidding copies of a poset in a family of sets in this order-preserving sense
has an extensive literature (see [10] for a survey on the theory of forbidden
subposets). We say P ⊂ 2[n] is a copy of P if there exists a bijection f : P → P
such that p < p ′ implies f(p) ⊂ f(p ′). We say that F ⊂ 2[n] is P-free, if there
is no P ⊂ F that is a copy of P. Observe that if P is the poset of the directed

acyclic graph
−→
F , then any P-free family is

−→
F -free.

The oriented version of the vertex Turán problem in the hypercube corre-
sponds to the following variant of the forbidden subposet problem. We say
P ⊂ 2[n] is a cover-preserving copy of P if there exists a bijection f : P → P
such that if p covers p ′ in P, then f(p) covers f(p ′) in the Boolean poset. Thus
it is not surprising that we can use techniques and results from the theory of
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forbidden subposet problems in our setting.
In this paper, we consider Vertex Turán problems for directed trees. Our

main result determines the asymptotic value of the vertex Turán number

exv(
−→
T ,
−→
Qn) for any directed tree

−→
T .

Theorem 1 For any directed tree
−→
T of height h, we have

exv(
−→
T ,
−→
Qn) =

(
h− 1

h
+ o(1)

)
2n.

Below we obtain the exact value of the vertex Turán number for some special

directed trees (namely
−→
V2 and

−→
Pk).

Theorem 2
exv(
−→
V2,
−→
Qn) = 2

n−1 + 1.

It would be natural to consider the following generalization of
−→
V2: let

−→
Vr

denote the star with r leaves all edges oriented towards the leaves. Note that
if one takes the elements of the r highest levels of the Boolean poset and

every other level below them, then the corresponding family in
−→
Qn will be

−→
Vr-

free. Computing the cardinality of this family we have exv(
−→
Vr,
−→
Qn) = 2n−1 +

Ω(nr−2). We conjecture that exv(
−→
Vr,
−→
Qn) = 2n−1 + Θ(nr−2) holds for every

r ≥ 3.

Theorem 3 For any pair k, n of integers with k ≤ n we have

exv(
−→
Pk,
−→
Qn) = max

j∈[k]

 ∑
i6≡j mod k

(
n

i

) .
After submitting this paper we learned that the above theorem was proved

in a different context by Katona [13].

2 Proofs

2.1 Proof of Theorem 1

We follow the lines of a proof of Bukh [2] that shows that if T is a tree
poset with h(T) = k and F ⊆ 2[n] is a T -free family of sets, then |F | ≤
(k − 1 + O( 1n))

(
n
bn/2c

)
holds. The proof of this theorem consists of several
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lemmas. Some of them we will state and use in their original form, some
others we will state and prove in a slightly altered way so that we can apply
them in our setting. First we need several definitions. For a family F ⊆ 2[n],
its Lubell-function

λn(F) =
∑
F∈F

1(
n
|F|

) =
1

n!

∑
F∈F

|F|!(n− |F|)!

is the average number of sets in F that a maximal chain C in 2[n] contains. A
poset P is called saturated if all its maximal chains have length h(P). For any
poset T its opposite poset T ′ consists of the same elements as T with t ≤T ′ t ′

if and only if t ′ ≤T t. For a family F ⊆ 2[n] of sets, its complement family is
F = {[n] \ F : F ∈ F }. Clearly, F contains a copy of P if and only if F contains
a copy of P ′ and λn(F) = λn(F).

Lemma 1 (Bukh [2]) Every tree poset T is an induced subposet of a satu-
rated tree poset T ′ with h(T) = h(T ′).

An interval in a poset P is a set of the form [x, y] = {z ∈ P : x ≤ z ≤ y}.

Lemma 2 (Bukh [2]) If T is a saturated tree poset that is not a chain, then
there exists t ∈ T that is a leaf in H(T) and there exists an interval I ⊂ T

containing t such that |I| < h(T) holds, and T \ I is a saturated tree poset with
h(T) = h(T \ I).

From now on we fix a tree poset T and we denote its height by k. We say
that a chain in 2[n] is fat if it contains k members of F .

Lemma 3 If F ⊆
⋃i+k−1
j=i

([n]
j

)
is a family with λ(F) ≥ (k− 1+ ε), then there

are at least (ε/k)n! fat chains.

Proof. Let Ci denote the number of maximal chains that contain exactly i
sets from F . As F ⊆

⋃i+k−1
j=i

([n]
j

)
, we have Ci = 0 for all i > k. Then counting

the number of pairs (F, C) with C being a maximal chain and F ∈ F ∩C, in two
different ways, we obtain

n∑
i=0

iCi = λ(F)n! ≥ (k− 1+ ε)n!.

This, and
∑
iCi = n! imply

kCk =
∑
i≥k

iCi ≥
n∑
i=0

iCi − (k− 1)
∑
i<k

Ci ≥ εn!.
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Therefore the number of fat chains in F is Ck ≥ (ε/k)n!. �

Lemma 4 Let T be a saturated tree poset of height k. Suppose F ⊆ ∪i+k−1j=i

([n]
j

)
is a family with n/4 ≤ i ≤ 3n/4. Moreover, suppose L is a family of fat chains

with |L| > 4(|T |+1
2 )
n n!. Then there is a copy of T in F that contains only sets

that are contained in some fat chain in L.

Proof. We proceed by induction on |T |. If T is a chain, then the k sets in
any element of L form a copy of T . In particular, it gives the base case of the
induction. So suppose T is not a chain. Then applying Lemma 2, there exists
a leaf t in T and interval I ⊆ T containing t such that h(T \ I) = k and T \ I is
a saturated tree poset. Our aim is to use induction to obtain a copy of T \ I in
F that can be extended to a copy of T . Finding a copy of T \ I is immediate,
but in order to be able to extend it, we need a copy satisfying some additional
properties, described later.

By passing to the opposite poset T ′ of T and considering F , we may assume
that t is a minimal element of T . There exists a maximal chain C in T that
contains I, and we have |C| = k as T is saturated. Then s := |C\I| = k− |I| ≥ 1.

We need several definitions. Let F1 ⊃ F2 ⊃ · · · ⊃ Fs be a chain with |Fj| =
i + k − j for j = 1, . . . , s. Then this chain is a bottleneck if there exists a
family S ⊂ F with |S | < |T | such that for every fat chain F1 ⊃ F2 ⊃ · · · ⊃
Fs ⊃ Fs+1 ⊃ · · · ⊃ Fk in L we have S ∩ {Fs+1, . . . , Fk} 6= ∅. Such an S is a
witness to the fact that F1, . . . , Fs is a bottleneck (and we assume all sets of
the witness are contained in Fs). We say that a fat chain is bad if its top s
sets form a bottleneck. A fat chain is good if it is not bad. Observe that if
there is a copy FT\I of T \ I consisting of sets of good fat chains, then we can
extend FT\I to a copy of T . Indeed, as the sets F ′1, . . . , F

′
s representing C \ I

in FT\I do not form a bottleneck and |FT\I| < |T |, there must be a good fat
chain F ′1 ⊃ · · · ⊃ F ′s ⊃ F ′s+1 ⊃ · · · ⊃ F ′k such that F ′s+1, . . . , F

′
k /∈ FT\I, therefore

FT\I∪ {F ′s+1, . . . , F ′k} is a copy of T . Therefore all we need to prove is that there
are enough good fat chains to obtain a copy of T \ I by induction.

Let us bound the number of bad fat chains. If |C ∩F | < s, then C cannot be
bad. We partition maximal chains in 2[n] according to their sth largest set Fs
from F . As the top s sets must form a bottleneck, there is a witness S to this
fact. This means that if C is bad, then C must meet S whose elements are all
contained in Fs. But as |S | < |T | and all sets of 2Fs ∩ F have size between n/4
and 3n/4, the proportion of those chains that do meet S is at most 4|T |/n
(any proper non-empty subset of FS is contained in at most 1/|Fs| proportion
of chains going through Fs). This holds independently of the choice of Fs, thus
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the number of bad fat chains is at most 4|T |
n n!. So the number of good fat

chains is at least

|L|− 4|T |

n
n! ≥

4(
(
|T |+1
2

)
− |T |)

n
n! =

4
(
|T |
2

)
n

n!.

As |T \ I| < |T |, the induction hypothesis implies the existence of a copy of T \ I
among the sets contained in good fat chains, as required. �

The next lemma essentially states that if a a T -free family is contained in the
union of k consecutive levels, then its cardinality is asymptotically at most the
cardinality of the k− 1 largest levels. Formally, let b(i) = bk,n(i) = max{

(
n
j

)
:

i ≤ j ≤ i+ k− 1}. So if i ≤ n/2− k+ 1, then b(i) =
(

n
i+k−1

)
, if i ≥ n/2, then

b(i) =
(
n
i

)
, while if n/2− k+ 1 < i < n/2, then b(i) =

(
n
bn/2c

)
.

Lemma 5 If T is a tree poset of height k, then there exists n0 such that for
n > n0, n/4 ≤ i ≤ 3n/4 − k any F ⊂

⋃i+k−1
j=i

([n]
j

)
of cardinality at least(

k− 1+ k4|T |2

n

)
b(i) contains a copy of T .

Proof. By Lemma 1 we may suppose that T is a saturated tree poset. Assume

F ⊆
⋃i+k−1
j=i

([n]
j

)
is a T -free family that contains at least

(
k− 1+ k4|T |2

n

)
b(i)

sets. Then F ⊆
⋃i+k−1
j=i

([n]
j

)
implies that λn(F) ≥ k− 1+ k4|T |2

n .

Let ε = 4k|T |2/n. Then we can apply Lemma 3 to find 4|T |2n!/n fat chains.
Then we can apply Lemma 4 with k = h(T) to obtain a copy of T in F ,
contradicting the T -free property of F . �

With Lemma 5 in hand, we can now prove Theorem 1. Let us consider a−→
T -free family F . Let T be the poset of

−→
T and let T∗ be the saturated poset

containing T with h(T) = h(T∗) = k - guaranteed by Lemma 1. For any integer
0 ≤ i ≤ n − k + 1, let Fi = {F ∈ F : i ≤ |F| ≤ i + k − 1}. Observe that the
−→
T -free property of F implies that Fi is T∗-free for every i. Note that every
F ∈ F belongs to exactly k families Fi unless |F| < k− 1 or |F| > n− k+ 1. It

is well-known that
∣∣∣( [n]
≤n/4

)
∪
( [n]
≥3n/4

)∣∣∣ = o ( 1n2n), therefore using Lemma 5 we

obtain

k|F |− o
(
1

n
2n
)
≤

3n/4∑
i=n/4

|Fi| ≤
(
k− 1+

k4|T |2

n

) 3n/4∑
i=n/4

b(i)

≤
(
k− 1+

k4|T |2

n

)(
2n + k

(
n

bn/2c

))
.
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After rearranging, we get |F | ≤
(
k−1
k + o(1)

)
2n.

2.2 Proof of Theorem 2

To prove the lower bound, we show a
−→
V2-free family in

−→
Qn of cardinality

2n−1 + 1. Simply take every second level in the hypercube starting from the
(n− 1)st level and also take the vertex corresponding to [n].

We prove the upper bound by induction on n (it is easy to see the base case
n = 2). We will need the following simple claim.

Lemma 6 Let F ⊂ 2[n] is a maximal
−→
V2-free family, then F contains the set

[n] and at least one set of size n− 1.

Proof.[Proof of lemma] First note that [n] can be added to any
−→
V2-free family

as there is only one subset of [n] of size n. Also, if F does not contain any set
of size n− 1, then one such set S can be added to F . Indeed, if we add S, no

copy of
−→
V2 having sets of size n − 1 and n will be created because [n] is the

only set of size n in F ∪ {S}. Furthermore, no copy of
−→
V2 having sets of size

n− 2 and n− 1 will be created as S is the only set of size n− 1 in F ∪ {S}. �
Now we are ready to prove Theorem 2. Let F ⊂ 2[n] be a

−→
V2-free family. For

some x ∈ [n], define

F−
x = {F | F ∈ F , x 6∈ F} and F+

x = {F\{x} | F ∈ F , x ∈ F}.

Then F−
x ,F+

x ⊂ 2[n]\{x} and they are also
−→
V2-free. By induction, we have

|F | = |F−
x |+ |F+

x | ≤ 2n−2 + 1+ 2n−2 + 1 = 2n−1 + 2.

Assume that |F | = 2n−1 + 2. Then |F−
x | = |F+

x | = 2n−2 + 1 must hold for
all x ∈ [n]. By Lemma 6, |F−

x | = 2n−2 + 1 implies that [n]\{x} and at least
one set of size n − 2 are in F . This holds for all x ∈ [n], so all sets of size
n− 1, and at least one set of size n− 2 are in F . However, these would form

a forbidden
−→
V2 in F , contradicting our original assumption on F . This proves

that |F | ≤ 2n−1 + 1.

2.3 Proof of Theorem 3

Let U be a set of vertices in Qn such that the subgraph of Qn induced by U

(i.e., Qn[U]) is
−→
Pk-free. Let F ⊂ 2[n] be a family of subsets corresponding to U.
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First, we will introduce a weight function. For every F ∈ F , let w(F) =
(
n
|F|

)
.

For a maximal chain C, let w(C) =
∑
F∈C∩F w(F) denote the weight of C. Let

Cn denote the set of all maximal chains in [n]. Then

1

n!

∑
C∈Cn

w(C) = 1

n!

∑
C∈Cn

∑
F∈C∩F

w(F) =
1

n!

∑
F∈F

|F|!(n− |F|)!w(F) = |F |.

This means that the average of the weights of the full chains equals the
cardinality of F . Thus, if we can find an upper bound that is valid for the
weight of any chain, then this will be an upper bound on |F | too.

Our assumption that there is no
−→
Pk means that there are no k neighboring

members of F in a chain. For a given chain C, let a1, a2, . . . at denote the sizes
of those elements of C that are not in F . Then 0 ≤ a1 < a2 < · · · < at ≤ n,
a1 ≤ k − 1, n − k + 1 ≤ at and ai+1 − ai ≤ k for all i = 1, 2, . . . t − 1. The
weight of the chain C is

w(C) = 2n −
t∑
i=1

(
n

ai

)
.

We claim that this is maximized when the numbers {a1, a2, . . . at} are all
the numbers between 0 and n which give the same residue when divided by k.

Assume that w(C) is maximized by a different kind of set {a1, a2, . . . at}.
Then there is an index i such that ai+1 − ai < k.

If ai ≤ n
2 then we can decrease the numbers {a1, a2, . . . ai} by 1. (If a1

becomes -1 then we simply remove that number.) The resulting set of numbers
will still satisfy the conditions and w(C) increases. Otherwise, ai+1 >

n
2 must

hold. Similarly, we can increase the numbers {ai+1, ai+2, . . . an} by 1 to achieve
the same result. We proved that

w(C) ≤ 2n − min
j∈[k]

∑
i≡j mod k

(
n

i

)
= max

j∈[k]

 ∑
i6≡j mod k

(
n

i

)
holds for any full chain C. Therefore the same upper bound holds for |F | as
well.
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