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Abstract

Some recent results on a general summability method, on the so-called
f-summability is summarized. New spaces, such as Wiener amalgams, Fe-
ichtinger’s algebra and modulation spaces are investigated in summability
theory. Sufficient and necessary conditions are given for the norm and a.e.
convergence of the #-means.
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1. Introduction

In this paper we consider a general method of summation, the so called 6-
summation, which is generated by a single function #. A natural choice of 8 is a
function from the Wiener algebra W (C, ¢1)(R?). All concrete summability methods
investigated in the literature satisfy this condition.

We shall investigate some function spaces known from other topics of analysis,
for example Wiener amalgam spaces, Feichtinger’s Segal algebra Sy(R?), mod-
ulation and Herz spaces. Feichtinger‘s algebra and modulation spaces are very
intensively investigated in Gabor analysis (see e.g. Feichtinger and Zimmermann
[6] and Grochenig [13]). Sg(R?) is the minimal (non-trivial) Banach space which
is isometrically invariant under translation, modulation and Fourier transform.

*This research was supported by Lise Meitner fellowship No M733-N04 and the Hungarian
Scientific Research Funds (OTKA) No T043769, T047128, T047132.
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168 F. Weisz

In Sections 4 and 5 we deal with norm convergence of the #-means of multi-
dimensional Fourier series and Fourier transforms. We will show that if # is in the
Wiener algebra then the §-means of f of the Fourier series of f € Lo(T¢) converge
to f in Ly norm as n — oo. Moreover, o2 f — f uniformly (resp. at each point)
for all f € C(T?) if and only if 0¥ f — f in Ly norm for all f € L;(T%) if and only
if € Li(RY). If B is a homogeneous Banach space on T¢ and § € L;(R%) then
o%f — fin B norm for all f € B. If § is continuous and has compact support then
the uniform convergence of the f-means is equivalent to the L; norm convergence
of the f-means and this is equivalent to the condition § € So(R?). In all cases we
investigate convergence over the diagonal.

In Sections 7 and 8 the a.e. convergence of the #-means is considered. We
show that 6 is in the homogeneous Herz space Eq (R9) for some 1 < ¢ < oo if and
only if the maximal operator of the #-means of the Fourier transform of f can be
estimated by the modified Hardy-Littlewood maximal function M, f, where p is the
dual index to g. Since M, is of weak type (p,p) we obtain o f — f a.e. as T — oo
for all f € L.(R%), p < r < co. Under the condition § € E,(R?) this convergence
holds also for functions from the Wiener amalgam space W (L,, £ )(R?). The set of
convergence is also characterized, the convergence holds at every p-Lebesgue point
of f. The converse holds also, more exactly, o5 f(z) — f(x) at each p-Lebesgue
point of f € L,(R?) (resp. of f € W(Lyp, o) (R?)) if and only if ) e E (RY).

In Sections 6 and 9 we give some sufficient conditions for 6 such that 6
Li(R%), or § € So(RY) or 6 € E,(R%). More exactly, if 6 is in a suitable Besov,
Sobolev, fractional Sobolev, weighted Wiener amalgam or modulation space then
all convergence results above hold.

Most of the proofs of the results of this survey paper can be found in Feichtinger
and Weisz [5, 4]. This paper was the base of my talk given at the Fejér-Riesz
Conference, June 2005, in Eger (Hungary).

2. Wiener amalgams and Feichtinger’s algebra

Let us fix d > 1, d € N. For a set Y # () let Y? be its Cartesian product
Y x ... x Y taken with itself d-times. We shall prove results for R? or T¢, therefore
it is convenient to use sometimes the symbol X for either R or T, where T is the

torus. For x = (z1,...,74) € R and u = (uy, ..., uq) € R set
d d 1/p
wewi=Y wan, ally= (Y lwl?) el = Jall.
k=1 k=1

We briefly write L, or L,(X?) instead of L,(X%,\) space equipped with the
norm (or quasi-norm) ||f|, == (fya |f[PdN)/? (0 < p < 00), where X = R or T
and A is the Lebesgue measure. We use the notation |I| for the Lebesgue measure
of the set I.
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The weak L, space, Ly oo(X?) (0 < p < 00) consists of all measurable functions
f for which

£l = sup pA(Lf] > p)'/P < oo,
p>0

while we set Loo 0o (X?) = Loo(X?). Note that L, »(X?) is a quasi-normed space
(see Bergh and Lofstrom [1]). It is easy to see that for each 0 < p < o0,

Lp(X?) C Lpoo(XT)  and |||z, < I+ [lp.

The space of continuous functions with the supremum norm is denoted by C/(X%)
and we will use Co(R?) for the space of continuous functions vanishing at infinity.
C.(R?) denotes the space of continuous functions having compact support.

A measurable function f belongs to the Wiener amalgam space W (L, KZS)(Rd)
(1<pg<oo)if

1/q
1w, e = (D0 IFC+ R o avs®)?) < o0

kezd

with the obvious modification for ¢ = oo, where the weight function v, is defined
by vs(w) := (1 + |w|)® (w € RY). If s = 0 then we write simply W (L,,£,)(R?).
W (L,,co)(R?) is defined analogously, where ¢y denotes the space of sequences of
complex numbers having 0 limit, equipped with the supremum norm. If we replace
the space L,[0,1)¢ by L, ~[0,1)% then we get the definition of W (Ly, o0, £4)(RY).
The closed subspace of W (Luo, £4)(R?) containing continuous functions is denoted
by W(C,£,)(R%) (1 < ¢ < o). The space W (C, £1)(R?) is called Wiener algebra. It
is used quite often in Gabor analysis, because it provides a convenient and general
class of windows (see e.g. Walnut [33] and Grochenig [12]). As we can see later, it
plays an important rule in summability theory, too.
It is easy to see that W (L,,£,)(R%) = L,(R¢) and

W (Lo, 01)(RY) € L,(RY) € W(L1,400)(R?) (1< p<o0).

For more about amalgam spaces see e.g. Heil [14].
Translation and modulation of a function f are defined, respectively, by

T.f(t):= f(t—2) and M,f(t):= 2™ f(t) (z,w € RY).

Recall that the Fourier transform and the short-time Fourier transform (STFT)
with respect to a window function g are defined by

Ff(x):=f(x):= [ ftle ™= dt (v eR%1=+/-1)
Rd
and

S, f(a,w) = /R FOFE D)2t dt = (f, MuTog) (w0 € RY),
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respectively, whenever the integrals do exist.
Feichtinger’s algebra So(R?) and the modulation spaces M (R?) (see e.g. Feich-
tinger [7] and Grochenig [13]) are intoduced by

My (R = {7 € PR < [fllasze = IS00  valliageeny <00} (52 0),

where go(z) := e~ 717" is the Gauss function and v,(z,w) 1= (1+ |w|)® (z,w € RY).
In case s = 0 we write So(R?) := M;(R?).

It is known that So(R?) is isometrically invariant under translation, modula-
tion and Fourier transform. Actually, S is the minimal space having this property
(see Feichtinger [7]). Moreover, the embeddings S(R?) — M;*(R9) (s > 0) and
So(R?) < W(C,¢1)(RY) are dense and continuous (see e.g. Feichtinger and Zim-
mermann [6] and Grochenig [13]), where S denotes the Schwartz functions.

A Banach space B consisting of Lebesgue measurable functions on X% is called
a homogeneous Banach space, if

(i) forall f € Band x € X4, T,.f € B and ||T..f||5 = || fl B,
(ii) the function z — T, f from X% to B is continuous for all f € B,

(iii) the functions in B are uniformly locally integrable, i.e. for every compact
set K C X% there exists a constant Cx such that

/K SlA<Cklfls  (f€B).

If furthermore B is a dense subspace of L;(X?) it is called a Segal algebra (cf.
Reiter [20]). Note that the continuous embedding into L;(X?) is a consequence
of the closed graph theorem. For an introduction to homogeneous Banach spaces
see Katznelson [16] or Shapiro [24]. It is easy to see that the spaces L,(X%) (1 <
p < 00), C(T%), Co(R?), Lorentz spaces L, (X% (1 < p < 00,1 < ¢ < 00),
Hardy spaces H;(X?) (for the definitions see e.g. Weisz [37]), Wiener amalgams
W(Ly, £)(R) (1< pug < 0), W(Lys co)(RY) (1 < p < o0), W(C, £,)(RY) (1 < q <
o0) and Sg(R?) are homogeneous Banach spaces. Note that if B is a homogeneous
Banach space on R? then B — W (L1, l)(R?) (see Katznelson [16]).

3. f-summability of Fourier series

The #-summation was considered in a great number of papers and books, such
as Butzer and Nessel [3], Trigub and Belinsky [32], Bokor, Schipp, Szili and Vértesi
[22, 2, 23, 28, 29], Natanson and Zuk [18], Weisz [35, 36, 37, 38] and Feichtinger
and Weisz [5, 4]. We assume that the function 6 is from the Wiener algebra
W (C,¢1)(R?). We have seen in Feichtinger and Weisz [5, 4] that this is a natural
choice of 6 and all summability methods considered in Butzer and Nessel [3] and
Weisz [37] satisfy this condition.
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Recall that for a distribution f € &'(T?) the nth Fourier coefficient is defined
by f(n) := f(e=2™"2) (n € Z9). In special case, if f € L1(T?) then

ftn)y= [ fye ™tdat  (nez?).
Td

Given a function § € W(C, £1)(R?) the 6-means of a distribution f are defined by

§j }j o Y fem = [ e K@ dr,

n+1 ng+1 Td

where z € T4, n € N? and the 0-kernels K¢ are given by

d 0o
—k1 —kq 2mak-t d
T teT?).
Z :z: (nl—i—l’ 7nd—f—l)e (t€T)

j=1 kj —
Under Z‘;:l >k ——oo We mean the sum 770 ... 370 . Tt is easy to see
that
d S k d
d )‘ < Z(H(n—i—l)) sup |6
>N e ., < j p [0(z+1)
P —— ny + 1 ng + 1 lezd =1 z€[0,1)¢

d
(TLts + 1) lolwc.en) < o,

J=1

and hence K¢ € L;(T%). We will always suppose that #(0) = 1
Now we present some well known one-dimensional summability methods as

special cases of the #-summation. For more examples see Feichtinger and Weisz
[5, 4].

Example 3.1 (Fejér summation). Let

— i < <
9@%—{1 2| i 0< || <1

0 if |z| > 1,

0 | | £ 2mk T
= 1-—
onf@) =D (1= =) f(k)e
Example 3.2 (Riesz summation). Let

9@y_{“—wmaifﬂ<1

0 if |z| > 1,

for some 0 < a,y < co. The Riesz operators are given by

ﬂf“>:k§2ﬁﬁln+1 ) F(kye2mibe.
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Example 3.3 (Weierstrass summation). Let

0(z) = e l2I" (0 <y < ),

o0

O f(a)i= 3 e f(yermie,

k=—oc0
The most known form of the Weierstrass means are

oo

Wif(@) = Y 7 fk)er™r e (0<r<).

k=—o0
Example 3.4 (Generalized Picar and Bessel summations). Let

1

0(z) = ——F7—
W= T e
for some 0 < «,y < 0o such that ay > 1. The 6-means are given by

00 1 R
e [P
e (14 ()

Example 3.5 (de La Vallée-Poussin summation). Let

ob f(x) =

1 if0 <z <1/2
fz)=¢2x+2 ifl/2<z<]1,
0 ifz>1.

Example 3.6. Let 0 = ap < a1 < ... < au, and By, ..., B, (m € N) be real
numbers, Gy =1, 3, = 0. Suppose that 6(a;) =3; ( =0,1,...,m), 6(z) =0 for
Z = Qun, 0 is a polynomial on the interval [o;_1,04] (j =1,...,m).

4. Norm Convergence of the f-means of Fourier se-
ries
In this section we collect some results about the norm convergence of o f as

n — oo. The proofs of the theorems can be found in Feichtinger and Weisz [5].
Note that x denotes the vector (z,...,z) € R? (x € R).

Theorem 4.1. If 6 € W(C,£,)(R?) and 6(0) = 1 then for all f € Ly(T?)
lim o0 f =f in Lo(T4) norm.

If the Fourier transform of 6 is integrable then the #-means can be written as a
singular integral of f and the Fourier transform of # in the following way.
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Theorem 4.2. If 6 € W(C,£,)(R?) and 0 € Ly(R?) then

ol f(x) = (n+1)¢ . flz—1t)0((n+1)t)dt

for allz € T n € N and f € L1(T%).

For the uniform and L; norm convergence of o f — f a sufficient and necessary
condition can be given.

Theorem 4.3. If 6 € W(C,¢;)(R?) and 6(0) = 1 then the following conditions
are equivalent:
(i) 0 € Ly(R%),
(ii) obf — f uniformly for all f € C(T%) as n — oo,
(iii) o f(x) — f(x) for all z € T? and f € C(T?) as n — oo,
(iv) ol f — f in Li(T%) norm for all f € Ly(T) as n — oco.

One part of the preceding result is generalized for homogeneous Banach spaces.

Theorem 4.4. Assume that B is a homogeneous Banach space on T¢. If 6 €
W(C,£1)(R?), 6(0) =1 and 6 € Ly (R?) then for all f € B

lim cfﬁf =f i B norm.
n—oo

Since 0 € So(R%) implies 6 € W (C, £,)(R?) and 6 € So(R%) C L; (R?), the next
corollary follows from Theorems 4.3 and 4.4.

Corollary 4.5. If 0 € So(R?) and 6(0) = 1 then

(i) 0% f — f uniformly for all f € C(T%) as n — oo,
(ii) ol f — f in Li(T?) norm for all f € L1(T9) as n — oo,
(i) ol f — f in B norm for all f € B as n — oo if B is a homogeneous

Banach space.

If 6 has compact support then 6 € So(R?) is equivalent to the conditions 0,0 c
L1 (RY) (see Feichtinger and Zimmermann [6]). This implies

Corollary 4.6. If € C(R?) has compact support and 6(0) = 1 then the following
conditions are equivalent:
(i) 8 € So(R?),
(ii) obf — f uniformly for all f € C(T%) as n — oo,
(iii) ol f(x) — f(z) for all x € T¢ and f € C(T?) as n — oo,
(iv) o8 f — f in L1 (T9) norm for all f € Li(T?) as n — oc.
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5. Norm convergence of the #-means of Fourier
transforms

All the results above can be shown for non-periodic functions f € L,(R?).
Suppose first that f € Lp(Rd) for some 1 < p < 2. The Fourier inversion formula

f@)= | Jwem™  du  (zeR)
Rd

holds if f € Ly (R%).

In the investigation of Fourier transforms we can take a larger space than
W(C, £)(R?), we will assume that 0 € L;(R?) N Cy(R?). The #-means of f €
L,(R%) (1 < p < 2) are defined by

0 - _tl _td £ TL - _ 0
ol f () = /Rdé)(Tl,...,Td)f(t)eQ tdt = [ fa = 0K dr

where z € R, T € Ri and

d
—1 —laq Tix- 2
Kje—*(.r):\/RdQ(Tl,,Td)ez tdt: (HTj)O(Tlxl,...,ded),

(r € R%). Thus the f-means can rewritten as
d ~
ol f(z) = (H Tj) /d Flz — 0(Tuty, ..., Taty) dt (5.1)
j=1 R

which is the analogue to Theorem 4.2. Note that § € L;(R%) N Cy(R?) implies
0 € L,(R?) (1 < p < o00). Now we formulate Theorem 4.1 for Fourier transforms.

Theorem 5.1. If 6 € L1(R%) N Cy(RY) and 6(0) = 1 then for all f € Ly(R?)
Tlim ohf=f in Ly(RY) norm.
Since 0% is defined only for f € L,(R?) (1 < p < 2), instead of Theorem 4.3 we
have

Theorem 5.2. If 0 € Li(R?) N Co(RY) and 6(0) = 1 then the following conditions
are equivalent:

(i) 6 € L1(R?),
(ii) off — f in L1(R?) norm for all f € L1(RY) as T — oc.

If 0 has compact support then 6 € So(RY) is also an equivalent condition.
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If € L (R%), the definition of the f-means extends to f € W (L, s )(R%) by
o f = fxKY (T € R),

where % denotes the convolution. Note that § € Li(R%) and § € L;(R%) imply
6 € Cy(R9).
The analogue of Theorem 4.4 follows in the same way:

Theorem 5.3. Assume that B is a homogeneous Banach space on R, If0 €
Li(RY), 0(0) =1 and 6 € L1 (RY) (e.g. 6 € So(R?)) then for all f € B

lim (f%f =f in B norm.
T—o0

Since the space C,(R?) of uniformly continuous bounded functions endowed
with the supremum norm is also a homogeneous Banach space, we have

Corollary 5.4. If f is a uniformly continuous and bounded function, 6 € Li(R9),
6(0) =1 and 6 € L1 (R?) then

lim a?[.f =f uniformly.
T—o0

6. Sufficient conditions

In this section we give some sufficient conditions for a function 6, which ensures
that 0 € Ly(R%), resp. 6 € So(R%). As mentioned before 6 € So(R?) implies also
that 6 € Ly (R?). Recall that So(R?) contains all Schwartz functions. If § € Li(R%)
and 6 has compact support or if 8 € L1 (R%) has compact support and 6 c L1 (RY)
then 6 € So(R?).

Sufficient conditions can be given with the help of Sobolev, fractional Sobolev
and Besov spaces, too. For a detailed description of these spaces see Triebel [31],
Runst and Sickel [21], Stein [26] and Grafakos [11].

A function 0 € L,(R?) is in the Sobolev space W}F(R?) (1 < p < oo,k € N) if
D*§ € L,(R?) for all |a| < k and

16llws = > ID6ll, < oo,

lal<k

where D denotes the distributional derivative.

This definition is extended to every real s in the following way. The fractional
Sobolev space L3(R?) (1 < p < oo,s € R) consists of all tempered distribution ¢
for which

16

= F A+ P20l < oo

It is known that C;(Rd) = Wf (RY) if s =k € Nand 1 < p < co with equivalent
norms.
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In order to define the Besov spaces take a non-negative Schwartz function ¢ €
S(R) with support [1/2,2] which satisfies > po _ ¥(27%s) =1 for all s € R\ {0}.
For z € RY let

Gr(x) =02 Fz) for k>1 and go(z)=1-) ¢p(x).
k=1

The Besov space B;T,(Rd) (0 < p,r < 00,8 € R) is the space of all tempered
distributions f for which

o = (2 00+ £1) < oo

k=0

/]

The Sobolev, fractional Sobolev and Besov spaces are all quasi Banach spaces and
if 1 < p,r < oo then they are Banach spaces. All these spaces contain the Schwartz
functions. The following facts are known: in case 1 < p,r < co one has

W:@(Rd%B;,r(Rd) < L,(RY) if s>0,meN,
Wy (RY) < By (RY) — W' RY) i m<s<m+1,

Bs (RY) < B, (RY), BstE(RY) — Bs (R?) if €>0,

Bd/Pl (Rd) AN Bd/p2(Rd) AN C(Rd) it 1< p1 < pa < o0

p1,1 p2,1
Theorem 6.1.

d

(i) If1<p<2andfc Bpflp(Rd) then 6 € Ly(RY) and

16]]: < CHQHBgﬁ»

(ii) If s > d then L5(R?) — Sy (R9).
(111) If d' denotes the smallest even integer which is larger than d and s > d’
then /
B o (RY) = Wi (R?) — So(RY).

The embedding WZ(R) — So(R) follows from (iii). With the help of the usual
derivative we give another useful sufficient condition for a function to be in So(R?).

A function 6 is in VF¥(R) (k > 2,k € N), if there are numbers —0o = ag < a; <
... < ap < apg1 = oo such that n = n() is depending on 6 and

0 e C*2(R), 0e C*ai airr), 09 e Li(R)

foralli =0,...,nandj = 0,..., k. Here C* denotes the set of k-times continuously
differentiable functions. The norm of this space is introduced by

k n
00l = D2 109 + 3 104 + 0) — 04D, —0)
7=0 =1
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where §(*~1) (a; +0) denote the right and left limits of #*~1). These limits do exist
and are finite because 0%) € C(a;,a;11) N Li(R) implies

g1 (z) = pk=1) g / o) (1)

for some a € (a;,a;4+1). Since k=1 ¢ L;(R) we establish that lim_ gE=1) —
lim, 0%~ = 0. Similarly, 89) € Cy(R) for j =0,...,k — 2.

Of course, W2(R) and V2(R) are not identical. For § € V2(R) we have ' = D0,
however, 0" = D?§ only if lim,, 100" = lim,, o6 (i =1,...,n).

We generalize the previous definition for the d-dimensional case as follows. For
d>1and k > 2 let § € VF(R?) if 0 is even in each variable and

6 C*2RY), 600,000\ {(0,...,0)}), "9 6(t) € Li([0,00)")
for each ij =0,...,k(j=1,...,d) and fixed 0 < tp;,...,tm,_, <00 (1 <my <
mo < - <mdl d)andl 1 <d.

Theorem 6.2. If § € VZ(RY) then 6 € So(R?).

The next Corollary follows from the definition of So(R?).

Corollary 6.3. If each 0; € VZ(R) (j = 1,...,d) then 6 := H?Zl 0; € So(R?).

7. A.e. convergence of the /-means of Fourier trans-
forms

For the a.e. convergence we will investigate first Fourier transforms rather than
Fourier series, because the theorems for Fourier transforms are more complicated.
The proofs of the results can be found in Feichtinger and Weisz [4].

Léoc(Xd) (1 < p < o) denotes the space of measurable functions f for which
|f|P is locally integrable, resp. f is locally bounded if p = co. For 1 < p € o0
and f € Lﬁ;’c(Xd) let us define a generalization of the Hardy-Littlewood mazimal
function by

Myfa) = sup (o= [ 157 ax)’ P wexy

with the usual modification for p = co, where the supremum is taken over all cubes
with sides parallel to the axes. If p = 1, this is the usual Hardy-Littlewood maximal
function. The following inequalities follow easily from the case p = 1, which can
be found in Stein [27] or Weisz [37]:

IMpfllz,... <Cpllfll,  (f € Lp(X9) (7.1)

and
HMprr < CTHer (f € LT(Xd),p <1< OO) (7-2>
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The first inequality holds also if p = co.
The space Eq(R?) contains all functions f € LX¢(R%) for which

1z, = Y 259 f1p ] < oo,

k=—o00

where Py, := {271 < |z| < 2%}, (k € Z). These spaces are special cases of the
Herz spaces [15] (see also Garcia-Cuerva and Herrero [9]). The non-homogeneous
version of the space Eq(Rd) was used by Feichtinger [8] to prove some Tauberian
theorems. It is easy to see that

Li(RY) = E1(RY) «— F,(RY) «— By (RY) «— B (RY), 1<q¢<q <o

To prove pointwise convergence of the -means we will investigate the mazimal
operator

ofyf = sup oqf|.
T>0
If 0 € Ly (RY) then (5.1) implies

lotaflloo < I0ILIIf oo (f € Loo(RY)).

In the one-dimensional case Torchinsky [30] proved that if there exists an even
function n such that 7 is non-increasing on R, \é\ <mn,n € L; then O'I% is of weak
type (1,1) and a.e. convergence holds. Under similar conditions we will generalize
this result for the multi-dimensional setting. First we introduce an equivalent
condition.

Theorem 7.1. For§ € Li(R?) let n(x) := SUP 4|, > || 10(t)| for some 1 < r < o0.
Then 0 € Eo(R%) if and only if n € L1(RY) and

C Ml < 1191, < Clinlh.

Theorem 7.2. Let 0 € Ly (R?), 1 < p < oo and 1/p+1/q=1. If 0 € E,(RY) then
ot Iy < Colldll g, IF 1

for all f € L,(RY). Moreover, for every p <r < oo,

lobsfllr < Collbll, lIF Il (f € Lo(R)).

The proof of this theorem follows from the pointwise inequality
oty f(x) < C|10] g, My f () (7.3)

and from (7.1) and (7.2). Inequality (7.3) is proved in Feichtinger and Weisz [4].
Theorem 7.2 and the usual density argument due to Marcinkiewicz and Zyg-
mund [17] imply
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Corollary 7.3. If6 € L;(R%), 0(0) =1,1 < p< oo, 1/p+1/g=1andf € E,(R%)
then
Jim oxf=f ae

if f € L.(R?) forp <r < oo or f € Cy(RY).

Note that F,(R?) O F,(R?) whenever ¢ < ¢'. If 0 is in a smaller space (say
in F,(R%)) then we get convergence for a wider class of functions (namely for
feL.(RY 1<r<o0).

In order to generalize the last theorem and corollary for the larger space
W(L1,05)(R?), we have to define the local Hardy-Littlewood mazimal function
by

1 1/p
myf(z):= sup (5— fIP dX z €RY),
0= 28, (B oy ) @S

where f € LI*(R?), 1 < p < oo and B(x,r) denotes the ball with center z and
radius r. It is easy to see that inequalities (7.1) and (7.2) imply

1m0y Fllw Ly o) < Coll Fllw ey (F € W(Lp, £5)(RY)) (7.4)

and
Impfllw ey < Cellflww,ey — (f € W(Le, £s)(RY)) (7.5)

for all p < r < oo and 1 < s < 0o. Recall that

sup sup p A(|f| > p, [k, k + 1))"/7.

1w (Lo te) =
kezd p>0

Theorem 7.4. Let§ € Li(RY), 1 <p<ooand 1/p+1/q=1. If 6 € E,(R?) then

||0|%f||W(Lp,w,ew) < Cp||éHEq||f||W(Lp7Zoo)
for all f € W(Ly, ) (R?). Moreover, for every p < r < oo,
oty f Iwzrew) < Crllbll, 1 Iw(r, ey (F € W(Lp, £oo)(RY)).
It is easy to see that
My f <Cmypf + Cpllfllw(z,,en) (1<p<o0).
The proof of Theorem 7.4 follows from (7.3)—(7.5).

Corollary 7.5. If6 € L;(R%), 0(0) =1,1 < p < oo, 1/p+1/g=1andf € E,(R%)
then
Jim onf=1f ae

if f € W(Ly, co)(RY).
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Note that W (L,, co)(R?) contains all W (L, cp)(R?) spaces for p < 7 < oc.
We can characterize the set of convergence in the following way. Lebesgue
differentiation theorem says that

;IJLIBBom/Oh) @+ u)du = f(z)

for a.e. ¥ € X4, where f € L**(X?), X =T or X = R. A point z € X% is called a
p-Lebesgue point (or a Lebesgue point of order p) of f € Lé"c(Xd) if

. 1 N
%%(W/B(%)If(ﬁw—f(w) dU) =0 (1<p<o)

resp.
lim  sup [f(z+u)—f(z)[]=0  (p=o0).
h—=0 e B(0,h)
Usually the 1-Lebesgue points, called simply Lebesgue points are considered (cf.
Stein and Weiss [25] or Butzer and Nessel [3]). One can show that almost every
point x € X? is a p-Lebesgue point of f € Lé"c(Xd) if 1 < p < 00, which means that
almost every point € R? is a p-Lebesgue point of f € W (L,, s )(R?). x € X? is
an oo-Lebesgue point of f € L!2¢(X?) if and only if f is continuous at z. Moreover,
all r-Lebesgue points are p-Lebesgue points, whenever p < r.

Stein and Weiss [25, p. 13] (see also Butzer and Nessel [3, pp. 132-134]) proved
that if n(z) = supp> | 0(t)| and 1 € Li(R%) then one has convergence at each
Lebesgue point of f € L,(R?) (1 < p < 00). Using the E, spaces we generalize this
result.

Theorem 7.6. Let § € Li(R%), 6(0) =1, 1 < p < oo and 1/p+1/q = 1. If
0 € E,(R?) then

lim ot f(2) = f(x)
for all p-Lebesgue points of f € W(Ly, lso)(RY).

Note that W(Li,{x)(R?) contains all L,(RY) spaces and amalgam spaces
W (L,, £;)(R?) for the full range 1 < p,q < oo.

If f is continuous at a point z then z is a p-Lebesgue point of f for every
I1<p<oo.

Corollary 7.7. Let 0 € Li(R?), 0(0) =1, 1 < p< oo and I/p+1/qg=1. If
0 € E,(R?) and f € W(Ly,{)(R?) is continuous at a point x then

Jim ohf (@) = f(2)

Recall that F; (R?) = L1(R%) and W (Lo, £oo ) (R?) = Lo (RY). If f is uniformly
continuous then we have uniform convergence (see Corollary 5.4).

Let us consider converse-type problems. The partial converse of Theorem 7.2
is given in the next result.
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Theorem 7.8. Let 0 € L1(R%), € L1(RY), 1 <p<oo and 1/p+1/q=1. If
oty f(x) < CM, f(x) (7.6)
for all f € Ly,(R?) and x € R? then § € E (RY).

The converse of Theorem 7.6 reads as follows.

Theorem 7.9. Suppose that 6 € Li(RY), 6(0) = 1, 0 e Li(RY), 1 < p < oo and
1/p+1/q=1.If
Jim opf(z) = f(z) (7.7)

for all p-Lebesgue points of f € L,(R?) then e E,(RY).

Corollary 7.10. Suppose that 0 € Li(R?), (0) =1, 6 € Ly (R%), 1 < p < oo and
1/p+1/q=1. Then

Jim o f(z) = f(x)

for all p-Lebesgue points of f € L,(RY) (resp. of f € W(Ly, ) (R?)) if and only
if 6 € B, (RY).

If we take the supremum in the maximal f-operator over a cone, say over {T €
Ri (27T LT/T; < 2754,5 =1, ..., d} for some fixed 7 > 0:

0 6
ocf:= sup  lopfl,
27T LT, /T <27
ij=1,...,d

then all the results above can be shown for ¢?. In this case, under the conditions
above we obtain the convergence a%f — fae asT —ooand 277 < T;/T; < 27
(i, = 1,...,d). This convergence has been investigated in a great number of
papers (e.g. in Marcinkiewicz and Zygmund [17], Zygmund [39], Weisz [34, 36, 37]).
For more details see Feichtinger and Weisz [4]. The unrestricted convergence of
U%f, i.e. as Tj — oo for each j =1,...,d, is also investigated in that paper.

8. A.e. convergence of the #-means of Fourier series

All the results of Section 7 holds also for Fourier series. In this case we define
the mazimal operator of the #-means by

a,%f = sup |af1f|.
neN

Similarly to Theorem 7.4 we have



182 F. Weisz

Theorem 8.1. Let 6 € W(C,(1)(R?), 1 < p < oo and 1/p+1/q = 1. If 6 €
E,(R%) then

lotsf Iz, < Collfll, 1f 1o

for all f € L,(T?). Moreover, for every p < r < oo,

lo&flle < Collfllg, IFl- (F € Ln(TY)).
The analogue of Theorems 7.6, 7.9 and Corollary 7.10 reads as follows.

Theorem 8.2. Let € W(C,01)(R?), 6(0) = 1, 6 € Li(RY), 1 < p < 0o and
1/p+1/q=1. Then

lim oy f(2) = f(2)

n—oo

for all p-Lebesgue points of f € L,(T?) if and only iff e E’q(Rd).

Corollary 8.3. Let € Li(R?), 0(0) =1, 1 < p< oo and I/p+1/qg=1. If
0 € E,(R?) and f € L,(T?) is continuous at a point v € T then

lim oy f(2) = f(2).

n—00

9. Besov, modulation and Sobolev spaces

The next theorem was proved in Herz [15], Peetre [19] and Girardi and Weis [10].

Theorem 9.1. If 1 <p <2, 1/p+1/g=1and 0 € B;l’/lp(]Rd) then 6 € E, (R
and
16115, < Colol e

Theorem 9.1 implies the following result.

Corollary 9.2. If§ € L;(R%) N Bgflp(Rd) for some 1 < p <2 and 0(0) =1 then
Theorems 7.2, 7.4, 7.6 and Corollaries 7.3, 7.5 and 7.7 hold.

For the connection between the Eq (R?) and amalgam spaces we have proved
the following result.

Theorem 9.3. If f € W(L,, 0,*")(RY) for some 1 < q < 00, 1/p+1/q=1 then
f € E,(R?) and
175, < Calflyqg, oy

Corollary 9.4. Let € Li(R?), 0(0) =1, 1 < p< oo and I/p+1/qg=1. If
0 € W(Lg, 0,"")(R?) then Theorems 7.2, 7.4, 7.6 and Corollaries 7.3, 7.5 and 7.7
hold.
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In particular, if ¢ = oo then we get the condition § € W (C,£%)(R%). Note
that if § € L;(R?) and 6 has compact support then Corollary 9.4 holds. Actually
6 € Sp(R?) in this case (see e.g. Feichtinger and Zimmerman [6]).

If 6 is in a suitable modulation space then the #-means converge a.e. to f.
Indeed, using Theorem 9.3 we can show that 6 € W (Leo, £99)(RY) C Eoo(RY) if
0 € M{*(R%) and

CH16]| 5. < ||é||W(Loo7z‘1’d) < Ol pgpa-
Theorem 9.5. If 6 € M*(RY) and 6(0) = 1 then
Jim 0% f(2) = f(2)
for all Lebesgue points of f € W (L1, lso)(R?). Moreover,

su]gM(U% > p) OOl fll - (f € Li(RY)),

p>

B W (Lr o) S ClOalfllwiss ey (F € W(L1,loo)(R))

and, for every 1 < p < oo,

lotsfllp < CollOllarpallfll,— (f € Lp(R),

o flw Ly by < CopllOllara I Wiz, ey (f € W(Lp, Loo) (RY)).

Similarly to Theorem 6.2 we give sufficient conditions for 6 to be in the modu-
lation space § € M} (R?).

Theorem 9.6. If § € VFE(R?) (k > 2) then § € M} (R?) for all0 < s <k —1.

Corollary 9.7. If each 0; € VF[R) (k > 2,j = 1,...,d) then 0 := H;l:l 0; €
M7 (R?) for all0 < s <k —1.

VZ2(R) is not contained in M;* (R), however, the same results hold as in Theorem
9.5.

Corollary 9.8. If 0 € V2(R) then 6 € Eo(R) and Theorem 9.5 hold.
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