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Abstract

In this paper, the algebraic construction of quadrature formulas for weigh-
ted periodic integrals is revised. For this purpose, two classical papers ([10]
and [14]) in the literature are revisited and certain relations and connections
are brought to light. In this respect, the concepts of “bi-orthogonality” and
“para-orthogonality” are shown to play a fundamental role.
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1. Introduction

Let the integral I,,(f) = [; f(2)du(z) be given with T' a certain curve in the
complex plane and du a positive measure on I'. By an n-point quadrature rule
for this integral we mean an expression like I,(f) = Z;-lzl A f(z;) with zj # 2z
if j # k and {z;}7_; C I so that the weights or coefficients {A;}7_; and nodes
{#;}}—1 are to be determined by imposing that I,,(f) exactly integrates i.e. I,,(f)
coincides with I,,(f) for as many basis functions as possible in an appropriate func-
tion space S where the above integral exists. Two situations have been most widely
considered in the literature. Namely, on the one hand, the case when I' coincides
with a subinterval of the real line, that is, I' = [a,b], —00 < a < b < o0 and on
the other hand when T" is the unit circle, ie. T =T ={z € C : |z| =1}. Ob-
serve that the second case is equivalent to dealing with real integrals of the form
ffﬂ f(0)du(0), f being a 2m-periodic function (here by a slight abuse of notation
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we write f(z) = f(0), du(z) = du(f) for z = €%). As for the first case, it is well
known that the construction of quadrature formulas to approximate integrals like
fab f(x)du(x) represents an interesting research topic which has been exhaustively
considered in the last decades and where orthogonal polynomials find one of their
most direct and natural applications. Indeed, if {Q}72, denotes the sequence
of orthonormal polynomials for the measure p, then I,,(f) = >°7_; A; f(z;) with

{z;}7_, the zeros of Qn(z) and \; = (35— Q7 (xj))_l for j = 1,...,n (Christoffel

numbers) satisfies I,,(P) = f;} P(z)du(x) for any polynomial P of degree 2n — 1.
In this case, {I,,(f) : n=1,2,...} represent the well known sequence of Gaussian
or Gauss—Christoffel quadrature formulas (see e.g. [8] for a survey). On the other
hand, although quadratures on the unit circle and other related topics such as Szegd
polynomials and the trigonometric moment problem have been receiving much re-
cent attention because of their applications in rapidly growing fields of pure and
applied mathematics (Digital Signal Processing, Operator Theory, Probability The-
ory, ...), there do not exist so many results about quadratures on the unit circle
as in the real case. In this respect, the main aim of this paper is to emphasize
the role played by certain sequences of orthogonal trigonometric polynomials in-
troduced by Szegd [14] in the construction of quadrature rules on the unit circle by
carrying out a comparision with the approach given by Jones et. al in [10]. In both
approaches, a fundamental tool will be the so-called Szegd polynomials or polyno-
mials which are orthogonal on the unit circle in the following sense: given n > 1,
it is known (see e.g. [13]) that a unique monic polynomial p, (%) exists such that
ffﬂ pn(e9)e=*dpu(0) = 0 for k = 0,1,...,n — 1. Furthermore, if we assume that
the support of 4 has infinitely many points, then [ p2 (e)du(0) =|| pn 2> 0.
Setting pg = 1, then {p,}22, is called the orthogonal sequence of monic Szegs

— pn(2) rep-

HPnHu

resents an orthonormal sequence of Szegs polynomials (observe that such a se-
quence is uniquely determined by assuming that the leading coefficient of ¢,,(z) for
n =0,1,... is positive). Setting D = {z € C : |z| < 1} (sometimes we will use
E={2e€C : |2/ >1},C=TUDUE) a fundamental property concerning the
zeros of p,(z) for n > 1 (and apparently rather negative for our purposes) is the
following (see e.g. [1]): “For each n > 1, all the zeros of p,(2) lie in D”. Thus, un-
like the Gauss—Christoffel formulas, now the zeros of Szegd polynomials can not be
directly used as nodes in our quadratures. Following two initially different paths,
throughout the paper we will see how this drawback can be overcome. The paper
is organized as follows. In Section 2, some preliminary results concerning trigono-
metric polynomials, Laurent polynomials and algebraic polynomials are presented.
Then, in Section 3 the problem of the interpolation by trigonometric polynomials is
analyzed whereas in Section 4 the so-called bi-orthogonal systems of trigonometric
polynomials are introduced and their most relevant properties studied. The con-
struction of quadrature rules exactly integrating trigonometric polynomials with
degree as large as possible is considered in Section 5 and a connection with the
unit circle presented in Section 6. Finally some illustrative numerical experiments

polynomials. On the other hand, the sequence {¢,}52, with ¢, (2)
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are shown in Section 7.

2. Preliminary results

We will start by fixing some definitions and notations. Thus, for a nonnegative
integer n, II,, will denote the space of (in general complex) algebraic polynomials
of degree n at most and II the space of all polynomials. On the other hand, a real
trigonometric polynomial of degree n is a function of the form

n

T.(0) = ap + Z (ar cos kO + by sin k), ap, by € R, |ay| + |by] > 0.
k=1

Clearly, when ag, ar and by are in general complex numbers for k = 1,...,n, we
shall be dealing with trigonometric polynomials with complex coefficients. Thus,
when we refer to a trigonometric polynomial we are implicitly meaning with real
coefficients. We also denote by 7,, the space of trigonometric polynomials of degree
n at most, i.e.

7T, = span{l,cosf,sinf, ..., cosnd, sinnd}

and hence, dim (7,,) = 2n + 1. We occasionally deal with complex trigonomet-
ric polynomials, where ag, ax and by are arbitrary complex numbers. By using
the transformation z = e and Euler’s formulas, for any complex trigonometric
polynomial one can write T}, (0) = L, (e*?) where

Lo(z)= Yo" (2.1)

Then

1
co = aop, ck:§(ak—ibk), k=1,...,n,

and when the trigonometric polynomial T,, is real, ag, aj, by are real and c_j, = ¢j.
Functions L, (z) as given above are called Laurent polynomials, or more generally,
given p and ¢ integers such that p < ¢, a Laurent polynomial is a function of the
form

q
L,(z)= Zajzj, aj € C. (2.2)
Jj=p

We also denote by A, , the space of Laurent polynomials (2.2). Observe that
Apg :Span{zk p<k< q}.

Hence, dim (A, 4) = ¢ —p + 1. Thus, L, (z) given by (2.1) belongs to A_,, .

Now, by recalling that a double sequence {p}72 _ of complex numbers is said
to be “Hermitian” if s = Tix, a Laurent polynomial L € A_,, ,, is called Hermitian
if the sequence of its coefficients is Hermitian. That is, with L, (z) in (2.1) we have
¢, =7¢ for k=0,1,...,n and the following trivially holds,
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Theorem 2.1. Let T,,(6) be a complex trigonometric polynomial, and set Ly, (¢?) =
T,.(0). Then T, is real if and only if L, is Hermitian.

Remark 2.2. If we define A = {L € A_,,,, : L Hermitian} then Al is a real
vector space of dimension 2n + 1 and one can write

T, ={T(0) : T(0) = L(e") with L € Al }.

Let us next consider the connection between trigonometric polynomials and
certain algebraic polynomials. For this purpose, let P(z) be an algebraic polynomial

of degree n, i.e.,
n

P(z) = Zajzj, a; €C, a, #0.
3=0
Then, the reciprocal P*(z) of P(z) is a polynomial defined by P*(z) = 2" P,(z)
where P, (z) represents the “sub-star” conjugate of P(z), i.e., P.(z) = P (1/2).
Thus,

P*(z)=2"P(1/2) =2"P(1/2) = Y @2
§=0
where P(z) = > i—0@;z’. Now, a usefull property of the polynomials that we shall
work with is the following: for k € C\{0}, a polynomial P(z) is called “invariant”
or more precisely, “k-invariant” if

P*(z) = kP(z) Vz e C.
Some direct consequences of this definition are:
1. If P(z) is invariant, then P(0) # 0.

2. Let a be a zero of the invariant polynomial P(z). Then, 1/a& is also a zero of
P(z).

3. Let P(z) be an invariant polynomial of odd degree n. Then, the number of
zeros of P(z) on T (counting multiplicities) is also odd. On the other hand,
if P(z) is an invariant polynomial with even degree n, it has an even number
of zeros on T.

4. Let P(z) be invariant and set P(z) = > ¢j27 = ¢, [[3_,(z — 2), then
|P(0)] = |co| = |en| [T5—; |2%| and taking into account that [],_, |zx] = 1 it
follows that |co| = [c,|. Consequently, ¢, = keg with |k| = 1. Set k = e,
w € R, and define Q(z) = AP(2), A # 0. Then, Q*(z) = M\kP(z) = %kQ(z),
that is, Q(z) is %k—invariant. Set now A = Re’, then %k = ¢! @=27) Thus,
by taking v € R such that v = § + mm, with m € Z, then %k =1 and Q(2)
is l-invariant.
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Remark 2.3. The term “k-invariant” was introduced by Jones et. al. in [10],
whereas Szeg6 in [14] says that a polynomial P(z) is “autoreciprocal” if P*(z) =
P(z) (1-invariant). Hence, we see that “invariant” polynomials are essentially “au-
toreciprocal”.

Let P, (z) be an invariant polynomial of degree 2n. Then, there exists g, €
C\{0} such that Q2 (2) = A2nPopn(z) is l-invariant and we can write:

n
z .
:ann(): E cjzl, c_j=¢5,5=01,...,n
z

j=—n

L,(z)

that is, L, € A and by Theorem 2.1, L, (e"?) = T,,(8) with T,, € T,,. Thus, we
have ‘ ‘
e~ M Py, () = A\, 1 T (6).

Conversely, let T}, € 7,,. Then

T,.(0) = Ln(e®), L, € AL

Again, L,(z) = PQ;"(Z), where Py, (z) € Iy, and l-invariant. Indeed, Ps,(z) =
2" L, (z). Hence,

P (2) =22Py, (1/2) = 2227 "L, (1/%)
=2z" Z;;—n ijzij =2" Z;'l:—n C*]‘Zij =2"Ln(2) = Pan(2).

Next, we will see how the connection between trigonometric polynomials and
invariant algebraic polynomials allows us to recover some classical results about
zeros of trigonometric polynomials. Thus, let @ and 3 be arbitrary constants, then
sin (%) sin (%) represents a trigonometric polynomial of degree one. Further-

more, it can be easily proved by induction that the function

T@:Cﬁm(%fﬁﬁm(%fﬂ7c¢o (2.3)

Jj=1

where {6, ?Ql are given constants, represents a trigonometric polynomial of degree
n. We will now show that a converse result also holds, i.e. any trigonometric
polynomial can be factorized as (2.3). Indeed, let T}, € 7,,, then T},(6) = L, (%),
L, € A7 and one can write L, (z) = PZ%,SZ) with Ps,(z) an l-invariant polynomial
of degree 2n. Therefore, Py, (2) = ¢, Hizl(z—zk), ¢n, # 0 (counting multiplicities)
with z; # 0 and if z; ¢ T, then 1/%; is also a root of Ps,(z). Let 2m denote the
number of zeros of Py, (z) on T (0 < m < n). Then

2m n—m
Pzn(z):an(z—zj) H(z—ék) (z—}) , en £0 (2.4)

%k
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where z; = ei | 8; € Rfor 1 < j < 2m, are the zeros of P,(2) on T and Z
and 1/2;C for 1 < k: < n—m are the zeros not on T, so that Zp = e'* with
wy € C, wich implies that 1/2; = e"*. Furthermore, it can be easily checked that

), Therefore,

e — e = 2 sin (9 05w (%
Pgn(ew) = ¢, H?Z (eie _ ez‘@-) HZ;T (eia _ eiwk) (eie _ eiuTk)

cn(=1)n22n H2m1 sin (6_29j> eih 2 X

o7 sin (055 sin (05F) o 0F

X

Then, it follows that,

2m
, , 0 _
Py, (e") = A€ H sin (
=1

Consequently,

T,(0) =L, (w)——””;&i”
7 __ 2.5
AT sin (45) [ sin () sin (02), 2

where A, # 0, 6; € R and wy, € C such that R(wy) = ¢y + 2tw, Y € (—7, 7], t € Z
and k =1,...,n —m. Then, we have proved the following

Theorem 2.4. A real trigonometric polynomial T,,(0) of the precise degree n has
exactly 2n real or complex zeros provided that we count them as usual with their
multiplicity and we restrict ourselves to the strip —m < R(0) < w. Furthermore,
the non-real zeros appear in conjugate pairs.

Remark 2.5. The representation (2.3) is of course not unique.

Furthermore, from (2.3) and (2.5) it can be also proved

Theorem 2.6 (L.Fejér and F.Riesz). A real trigonometric polynomial T(0) is
nonnegative for all real 6, if and only if, it can be written in the form

T0) =lg(=)*, ==e"
where g(z) is an algebraic polynomial of the same degree as T(0).

Proof. Assume T'(f) a trigonometric polynomial of degree n such that T(0) =
60

Pe(iie) with P(z) a polynomial of degree 2n. Since T'(f) > 0 for all § € R, then

possible real zeros of T'(6) must have even multiplicity. Furthermore, if § = «v is a

real zero of T(#) then z = €' is a zero of P(z) on T. Hence, from (2.4), P(z) can

be expressed as:

P(z) = )‘np?n(z)qnfm(z)qrhm@)a An #0
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where pp,(2) € II,;, for 0 < m < n and gy—m(2) € II,_p,. Since T(#) > 0, for any
0 € R,

P(eie)

eint

T0) = 10| =| % | = ol [ [ ()
0l ) e = g

Qn—m(eie)‘

where g(2) = /| An|pm(2)@n-m(z) € .
Conversely, let g(z) be an algebraic polynomial of degree n, then by setting
z = €' it follows that

? = (23 = g(2)g.(2) = L) _ PonlE)

l9(2)

where P, (2) = g(2)g*(z) is clearly an l-invariant polynomial of degree 2n so that
l9(2)]* = Ln(2) € AZ, and by Theorem 2.1, |g(z)|* represents a trigonometric

polynomial of degree n which is clearly nonnegative for any 6 € R. O

3. Interpolation by Trigonometric Polynomials

As it is well known, polynomial interpolation finds in the construction of quadra-
ture formulas one of its most immediate applications. On the other hand, when
considering quadrature rules based on trigonometric polynomials, similar results
on interpolation will be needed. In this respect, some of the already known results
will now be proved by means of the close connection between trigonometric poly-
nomials and Hermitian Laurent polynomials shown in the preceding section. First
we have,

Theorem 3.1. Given (2n+1) distinct nodes {6;} C (—m, ], there exists a unique
T, € T, such that

T.00;)=y;, 7=1,...,2n+1, (3.1)

{y]}fi'fl being a given set of real numbers.

Proof. Set T(0) = ap+>_p_; ax cos kO+by sin k. We first show that the constants
{ar}i_o U {bk}}_, are uniquely determined from conditions (3.1). Now, T'(f) =
L(e") with L € A_,,,, so that (3.1) is equivalent to

L(zj) =yj, zj=€% j=1,....2n+1. (3.2)

Now L(z) € A_,, , implies that L(z) = F;(f), P(z) € Iy, so that (3.2) yields

P(z) =z}y;, j=1,....2n+1. (3.3)

Since zj # zx, P(z) is uniquely determined by (3.3) and hence T'(¢) has the desired
interpolation properties. It remains to show that T'(f) has real coefficients. This
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will be proved by showing that P(z) is l-invariant. To see this we will show that
also P*(z) satisfies the interpolation conditions (3.3). Indeed,

P*(z;) = ZJQ-"P (1/z) = ZJQ-"P(ZJ-) = z?"z;‘y] =z7yj, y; ER

Hence, by virtue of the uniqueness of polynomial P(z), it follows that P*(z) = P(z)
and the proof is completed. O

As for an explicit representation of T,, € 7, satisfying (3.1), because of unique-
ness, one can write

2n+1
T,(0) = Y 1;(0)y (3.4)
j=1
where 1;(0) = 1;,(0) € T, such that 1;(6;) = 0;x = { (1) z; j;i . Since

L;(0r) =0for k=1,...,2n+ 1, k # j, clearly by (2.5),

2n+1 079
MOEPYI] | sin( 2’“), A #0,

k=1,k#j

A; being a normalization constant such that [;(6;) = 1. More precisely, setting

2n+1 0_0
W, (0) = H sin( 5 k)
k=1

then, it follows that

W, (0
lj(e):)\j%, j=1,...,2n+1.
sm( 21>
Thus,
. W,.(0 . Wh(0 ,
63 =\ Jimg O i ) — 20, W6)
Y Sm( 5 J) -0 =

Hence, taking A\; = 7

1 _ .
w7 6,y One has ;(#;) = 1 and we can write

B W, (0)
B 2W,,(0;) sin (%)

lj(e) , J=1,....2n+ 1.

Furthermore, when dealing with the construction of certain quadrature formulas
exactly integrating trigonometric polynomials of degree as high as possible, the
following result will be required:
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Theorem 3.2. Let 6y ...6,11 be (n+ 1) distinct nodes on (—m,w]. Then there
exists a unique trigonometric polynomial H,, € T, satisfying

H,(0;) = HP (0;) = y; j=1,....n+1

(3.5)
H,(0)=HP (0)=y] j=1,....n+1 j#k
where k € {1,...,n+ 1} is previously fized and {y; }”+1 U {yj 7?;‘11’#,@ is a set of
(2n+1) real numbers
Proof. Set H,(0) = L,(¢*®) € A_,,,,. Then (3.5) becomes H, (0;) = L, (e"%) =
Ly(2;) = yj with z; =% € Tforall j = 1,...,n+ 1 and 2z; # 2, if j # k. On
the other hand, H, (§) = L, (¢?)ie’®. Hence, L, (z;) = —iz;H,, (6;) = fiz*jyj' for
j=1,...,n+1and j# k. Since L, € A_,, ,,, then L, (z) = PZZ"in(Z) with Py, (2) €
Iy, such that Pan(z;) = 2} Ln(2;) = 27y;, y; € R and 2; € T. Furthermore,
Py, (2) =nz""1L,(2) + 2"L,(z), hence

Pyuz) = 02 " L) + 25 L) = 257 (g — i) ) G = Lm0, j £ K

Thus our Hermite-type trigonometric interpolation problem reduces to finding
Py, (z) € T, such that

Pon(zj) = 2}y, ji=1,...,n+1
(3.6)
() =2 (nyy — iy ) G =1on+ 1, £k

Now, since z; # z; for j # [, it is known that the interpolation problem (3.6) has a
unique solution Py, () and T, (0) = L, (e?) = %je) will be the unique solution
0 (3.5). As in Theorem 3.1, it remains to prove that 7,,(6) is a real trigonometric
polynomial. To do this, we will show that P*(z) is also a solution to (3.6), hence

because of uniqueness we have Py, (z) = Py, (z) and the conclusion follows. Indeed,

Py, (2j) = 27" Pan (1/7) = 23" Pan(2))
= zf”z;lyj =27y; = Pan(2), j=1,...,n+ 1.

Furthermore, (Pz*n) (z) = 2n22" "1 Py (1/2) 4+ 22" (Pay) (1/2) (Z2), yielding:

2
(P3,) (2) = Zn? {QanPM(Zj) - PZ/n(Zj)i| :

’

(Here we are making use of the fact (P) (z) = (P’)(z)). Therefore, for j =
1,...,n+1, j#k:

Y n— P —(n—-1 !
(P3,) () = 25 2[2”ijjyj*2j( )(nyﬁrlyj)}

= Z;Lil [27”/3' —nY; — iyj} = z;lil[nyj —1y; | = Py, (2)-
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As for an explicit representation of the interpolating trigonometric polynomial
H, () satisfying (3.5), by virtue of uniqueness we can write for any k € {1,...,n+
1}

9

n+1
Ha(0) = HP0) = (1 O+ Y |80+ 0] 37)
j=1,j#k

where tgk) (0) and s;k) (#) are trigonometric polynomials in 7,,, such that
tgk)(er)zéj,r 1<]7T<n+1
(B9) ) =0 1<jr<ntt etk
(3.8)
s(6,) =0 1<r<n+1,j#k

(s7) 6 =650 1<jr<n+l sk j#k

Define now W, (0) = H;lill sin (‘QEGJ' ) If we proceed as in the previous case,

after some elementary calculations we deduce the following expressions for such
trigonometric polynomials for 1 < j<n+1, j #k:

B W26 )sm( 9")
jmm_%m(z) =N wae%, (3.9)
tg-k)(a) = 5 70 %e 2
j sin? sin chxen] A (3.10)
o (5) - on (2% i ()] e 7,
and
£ (6) = LW(gig@*”]GZP .

In the rest of the section we shall be concerned with certain interpolation prob-
lems using an even number of nodes, say 2n, in subspaces 7,, of 7,, of dimension
2n. For instance, 7,, = T,,\span{cosnf} or T,, = T,,\span{sinn}. In this respect,
it should be recalled that a system of continuous functions { fo, ..., fi,} on an in-
terval [a, b] represents a Haar system on [a,b] if and only if for any k, 1 < k < m,
{fo,--, fx} is a Chebyshev system on [a,b]. Clearly,

{1,cos0,sind, ..., cosnb,sinnd},

can not be a Haar system on [—m, 7] (check simply that {1, cos 6} is not a Chebyshev
system). Hence, we can not initially assume that given 2n nodes {6‘ ™, on (—m,
there exists T;, € 7,,\span{cosnf} or in 7, \span{sinnf} such that T (0;) = yj; for
all j =1,...,2n. However, we can prove the following



Quadrature rules for periodic integrands. Bi-orthogonality and para-orthogonality 15

Theorem 3.3. Let {0;}3", C (—m, ] be 2n distinct nodes, let {y;}3", be arbitrary
real numbers, and consider the interpolation problem:

T,(0;)=y;, j=1,...,2n. (3.12)
Then the following hold:

1. If Z?Zl 0; # km for all k € Z, then there is a unique solution of (3.12) in
T \span{cosnf} and a unique solution of (3.12) in T,\span{sinnd}.

2. If ijl 8; = kr for an odd integer k, then there is a unique solution of (3.12)
in T, \span{cosnfd}.

3. If 2511 0; = km for an even integer k, then there is a unique solution of
(3.12) in T, \span{sinnd}.
Proof. Assume first that we are trying to find T},(8) € 7;,\span{sinnf} satisfying

(3.12). Thus, we can write:

n—1
T,(0) = ag + Z (a; cos jO + bjsin jO) + a, cosnh = L, (") € A_,,,,
j=1

with L, (2) = > ¢;27, where

Jj=—n
a; —tb;
Cj = J 5 j, C_j:Fj, 1<]<n71, Co = Qg.
Thus, c_; = ¢ for all 0 < j < n. Setting as usual z; = %% for all j = 1,...,2n,

(2 # 2z if j # k), (3.12) becomes
Tn(05) = Ln(e") = Ln(23) = 5, j = 1,0, 2n

giving rise to the linear system

n—1

S a e ) =y, i=1,...,2n (3.13)
k=—(n-1)
Now, the system (3.13) has a unique solution if and only if A,, # 0, where

zl_(n_l) zl_("_Q) R R N 1

2" B g (B

—(n—1) —(n—2) n—1 n —n
Zon Zon U .- Zon (Z2n + Zon )
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By introducing the Vandermonde determinant associated with z1,..., 29,, i.e.,
2n—1
1 21 e Z% .
29 e ZQTL_
Yn = .
2n—1
1 Zon e ZQTL

it can be easily checked that
An = (2’1 e Zgn)n_l(l — 21" -Zgn)’yn. (314)

On the other hand, if we consider our interpolation problem in
T,.(0) € T,\span{cosnf}, the associated determinant A, of the corresponding
system satisfies

Ap=(2z1-"- ZQn)nil(l + 21 Zan)Yn- (3.15)

Since z; = €, then z---29y, = €2 with A\, = 22.21 0;. If N\, # km for
any integer k, then clearly 2;---29, # =£1 and from (3.14) and (3.15), both
determinants A,, and An are nonzero since v, # 0, which means that the in-
terpolation problem (3.12) has a unique solution both in 7,\span{sinnf} and
Tn\span{cosnf}. Next, assume that A\, = kr for some integer k. Thus, if k is
even, then e*» = 1 and (3.15) is different from zero, whereas if k is odd, then
e = —1 and (3.14) does not vanish. Thus, for instance, if A, # 0, we have
found a unique L, € A_,, ,, L,(2) = Z?:_n ¢;jz? such that c_,, = ¢, and satisfy-
ing L,(z;) = y; for j = 1,...,2n. Therefore, T,,(0) = L, (e®) € T,,\span{sinnf}
and Tn(ﬁj) =y, for j =1,...,2n. To check that Tn(ﬁ) is actually a real trigono-
metric polynomial we proceed as in Theorem 3.1. (]

Next, a Lagrange-type representation for the trigonometric polynomial Tn(Q)
satisfying the conditions of Theorem 3.3 will be given. Indeed, set

and assume that 7, # kr for any integer k so that A, # 0. Thus, T,(0) €

7., \span{sinnf} and by virtue of uniqueness, one has T,,(§) = 2321 t;(0)y; where

t; € T,\span{sinnf} and ¢;(0y) = 6, for 1 < j k < 2n. Fix j € {1,...,2n} and

7o e -
define a; = Ziil’k# ;. Now, we can write §;(0) = l’e(iene) where 1j(z) € Ty,

such that ij(zk) = z7'0; where, as usual, z;, = e for k = 1,...,2n. Since
t; € T,\span{sinnf}, the leading coefficient of /;(z) must coincide with 7;(0), and
one has 1(2) = ¢;(z — wy) [iZy gy (2 = 25) = 22" + - +1;(0). But ;(0) =
2n
cjw; [T[;2; j %), hence
1 o P,
Wj = —————— = =€ =l
HjZLj;ék i j=1
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Therefore, by (2.5) it follows that

i L (0+a;\ > . [(0-0,
SJ(Q) - Cj Sin (2'7> H Sin ( 2 ])

j=1,j7#k

where ¢; is to be determined such that §;(6,;) = 1. Setting

Wmmzllm(eg%)e%,
j=1

we have

Now,

1= lim & sin bra;) _Wa® _ 2¢; sin bita W, (6;).
—0; 2 sin (9*9.7) 2
2

Observe that 1(60; + a;) = %Z?Zl 0; = n, # km for any integer k, so that
sin (OJJFTQJ) = sin7, # 0 and hence

~ 1 . 9+Oéj Wn(e) .
; = - 1 ce. 2 . 1
5;(0) 27 (0,) sin sm( 5 ) o (9_29j)7 J=1....2n (3.16)

When dealing with the interpolant 7,,(6) € 7,,\span{cosnf} it can be easily verified
that the fundamental Lagrange-type trigonometric polynomials §;(6) are now given
by

1 e+aj> W (0) ., 2n. (3.17)

53(0) = 2W,, (0;) cos ny, o8 ( 2

n

with o; and 7, as previously given.

4. Bi-orthogonal systems

Let w(f) be a weight function on (—m, 7], i.e., w(f) = 0 on (—7, 7] and 0 <
J7_w(f)dd < co. The main aim of this section is briefly collecting some results
by Szegé (see [14]) concerning properties of an orthogonal basis for the space 7 of
real trigonometric polynomials with respect to the inner product on 7 induced by
w(0), namely,

(Fo)o= [ 105@w@, ¥ fgeT (1.1
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As indicated in [14], we might consider an arbitrary measure du(f) on the unit
circle; in what follows, however we restrict ourselves for the sake of simplicity,
to the previously defined case, i.e. to the case when p(6) is absolutely continuous.
Furthermore, when only real functions are considered, complex conjugation in (4.1)
can be omitted. For this purpose, let us first consider the basis of 7, given by
{1, cos0,siné, ..., cosnb,sinnf} which is clearly orthogonal for w(f) = 1 on [—, 7]
and let us see how this property can be extended to an arbitrary weight function
w(6). Certainly, this can be done by orthogonalizing the elementary functions

1,cos60,sind, ..., cosnb,sinnd
arranged in a linear order, according to Gram-Schmidt process. Thus, a set
{an fi.91,-- -, fn:gn}
of trigonometric polynomials is generated such that fy is a nonzero constant,

f1 € span{l,cosf}, g1 € span{l,cos,sinf}, fo € span{l,cosb,sinb, cos20}

g2 € span{l,cosf,sinf, cos20,sin20} ... f, € T,\span{sinnb}, g, € 7,
and it holds that
<fja fk>w = H];(Sj,k s K)j/ >0
(95> 9k)w = F;0jk , K; >0 (4.2)

(fir9k)w=0,3=0,1,....n , k=1,...,n.

When the process is repeated for each n € N, then fo U { fx, gx}72, represents an
orthogonal basis for 7 with respect to w(#). Now, if we set

fo=ago #0
fi=aj0+ Zi:l (@5 cos k@ + b; j, sin k0) (4.3)
gj = Cjo+ Zi:l (¢jxcoskl + d; j, sin ko)

then, because of the linear independence it clearly follows that

Qn,n bn,n

#0, n>1.

Cn,n dn,n
Conversely, we also have (see [14])

Theorem 4.1. Let foU{ fr, g1}, be a system of trigonometric polynomials such
that fo(0) =c#0 and forn > 1:

fn(0) = ano+ > 5y (@i coskl + by, i sink6)
gn(0) = cno+ Y p_y (Cnk cos kO + d,,  sink0) .

Assume that forn > 1,

Cn,n dn n
Then, foU{fr, 9k}, is a basis for T.

Ap.n bn,n ’7&0
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Now, according to Szeg6 (see [14]) we are in a position to state the following
definitions:

Definition 4.2. Two trigonometric polynomials of degree n, of the form
f(@) =acosnf +bsinnd +---, g(0) =ccosnb + dsinnd + - - -
are said to be linearly independent if and only if

a b
e

Definition 4.3. Given the weight function w(6) on [, 7], a system foU{ fx, g1 }7>,
of real trigonometric polynomials with f; a nonzero constant will be called a bi-
orthogonal system for w(0) if the following holds:

1. For each n > 1, f,(0) and g,(0) are linearly independent.

2. The system is orthogonal with respect to the inner produc generated by w(f),
i.e., (4.2) is satisfied.

Next, let us see how a bi-orthogonal system can be constructed from a sequence
of orthogonal polynomials on the unit circle (Szegé polynomials) for w(f). To
fix ideas, let {pn(2)}22, be the sequence of monic Szegd polynomials: p,(z) =
2"+ -+ 6, forn=0,1,.... Here, 6, = pr(0) (0o #0; |d,] <1forn=1,2,...)
represents the n-th reflection coefficient or Schur parameter. Let {w,}52, be a
given sequence of nonzero complex numbers and consider %,Tl(z) €A _(ni1)nt1-
Here, one can write

wne_in9p2n+1(eia) = fn+1(9) + ign+1(9) (4'4)

where f,11(0) and g¢,,41(0) are real trigonometric polynomials of degree n + 1
(n=0,1,...), and we have (see [3])

Theorem 4.4. Let {w,}22 be a sequence of complex numbers such that for any
n >0, w, #0 and w2 [T € pyni1(e?)w(0)dd is a real number. Then the real

trigonometric polynomials fo U{fni1, gnr1}o2 given by (4.4) with fo(0) = fo #0
is a bi-orthogonal system for w(6).

Remark 4.5. For an alternative construction of a bi-orthogonal system making
use of orthonormal Szegd polynomials of even instead of odd degree, see [14].

Example 4.6. Take w(f) = 1 on [—m, 7] (Lebesgue measure). It is known that
pn(z) = 2" for n =0,1,... so that, for any w,, € C\{0}:

wi/ ¢ poni1(e?)w(h)do = wi/ et t20q9 — 0.

—T —T
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Hence, we can take any nonzero complex number w,,. Set w,, = a,,+i0n, ap, Bn € R
and |ay,| + 8| > 0. Then,

frne1(0) = a cos(n +1)0 — B, sin(n + 1)6

In+1(0) = By cos(n + 1)0 + av, sin(n + 1)6. (4.5)
Furthermore, by taking w, =1, for n =0,1,..., we obtain
frui1(0) = cos(n+1)0, Gni1(0) =sin(n+1)0 (4.6)

and the well known orthogonal properties of the functions
{1,co080,sin0,...,cosnb,sinnd,...}
with respect to the weight function w(f) = 1 are now recovered.

Remark 4.7. Tt should be noted that the relations (4.5) and (4.6) between two
bi-orthogonal systems for w(f) = 1 hold for any arbitrary w(6). Indeed, let fo U
{fr, 96132, and foU {fk,gk}g;l be two bi-orthogonal systems for a given weight
function w(#). Since fn €T, and foU {fe, 91}, is a basis for 7, one has

Fa(0) = aofo+ Y (a;£;(0) + B9;(0)) -

j=1

On the other hand, because of the bi-orthogonality, (f,T). = 0 for all T' € 7,,_1,
vielding fn(0) = anfn(0) + Bgn(0). Similarly, G,(0) = vnfn(0) + dgn(0). Both
relations can be expressed in a matrix form as,

(fn)ZM(fn) M:(an ﬂn)
Jn "\ gn ’ " Tn  On '

with . )
— <fn’fn>w _ (fnqgn>w
= RIS P = ot
'Yn — 9”7}7" ‘Tiw’ 677, — YUny9n)w

gnllz -

By changing the roles of both systems, it follows that

(fn>:M<fn> M:M_l
gn "\gn ) " n

Furthermore, when dealing with bi-orthonormal systems i.e., || fn [|o= gn [[o=]|
fn llo=Il Gn llo= 1, then it can be verified that M, = MZ i.e., M, is an orthogonal
matrix, as remarked in [14].

Example 4.8. Consider the weight function w(f) = ﬁ, 0 € [—m,m|, T(0) being
a positive trigonometric polynomial of degree m (i.e., a rational modification of
the Lebesgue measure). From 2.6 we can write T(0) = |h(z)[?, z = €, where
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h(z) € II,,, without zeros on T. Moreover, we can assume without loss of generality
that h(z) is a monic polynomial. Hence, from [15] the monic Szegs polynomials
are given by pn(z) = 2" ™h(z) for n = m. Hence, as in Example 4.6 it holds that

w2 [" € poni1(e’?)w(6)df = 0, and any nonzero complex number w,, can be used,
provided that n > [ 1] + 1 where E[z] denotes as usual the integer part of x.
Thus, if we set h(z) = 2™ + @y _12™ 1 + -+ + ag and take w,, = 1, then

wne—in0p2n+1 (ew) _ ei(n+1—m)0h(0) _ ei(n+1—m)9 (eime R aO)
= et 4o gquef Ml = 1 (0) +igns1(0).
Thus, forn > E [m—] + 1 a bi-orthogonal system is given by

frn41(8) =cos(n+1)8 + - - + agcos(n +1 —m)b,
gn+1(0) =sin(n+1)0 + - - 4+ agsin(n + 1 — m)#.

Certainly, to have a bi-orthogonal system fo U {fx, gx}3>,; completely con-
structed, we must compute the Szegd polynomials por11(2), 0 < k < E [mT_l]
which can be recursively done by Levinson’s algorithm (see [7] or [12]).

In the rest of the section we shall be concerned with the zeros of a given bi-
orthogonal system. We observe from Example 1 that fo = ¢ # 0, f,(0) = cosnb,
gn(6) = sinnb, n = 1,2,... represent a bi-orthogonal system for w(f) = 1. Now,
fn(0) = 0 means 6 = (%2#1)” k € Z. Thus, taking —(n — 1) < k < n—1 we
see that f,(0) has exactly 2n distinct zeros on (—m,n|. Similarly, if a and b are
two real numbers, not both zero, it can be seen that af,(0) + bg,(0) has also 2n
distinct zeros on (—, 7). This property can be generalized to any arbitrary weight
function w(#).

Theorem 4.9. Let fo U {fi, g1}, be a bi-orthogonal system for w(8) and let a
and b be real numbers not both zero. Then the trigonometric polynomial T(0) =
af(0)+ bg(0) has 2n real and distinct zeros on any interval of length 2.

Proof. To fix ideas we shall restrict ourselves to (—m,n]. By Theorem (2.4) we
know that T}, (6) has 2n real or complex zeros in the strip —7 < R(0) < 7. Further-
more, the non-real zeros appear in conjugate pairs. Le p be the number of zeros
of T,,(0) on (—m, ] with odd multiplicity (0 < p < 2n). Since p should be even we
can set p = 2k, 0 < k < n. Assume that k£ < n and define

k
0) = Jl;[l sin (9 _292J) sin (0 — Z2j_l> )

{6,}2F, being the zeros of T,,(6) on (—, w] with odd multiplicity (obviously, if k = 0
we take Uy (0) = 1). Then we can write T,,(8) = af,(0) + bg,(0) = Uk (0)V,—k(0),
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where V,,_(0) € 7,,—x and V,,_j(0) has a constant sign on (—m,n]|. Since k < n,
by virtue of orthogonality it follows on the one hand that

= |7 Tu(0)Uk(9)w(8)do

= aflr fn(0)Uk(0)w(0)do + bff7T gn(6) U (6)w(0)d6 = 0,

whereas on the other hand
1= [ ROV 000 £0
because w() is a weight function on (—m,7]. >From this contradiction it follows

that k = n. O

Furthermore, the following interlacing property of zeros holds:

Theorem 4.10. Under the same assumptions as in Theorem 4.9, the zeros of
afn(0) + bgn(0) and —=bf,(0) + ag.(0) interlace.

Proof. Since we are dealing with properties of zeros, we can assume, without loss
of generality that the system fo U {fr, gr}3>; is bi-orthonormal. We introduce the
function

Ko, 6) = +Z Ji(@) fie(0) + gr()gi(0))

which satisfies the following reproducing property:

T(0) = [ Kn(o, O)T(0)w(0)d0, VT € T,.

—T

On the other hand, from the paper by Szeg6 [14], the following Christoffel-Darboux
identity can be established,

Kn1(e0) = 5552 cot (%5%) (fu(@)ga(8) — Fa(B)gn(a)) - (4.7)
(Tnfn( )fn(a) + Sngn(a)gn(o))

where the coefficients k,,, r, and s,, are related to the orthonormal sequence

{pn(2)}22, of Szegs polynomials as follows: Set ¢, (2) = kpz™ + - Iy (kn > 0),
then 2s, =1+ uz"‘ > 0and 2r, =1 — “2"| Furthermore, since Pn( ) = el =

kn
2P+ 4+ " then ‘li—”‘ < 1andr, is also posmve Thus

Kn-1(a,a) =limg_oCn— 1(a 0)
= Bt (fu(@)g, (@) = £ (@)gn(@)) = (ra f2(0) + 5093 ().

Setting M, (a) = (rnf?l (@) + spg2 () we obtain for all o € R:

£a(@)g, (@) — £, (@)ga(e) = 2= (My () + Kn-a(a,0)) > 0,
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since clearly M, («) > 0 and K,,_1(a, @) > 0. >From here it can be easily seen
that the zeros of f,,(f) and g,(6) interlace. Finally, let us consider

Cn(0) = afn(0) +bgn(0), Dn(0) = —bfn(0) + agn(®), la|+ [b] > 0.

Then

’ ’ ’

Cal@)D,.(0) = €,/ (@)Dy(a) = (a* + 1) (fula)g, (@) ~ £, (@)gn(@) > 0
and the proof follows. O

Remark 4.11. The two previous theorems were earlier proved by Szegd in [14]
making use of the fundamental property that the zeros of any Szegd polyno-
mial p,(z) lie in D. Here, we have given alternative proofs involving only bi-
orthogonality properties.

As an immediate consequence of Theorems 4.9 and 4.10, we have
Corollary 4.12. Let fo U{fx,gx}>, be an orthogonal system for w(#). Then,
1. Both f, and g, have 2n distinct zeros on any interval of length 2.

2. On any interval of length 27, the zeros of f, and g, interlace.

5. Quadratures

In this section we start to properly deal with the main topic of the paper, i.e.,
the approximate calculation of integrals

L) = [ oo (5.1)

—T

with w(f) a weight function on (—m, 7] and f a 27-periodic function such that fw €
Ly(—m,w|. I,(f) is going to be approximated by means of an n-point quadrature
rule like:

Li(f) =Y Xif(0;), 05 # O, 0; € (—m,7]. (5.2)
j=1

Here, the nodes {0;}}]_; and weights {\;}7_; are to be determined so that I,,(f) is
exact in certain subspaces of 7 with dimension as large as possible, i.e. it should
hold that I,(T") = I,,(T') for any T' € T,,,(,y C T with m(n) as large as possible.
For this purpose the following results should first be taken into account:

Theorem 5.1. There can not exist an n-point quadrature rule I,(f) like (5.2)
which is exact in Ty, i.e., m(n) < n.

Proof. Proceed as in [11, pp. 73-74] for the case w(f) = 1. O
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Now, making use of the interpolation results in Section 3 the following can be
proved:

Theorem 5.2. Given n distinct nodes {0;}7_, C (=, 7|, there exists a certain
subspace T, of T,, with dimension n such that weights {\; } ', satisfying

T) = iAJT(ej)Iw(T), VT eT,.

are uniquely determined.

Theorem 5.3. If there exists an n-point quadrature rule I,(f) = 2;21 A f(0;)
which is exact in T,_1, then \; >0 for all j =1,...,n (see [11]).

Proof. Take t;(0) = [];_ 1k SID (9*20’“). Thus, t;(0) € 7,1 and t;(0) > 0.
Hence, 0 < I, ( i) = In(t;) = Ajt;(6;). Since t;(6;) > 0, the proof follows. O

After these preliminary considerations, we are now in a position to investigate
the following problem, namely: “For n € N, n > 1, find 04,...,0, with 0; # 0y if

j # k on (—m,w] and real numbers Aq,..., A, such that
L(f) =Y _Aif(0;) = Lo(f), Vf € Tor” (5.3)
j=1

Since dim (T,,—1) = 2n— 1, (5.3) leads to a nonlinear system with 2n — 1 equations
and 2n unknowns: 61,...,6,;A1,...,\,. Now, proceeding as in the polynomial
situation (see e.g. [6]), instead of directly attacking the system coming from (5.3)
we will try to analyze the properties of the real trigonometric polynomial whose
zeros are the nodes of I,(f). For this reason we are forced to assume that the
number of nodes in our quadrature rules should be even. To fix ideas, assume that
this number is 2n. Then, in the sequel our rule will be of the form

2n

L, (f Z)\f IC( T, 7.

Set T,(0) = H?"l sin (0 ) € 7,,. Then the following holds:

Theorem 5.4. Let I, (f) = Zzﬁl A f(0;) be a quadrature rule such that
In(T) = 1,(T) for allT € Top—1 and let fo U{fr, 9k }72, be a bi-orthogonal system

for w(0). Set T, (0) = H?"l sin (9_20-7 ) Then there exist real numbers a,, and by,

not both zero such that T,,(0) = an fn(0) + brngn(0).

Proof. Set S € 7,,_1, then T,,(0)S(6) € T2,,—1. Hence

(Tn,S)e = I( — [T _T,(0)S(8)w(6)do
—1@ wzaz&n@W@wm



Quadrature rules for periodic integrands. Bi-orthogonality and para-orthogonality 25

On the other hand, since fo U {fx, gx}}_, is a basis for 7,,, one can write

<Tn7fk>w
I fe ll2

<Tn7 gk>w

by = Ikl
I f 112

—ao+z ak fr(0) + brgr(0)) , ar =

By (5.4), ap, =0for k=0,1,...,n—1and by =0 for k =1,...,n — 1 and the
proof follows. U

Conversely, we can prove the following

Theorem 5.5. Let fo U{fx, gx}3>, be a bi-orthogonal system for the weight func-
tion w(#). Let a and b be real numbers not both zero and let {93'}521 be the 2n
zeros of T,(0) = afn(0) 4+ bgn(0) on (—w,w|. Then, there exist positive numbers
A1, ..., Aoy such that

Lon(f ZAf =I1.(f), Vf€Ton1.

Proof. Throughout the proof, 7,, will denote a subspace of trigonometric polyno-
mials coinciding either with 7;,\span{cosnf} or 7, \span{sinnf}, so that

dim (Tn) —2n. Let 61,. .., 0, be the 2n distinct zeros of Ty (8) = afn(6) +bgn(6),
(la] + |b] > 0). Then, by Theorem 5.2, there exist weights Aq,..., Aa,, uniquely
determined, such that

2n
L(f) = ZAjfwj) =I(f), VfeT,.

Let us next see that Io, (f) is also exact in 73,1 (observe that T, C Ton—1)- To do
that, we will follow the classical pattern. Indeed, take T € T3,,_1 and let L, € 7T,
such that

T(QJ) = Ln(9]), ] = 1, ceey 2n.

Then T — L,, € Tap—1 and (T'— L,) (0;) =0 for all j = 1,...,2n. Hence we can
write T'(6) — L, (0) = T,,(8)V(8), with V € T, i.e., T(H) = Ln(ﬂ) + T,(0)V(6).
Consequently
I(T) =T ( )do = [Z (Ln(0) + Tn(0)V (6)) w(6)do
—fﬂrL Jw(0)dd = I,(Ly,),

since I,(T,,V) = 0 (by definition, T, () is orthogonal to any function in 7,_1).
Therefore,

I,(T) = Z/\ Ln(0;) =Y _NT(0;) = I(T).

j=1
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Finally, the positive character of the weights {\; ?’;1 follows from Theorem 5.3.
However, we can also give an explicit integral representation. Thus, for j =
1,...,2n, set
0

9T (6;) sin (";01‘)

so that [;(0;) = ;1 and l?(G) € 7o, 1 for 5 =1,...,2n. Thus

1;(0)

2n
L, (2(9)) = L (2(0) = > Aul2(6k) = A
k=1

yielding
2

;= i () w j = n. .
]_/ﬂ 10 (52) @), j=1,...,2 (5.5)

N 2

Theorems 5.4 and 5.5 may be summarized in the following characterization result,

Corollary 5.6. Let Ion(f) = 227", Ajf(0;) so that 0; # Oy if j # k, and {0;} C
(=m, 7). Then, Isn(f) = I,(f) for all f € Tan—1, if and only if,

1. Isn(f) is exact in a certain subspace 7, of Ton—1 whith dimension 2n.

2. There exist real numbers a and b not both zero such that {Hj}?il are the zeros
of T,(0) = afn(0) +bgn(8), foU{fr, gr}r>, being a bi-orthogonal system for
the weight function w(6).

Furthermore, when these conditions are satisfied the weights {)\j}f’;l are positive.

Remark 5.7. The quadrature rules characterized in Corollary 5.6 were earlier
introduced by Szegé in [14] and they are sometimes refered as “quadratures with
the highest degree of trigonometric precision”.

Next, we will see how we can also give an explicit representation of the weights
{A; ?’;1 in Corollary 5.6, in terms of a bi-orthonormal system similar to the well
known Christoffel numbers for the Gaussian formulas (see e.g. [8]). Indeed, we
have

Theorem 5.8. Let fo U {fi, gk}, be a bi-orthonormal system for w(6) and let
L, (f) = Z?Zl A f(8;) be a 2n-point quadrature rule with the highest degree of
trigonometric precision. Then, for j =1,...,2n,

1
A= 2 n—1 r2/9 2(0. 1—|d2nl ) £2(p. 1+10241 ) 2(p.
S+ SR (5200 + g2(0)) + (22L) r200) + (25221 2009)

where, as usual, 02, = p2n(0), pan(2z) being the monic Szegd polynomial of degree
2n and {0}, being the zeros of T,,(0) = afn(0) + bgn(6), la| + [b] > 0.

(5.6)
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Proof. Set T,,(0) = [[;~, sin (%52) = af,(0) +bgn(0) € Tn, la|+|b] > 0. Suppose
without loss of generality that a # 0 so that f,(6;) = %gn(ej) . Then, from the
Christoffel-Darboux identity (4.7) it follows

Kn1(0,6;) = 32t (U50) [£a(0)9a(65) — Fu(05)9(6)] -
*(Tnfn( ) n( J)Jrsngn( )gn(ej))
= 5520, (6))etg (257 Tu(6)-

20. k2

[l 1 (0)£00,) + 2L, 09, 0))|

and hence

Kne1(0,07) + 22220 £(0)£0(65) + 2L, (0)ga(6)] =

T 5.7
%k?;;;lgn(oj)cos (9 b ) o 9(62] ( )
P)

As 6 tends to §;, we get

S+ SR (F2005) + 2 09) + (522L) s2005) + (o2l g2(65) =

) (5.8)
Lhmm1g (0,)T, (0;).
Now, due to the orthogonality conditions it follows from (5.7) that
 —1kon /” <90j> T,.(0)
0; 6)dé. 5.9
= % oo gn(0;) - cos| 5 5111(9 29]) w(0) (5.9)
The combination of expressions (5.8) and (5.9) implies
P L =
f3+ RS (FRO+aR00)+ 5l 2o+ Bl g2 (5.10)

T 0—0; (0
271';(93') f_” cos (TJ> sin 9( ) (9>d9

n

On the other hand, from Corollary 5.6 one knows that the weights \; can be
expressed as

Aj :/ 5;(Ow(@)dl, j=1,....,2n

—T

where 5;(0) are trigonometric polynomials of degree n at most given by (3.16) or
(3.17). Thus, from (3.16) it follows

- N 1 - 9—|—Oéj Tn 0)
50 = S e m( ) L0)
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with 7, = %Zfil 0; and a; = 1 — % for j = 1,...,2n. Hence, sin (%) =

sin (52 -+, ) = sin (¢

>\J = m |:COS MNn fjﬂ_ Tn(a)W(a)dG -+

20j) cos 1y, + cos (

0;\ .- .
5~ ) sinn, and one can write

s 7, con (%5%) “Jf&ww)de] G.11)

sin 5

= —+ T eos (229 " (0) .
_Wfwa"b( 27) ] w(6)do.

s

Clearly, if we now start from (3.17) the same representation (5.11) is achieved.
Thus, from (5.10) and (5.11) the proof follows. O

Example 5.9. As a simple illustration of formula (5.6), let us consider w(f) = 1.
As we have already seen, a bi-orthogonal system is given by {1}U{cos nf, sin ng}52 ;.
Thus, we have the following bi-orthonormal system:

1 cosnb sin né
fo = \/727’ fn(e) = 7, gn(o) = 77

Taking a,b € R, |a|+|b|] > 0, the nodes of the corresponding (2n)-th quadrature rule
are the zeros of T,,(0) = af,(0)+bgn(0). Thus, when @ = 0and b =1, i.e., sinnf =
0, the zeros are 0, = %’T for all k € Z, i.e., the 2n zeros 0; = w = -7+ %,

Jj=0,1,...,2n—1, are equally spaced on the interval [, 7] with step size, h = T.

Moreover, since now p,(z) = 2" for all n = 0,1,..., then s, = p2,(0) = 0 and
formula (5.6) becomes, for all j =1,...,2n:
1 U
Aj = : y : — =—. (5.12)
% + Zz;ll (00527(:@%) + sm27(rk9j)> + % (coaQ(nGj) + sm""(n-nej)) n

s

n=12,....

Furthermore, from (5.12) we see that independently of the expression of the nodes
{93‘}?21 all the weights {)\j}?;l are equal to =. This result was deduced in a
different manner in [11].

Paralleling rather closely Gaussian quadrature formulas, we will give a final
result involving the Hermite-type interpolation problem stated in Theorem 3.2
which could be used to give an estimation of the error for I, (f). Indeed, one has

Theorem 5.10. Let a and b real numbers not both zero and let {6, ?21 the zeros
of Tr(0) = afn(0) + bgn(0), foU {fi,gr}?>, being a bi-orthogonal system. Let
Hy,—1(f,") € Tan—1 such that:

Hyo (f;0,)=F"(6;) j=1,....2n, j#ke{1,...,2n}.

Then, I, (Han—1(f,*)) coincides with the (2n)-th quadrature rule with the highest
degree of trigonometric precision with nodes {Hj}le, Furthermore, this formula
does not depend on the parameter k € {1,...,2n} previously fized.
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Proof. The existence and unicity of the Hermite trigonometric interpolant
Hy,—1(f,60) is guaranteed by Theorem 3.2. Furthermore, by (3.7) we can write,

Hoyna(f.0) =D t;0)f(0))+ > s;(0)f (6)) (5.13)
j=1 j=1,j#k

where t;(6) and s;(0) are trigonometric polynomials in 75, satisfying the inter-
polation condition (3.8). Hence,
2n 2n
Iw (H2n—l(fa )) = ZAJf(ej) + Z B]f (9]) (514)
i=1 i=Li#k
where A; = I,(t;) for j =1,...,2n and B; = I,(s;), j =1,...,2n, j # k. Now,
taking into account that T, (0) = af,(0) 4+ bg,(0) is orthogonal to 7,1, it can be
deduced from (3.9) that

Sin( jiak) T (0

Bj = ————1, [ Ta(0) aen() =0, j=1,....2n, j # k.
2[T5,(05)] sin ( 5 j) sin (452

Thus, I, (Han-1(f,)) = Z?Zl A;f(0;) = Inn(f) and since for any T € Ta,_1,

Hy,—1(T,0) = T(0), we have

5o (T) = Ly (Han1(T,-)) = 1(T), VT € Ton-1.
Now the proof follows by Corollary 5.6. (|

Remark 5.11. Quadrature rules of the form I,,(f) = Z?Zl A f(0;) to estimate
weighted 27-periodic integrals I, (f) have been constructed making use of the zeros
of certain trigonometric polynomials associated to a bi-orthogonal system. For this
reason we have been forced to deal with an even number of nodes and weights. Now,
we might wonder if a quadrature I,,(f) with n an arbitrary natural number and
with the highest degree of trigonometric precision (n—1) could be also constructed.
It seems clear that we can not use zeros of real trigonometric polynomials anymore,
since the number of these is always even. Actually, this question does not appear
in the paper by Szeg6 [14]. In a forthcoming paper a positive answer will be given
by introducing convenient technical modifications of Szegd‘s paper [14]. However
we can also find an answer in the paper by Jones et. al. [10] which, for the sake of
completeness, will be surveyed in the next Section. As a consequence, a connection
between the concepts of bi-orthogonality and para-orthogonality introduced in [14]
and [10] respectively will be also made.

6. A connection with the unit circle. Para-orthogo-
nal polynomials

In this Section we shall be concerned with the approximation of integrals on
the unit circle, i.e., integrals of the form [} f(z)du(z), u being a positive measure
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on T, by means of an n-point quadrature rule:
=D Af(z) 5 #F e j#k {5} CT. (6.1)
j=1

By a slight abuse of notation we shall set u(z) = u(6) for z = e?. As before, and
for the sake of simplicity, we will also assume that p is an absolutely continuous
measure i.e., du(f) = w(6)db so that we consider integrals of the form

L) = [ 1o (6:2)

where f(e?) is in general a complex function. Thus f(e?) = f1(0) + if2(6) with
£;(8) for j = 1,2, both real 2m-periodic functions. Here, taking into account the
basic fact that any continuous function on T can be uniformly approximated on T by
Laurent polynomials, the nodes {zj _; and weights {A;}"_, are to be determined
by requiring that I,,(f) is exact in A_p ¢ (domain of vahdlty) with p and ¢ as large
as possible (clearly this means that I,(L) = I,(L), forall L € A_, ;). Now, assume
that for the weight function w(f) and an even integer n we have found an n-point
quadrature rule I,,(f) = Z?zl A; f(0;) with the highest degree of trigonometric
precision (recall that \; > 0 and 0; # 0y if j # k, {0;}7_; C (—m,7]). Take
L €A_(;_1)n_1 sothat L(e") = L(0) + iL(0) with L, Ly € 7,,. Then

L(L) = [T L()w(0)dd = ["_ Li(0)w(0)dd +i ["_ Ly (0)w(9)do
= X ALl() i A La(0;)

Z N (La(0) +iL2(60;)) = S AiL(e™)

= ijlAL(ZJ)’ Zj—eej,]—l,...,n.

(observe that z; # zj if j # k). Thus, provided that n is even a quadrature rule
with domain of validity A_(,_1) ,—1 for I,(f) has been constructed.

Convelrsely7 let I,(f) = Zj 1A f(25), 25 # 21 if j # k, be exact in A_(;,_1),n—1
and set z; = €%, 0; € (—m, |, 0; # 0y if j # k. Set T € T,,_1, then T(0) = L(e*)
with L € A | so that

/ " ()0 = / " (e )w(0)d0 = Z A L) = i: A,T(0;) = I(T)

with I,(f) = Z;.lzl A; f(6;). Thus, we see that the problem of constructing an n-
point quadrature formula for w(#) with the highest degree of trigonometric precision
with n arbitrary would be solved. As immediate consequences we would also have:

L. Any quadrature rule I,,(f) = > 7_; A;f(2;) with distinct nodes on T which
is exact in A_(,_1),—1 has positive weights A;, j =1,...,n.

2. There can not exist an n-point quadrature rule as before which is exact in
Ay
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Thus, in the sequel, given the integral I,(f) = ffﬂ f(e)w(0)dh we shall be
concentrated on the construction of I,,(f) = >27_; A;f(2;) such that z; # 2 if
j#k,z;€Tforj=1,...,n by imposing

I(L) = I,(L), VL € A_(y_1)n1- (6.3)

According to [10], A(;,—1),,—1 Will be called “the maximun domain of validity”
for I,,(f), provided that (6.3) holds. Now, set y, = [*_e~"*9w(6)df for any k € Z
(trigonometric moments) so that (6.3) gives rise to the equality

ZAkzizu,j, —(n-1)<j<n—1. (6.4)
k=1

This leads to a study of the solutions of (6.4) which represents a nonlinear system
with 2n unknowns and 2n — 1 equations. We will proceed as in the preceding
section by analyzing the properties of the nodal polynomial for I,(f), B,(z) =
[1j_1(z — 2;). First, take into account that in case the zeros {z;}7_; of By,(2)
satisfy z; # 0 and z; # 2 if j # k, then by taking n consecutive equations in (6.4),
the weights {A;}7_, are to be uniquely determined in terms of the nodes {z;}7_;.
Indeed, let p and g be nonnegative integers suche that p + ¢ = n — 1 and take in
(6.4) the n equations

n
> Apz=p_;, -p<j<q (6.5)
k=1
Clearly, (6.5) is a linear system for the unknowns Aq,..., A, admitting a unique

solution because the determinant of the matrix of the system satisfies

p —p —p
zy " 29 " Zn 1 1 1
Zl P P Z;p-’rl ) 21 29 N Zn
) . = (21" 2n) . . ) #0.
q —1 —1 n—1
21 ) zk 21 Z9 Zn

(Recall that we are assuming z; # 0 and z; # 2z if j # k). Secondly, we can also
deduce the following necessary conditions for the polynomials By, (z):

Theorem 6.1. Let I,(f) = 27—, A;f(2;) such that z; € T and z; # zy, if j # k
satisfying In(L) = 1,(L), for all L € A_(,_1)n—1. Set B,(z) = H?:l(z — zj).
Then,

1. B,(z) is invariant.
2.

(Bn(2),2"), =0, 1<k <n—1, (Bny(2),1)0s #0, (Bn(2),2"), #0. (6.6)

Proof. 1. It trivially follows since by hypothesis the zeros of B,,(z) lie on T.
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2. Set 1 <k<n-—1. Then

(Bp(2),2"), = / B (e)eik0u(0)do = / L(e)w(0)do

—T —T

s

where L(z) = 27%By(2) € Ak C A_(y—1),n—1 and L(z;) = 0. Then,
because of the exactness of I,(f) in A_¢,_1),,—1 we have

(B2), 2", = [7_L(e")w(0)df = I,,(L)
=320 AjL(2) =0, 1<k<n -1

If (Bn(2),1)y, = 0, then (B, (2),2*), = 0 for 0 < k < n, yielding B, (z) =
pn(2), and hence the zeros lie in D, contrary to assumption. Similarly, if
(Bn(2),2™), = 0 then B,(z) = p%(z) and hence the zeros lie in E, contrary
to assumption. Thus (B,(2),1), # 0 and (B,(z),2"). # 0.

U

Remark 6.2. From the above considerations including the fact that

<Bn(2)7 1>w # 0, <Bn(Z),Zn>w 7é 0

when I, is exact in A_(,,_1) ,—1 and that the zeros of the n-th Szegé polynomial lie
in D, it follows that there can not exist an n-point quadrature formula with nodes
on T to be exact either in A_(,_1), orin A_, , 1.

Polynomials B,,(z) satisfying (6.5) will play a crucial role in the construction
of our quadratures I,(f) with the maximun domain of validity. This caused (see
[10]) the following

Definition 6.3. A polynomial B, (z) of exact degree n, n > 1, is said to be para-
orthogonal with respect to w(f) if and only if the orthogonality conditions (6.6)
are satisfied.

Now, several questions immediately arise. Indeed, for a given weight function
w(f) and a natural number n, does a para-orthogonal polynomial of exact degree
n exist? If so, how can it be characterized? What about its zeros? The two
first questions are answered in [10] where the concepts of “para-orthogonality” and
“invariancy” were earlier introduced. Thus, in [10] one can find the following

Theorem 6.4. A polynomial B,(z) of exact degree n, n > 1, is para-orthogonal
and invariant if and only if

Bn(2) = Culpn(2) + 7p,(2)], Cn #0, |7[ = 1. (6.7)

Now, by recalling that the sequences {p,(2)}52, and {p%(z)}22, satisfy the
recurrence relations

pn(2) = zpn_1(2) + dnpli_1(2) n=1,2,3,... (6.8)

05(2) = Opzpn_1(2) +pi_1(2) n=1,2,3,...
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where, as usual, §, = p,(0) for all n =1,2,... (|0,| < 1), then we have

Bu2) = Calpnl) + 1361 = (14752) € [spna(a) 4 (£ ) 1)

yielding (observe that |1 + 76,| # 0)

By(z) = én [anfl(z) + )\np;_l(z)] ) C~Yn #0, A =1 (6.9)
(here, A\, = % € T). Conversely, any polynomial B, (z) satisfying (6.9) can
be expressed as in (6.7), were now 7 = %;7)‘_"1 € T. In short, we have obtained

an alternative characterization of the para-orthogonal and invariant polynomials
as shown in the following

Theorem 6.5. A polynomial B, (z) of exact degree n, n > 1, is para-orthogonal
and invariant if and only if

Bn(z) =Ch [an—l(z) + Tpil_l(Zﬂ , Cn #0, |7'| =1.

Remark 6.6. >From this theorem we see that to compute a para-orthogonal poly-
nomial of degree n, only the Szegd polynomial of degree n — 1 is required.

Next, we will make a connection between certain sequences of para-orthogonal
polynomials and bi-orthogonal systems of trigonometric polynomials for the same
weight function w(d). For this purpose, let Ba,(2z) be a polynomial of degree 2n,
para-orthogonal and invariant. Then, from the begining of Section 2, one can write
(by virtue of invariance)

Bgn(ew) = anemefn(ﬁ), a, #0 (6.10)
fn(0) being a real trigonometric polynomial of precise degree n.

Theorem 6.7. Let f,(0) € 7,, as given by (6.10). Then {f,(0),T(0))., = 0 for all
TeT, 1.

Proof. Clearly, it will be enought to show that, (p,(z),2/), = 0 for —(n — 1) <
j<n—1(z=¢"?). By (6.10) and since a,, # 0, the above becomes

(e7™P By, (€7),e"%), =0 , —(n—1)<j<n—1. (6.11)

Now, by Theorem 6.4, Ba,,(2) = pan(2)+7p5,,(2) (observe that the constant Cy,, #
0 is now irrelevant) so that (6.11) can be written as

(e (p2n(€”) + 75, (")) €)=
<p2n(z)’ Zn+]>w + T<p§n(z)’ Zn+]>w =0,

because both inner products are zero by the orthogonality properties of ps,(z) and
P (2)- 0
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Now, as a direct consequence of Theorem 4.9, we can establish the fundamental
property concerning the localization of the zeros of B, (z). Indeed, one has

Theorem 6.8. Let B, (z) be a para-orthogonal and invariant polynomial of degree
n. Then By(z) has exactly n distinct zeros on the unit circle T.

Proof. Assume first that n is even, say n = 2m so that by (6.10)
e_imaBgm(eie) = amhm(0), am #0, hm € Ty

Let foU{fx, gx}3>, be a bi-orthogonal system of trigonometric polynomials. Then,
by Theorem 6.7, hp,(0) = o fin(0) + Bmgm(0), |m| + [Bm| > 0 and the proof
follows by Theorem 4.9. Suppose now that n is odd, i.e. n = 2m + 1. Since
Bot1(2) is invariant, one knows that Bay,,11(z) has at least one zero A on T of
odd multiplicity. Thus, Boy41(z) = (2 — A)Bam(2) with Ba,,(2) a polynomial of
degree 2m. Furthermore, it can be easily checked that Ba,,(z) is also invariant
and para-orthogonal for the weight function &(8) = |e® — A\[2w(f). Hence, Ba,(2)
has 2m distinct zeros on T. Furthermore, any zero of Bay,(z) is different from A,
otherwise its multiplicity would be two. This concludes the proof. U

Remark 6.9. In [10] another different and longer proof of Theorem 6.8 is pre-
sented. Here we have taken advantage of the properties of bi-orthogonal systems
introduced in Section 4 to give a simpler proof.

Let {B2,(2)}22, be a sequence of para-orthogonal and invariant polynomials
such that for each n > 1, Bs,(z) has exactly degree 2n. Because of invariance
again, it can be written

Bs,(z) = anei"‘gfn(H), an #0, f, €7T,.

Then, by Theorem 6.7, {f,(0)}°2, (fo(f) = fo # 0) represents a nontrivial
orthogonal system of trigonometric polynomials, in the sense that for each n, f,,(6)
has the precise degree n and (f,(0), fm(0))w = Kndnm, Kn > 0. Now, we could
ask if it is possible to find another orthogonal system {g,(6)}°2; so that fo U
{fn(0), g (0)}52, constitutes a bi-orthogonal system of trigonometric polynomials.
To fix ideas, set

Bon(2) = Ban(2,mn) = p2n(2) + Tnpzn(2)

where {7,}72 is a sequence of complex numbers on T. Certainly, we can write

Ty = %, Yn € C, v, # 0 so that if 7,, = €™, then ,, = rpe /2, M € R, ry > 0.
On the other hand, setting z = e?:

2 "Bon(z) = LQLPU:% %ﬁp()]
- L %”2"@”7722”0(%)*(2)}
Tn "
L [z p2n(2) + 70z " p2n ()|

= 2R (e panl2).
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Consider now Bay, (2, —Tp) = pan(z) — Taps,(2). Then, again by Theorem 6.7,
one has
e " B (e, =71) = Angn(0), An #0, gn € Ty

and {g,(0)}52, is an orthogonal system of trigonometric polynomials. Therefore
it holds that

(9n(0), 9m(0)) 0 = Knbpm, Kn >0 ;5 (90(0), fm(0))w = 0, n # m.

Let us also see that (f,,(0),¢.(0))w =0 for n =10,1,.... As above, it can be easily
shown that

gn(e) = én(\} (7nz_np2n(z)) = éngn(e)
with C), # 0 and §,, € 7,,. Hence,

(fn(0),9n(0)0 =0 = (fn(0

=
K<}
3
—

>
S~—
~
€

Il
o

Now, for z = €%,

IT (Y2 p2n(2)) w(@)d) = [T [fn(e) + ign(e)rw(e)dg
= [T 20)w(0)d0 — [T G2 (0)w(8)db+
+ 20 [T fu(0)3n(0)w(6)do.

Thus, by assuming that 72 [* 27%"p3 (2)w(6)df (z = €) is a real number it
follows that i
F(0)30(0)w(0)d0 = (f.(8),Gn(0)) = 0.
But .
V2 [T P8, (2)w(0)dO =2 [T pon(z) st w(6)do
= [T p2n(2) Brw(0)do
= 7727,6271 <p2n(2)7 22n>w-

Since (pan(2), 22" = (p20(2), p2n(2))w = pan(2) ||2> 0, then the positivity of

22 / 222 ()w(0)d6

—T

reduces to Y282, € R, or equivalently 7202, € R. In terms of the parameter
Tn = 1—" € T, this condition implies 7,02, € R. In other words, we have proved the
following

Theorem 6.10. Let {7,}52, be a sequence of complex numbers in T such that
Tnl2, € R and consider the sequences of polynomials { Ban (2, 7,)}5%, and
{Ban(z,—m)}°2, so that for each n = 1,2,..., Ba,(z,£7,) is a para-orthogonal
and invariant polynomial of degree 2n . Then
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1 €M By (€,7,) = A fo(0) and €= By, (€, 1) = Xga(0) with A, and

e
A\ nonzero complex numbers and f,(0) and g,(0) being trigonometric poly-
nomials of the precise degree n.

2. Choose fo # 0, then foU{fn(0),9n(0)}22, represents a bi-orthogonal system
for w(6).

Now, from Theorem 4.10 or Corollary 4.12 one immediately gets

Corollary 6.11. Under the same assumptions as in Theorem 6.10, the zeros of
the para-orthogonal polynomials Bay(z,7,) and Bay(z,—7,) interlace.

On the other hand, a converse to Theorem 6.10 can be also given. Indeed, we
have:

Theorem 6.12. Let fo U {fx, gr}3>, be a bi-orthogonal system for w(0) and take
a and b real numbers not both zero. Then, forn > 1

Hy,(0) = afn(0) + bgn(0) = e_maB%(ew)
and Bay,(z) is a para-orthogonal and 1-invariant polynomial of degree 2n.

Proof. We can write
fn(0) = Z (aj cosjO +bjsinjh), g¢n(0) = Z (cyj cos j6 + B; sin j6)
j=1 J=1

with |a,| + |bn] > 0, |an| + |8n] > 0 and

n

fn(0) = Z cp2t e A yn, gn(8) = Z dpz"* € A yppn, 2= e

k=—n k=—n
where for k=1,...,n,
— _ ak—ibg _ aptibg
o fo G akziﬁk k= akgriﬁk (6'12)
d[):Oé(), dk:T7 dk '2 .
Hence, by the transformation z = e it follows that
Bon(8) =2"[aYh__,end® + 00, di2*] = Y00 (acjn + bdjn) 2

and it is clear from (6.12) that e3,—; = e; for j = 0,...,2n. This proves the
1-invariance property. Now, from the orthogonality conditions satisfied by f,,(6)
and g, () it follows for j = 1,...,2n — 1 that

(Ban(0),e9%) s = (™ afn(0) + bgn(0)], 7)., =

= a<fn(9)a ei(j—n)f))w + b<gn(9)a ei(j_n)9>w =0,
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i.e., (Bay(2),27), =0forallj =1,...,2n—1. We will prove next that (B, (z), 1),
# 0 and (Bay,(2),2°™),, # 0. Firstly observe that

(Ban(2), 1)y = a(fn(0), e—in0>w + b(gn(0), e_in0>w;

) ) (6.13)
<BQn(Z), Z2n>w = a<fn(9), 6”L0>w + b<gn(9), ezn0>w )
Writing cosnf = M7 sinnd = ‘"9797 Fa(6) = ay, cosnf + by, sinnf +

H,_1(0) and g,(0) = v, cosnb + (3, sinnb + Hn_1(9), where Hn_l(H),f{n_l(H) c
Tn—1, we deduce that

<fn(9)’fn(0)>w = <fn( ) ap cosnl + by, sinnb + H,,_ 1( )>w
= balan (7, 9), ), o+ Ztten (7, (0), =), =
= h, >0,

(9n(0),9n(0))0 = Bm—zan (gn(0), m6>w+m<gn(9) 7m0>w =
= h >O

(fa(0),9n(0)) = (fa(0),ancosnd + B, sinnd + H,_1(0))., =

_ ﬁn+zan <fn( ) zn0>w + wwﬂl(e%e_ine)w = 07

<gn(9)vfn(9)>w = b —Han <gn(9) m9<+m<gn(9) _m9>w =0.

These relations can be summarized as

<<n@¢%w) (()) ((%@ﬂ%w> (%%)
A = 5 A = 9
<fn(9)a e_in9>w 2thy, <gn(6)7 e_in9>w 0
where

A:

ﬁn + ian _ﬁn + ian
b, +ia, —b, +1ia,

) , det(A) = 2i[a,f, — apb,] #0

since f,,(0), gn(0) are linearly independent trigonometric polynomials. The solu-
tions of these systems are given by

mwmwuzg%g—fm¢o«mwawuzﬁﬁﬁmﬁ
—b,, +ia,

<gn(9)v em9>w = mh; 7£ 0, <gn((9)7 e—in9>w = m

Now, from (6.13) it follows that

(Ban(2), 1 aBuhn — bBuh,) + i(acmhy — banh,,)

Yo = amiiiﬁ
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and (Ba,(2),2*"),, = (Ban(2),1),. Again, since f,(0), g, (f) are linearly indepen-
dent it is easy to observe that (B, (2), 1), # 0 and hence (Bsg,(z), 2%"),, # 0. This
completes the proof. O

After having established certain connections between para-orthogonal polyno-
mials and bi-orthogonal trigonometric polynomials we are now in a position to
construct an n-point quadrature rule for I,(f) with nodes on T and having the
“maximum domain of validity”, A_,_1) ,—1. Indeed, we have (see [10])

Theorem 6.13. Let z1,...,z, be the n distinct zeros of B, (z) a given polynomial
of degree n, para-orthogonal and invariant. Then, there exist positive numbers
Aq, ..., A, such that

I(f) =Y Ajf(z) =L(f) = | fe)w(®)dd, ¥ fEA (1 1)n1-
j=1 o

Now, by considering Theorems 6.1 and 6.13 together we obtain the following
characterization (see [2]):

Corollary 6.14. Let I,(f) = [ f(e)w(0)df and let I,(f) = Y71 Ajf(z)
such that z; € T, j=1,...,n with z; # 2, if j # k and set By (z) = [[i—,(z — 2j).

=1
Then I,(L) = 1,(L) for all L € A_(;,_1) -1 if and only if ’

1. I,(L) = I,(L), for all L € A_,, 4, p and q being nonnegative arbitrary integers
such thatp+q=mn—1.

2. By(z) is para-orthogonal and invariant.

Furthermore, when the conditions are satisfied the weights {A; }?:1 are positive and
independent of p and q.

Remark 6.15. The quadrature rules I,,(f), n = 1,2,... as given above are called
“Szegt quadrature formulas” and were earlier introduced in [10]. They represent the
analogue on the unit circle of the Gauss-Christoffel formulas. For an alternative
approach of Szegd quadratures making use of the so-called orthogonal Laurent
polynomials on the unit circle, see the recent paper by the authors [3]. For further
details concerning these quadratures see also [4], [5] and [9].

To conclude, it should be remarked that given the integral ffﬂ f(Ow(0)do , f
being a 2m-periodic function, it clearly follows from Corollary 6.14 how to construct
an n-point quadrature rule with distinct nodes on [—7, ] which is exact in 7,1, n
being an arbitrary natural number. As a simple illustration, let us consider again
the weight function w(f) = 1. Then, B,(z) = 2" — 7, |7| = 1 and the nodes of the
n-th Szegd formula are the n-th roots of 7, that is z; = /7, j = 1,...,n. Thus,

A 1 /7r B"(Z)dﬂ 1 1/ 2" =T d 2T
. A = - z=—,
 By(z) )y 2 — 2 nz" Vi Jp 2(z — z5) nzt

— g j

by the Residue Theorem. Since

zj =T, we obtain 4; = 27”, 7 =1,...,n as previously deduced in Example 5.9.



Quadrature rules for periodic integrands. Bi-orthogonality and para-orthogonality 39

7. Numerical examples

In order to illustrate the numerical effectiveness of the quadrature rules con-
sidered through the paper, in this section we are going to be concerned with the
computation of the two-parameter integral,

T s mé
I(m,a) = %d@, m>0, meN, a>0. (7.1)
. a+sin?6

Observe that for a = 0, the integral diverges. Thus, for values of « close to zero,
the denominator of the integrand is also close to zero as 6 tends to £m. Certainly,
this could generate some kind of unstability when undertaking the approximation
of I(m, «) by means of a certain quadrature rule with nodes close to £7.

On the other hand, for m largeeenough7 the integral is highly oscillating on

cos m

[—7, 7]. Indeed, setting f(0) = then f(0) clearly changes sign at the points

~ a+sin26’
for which f(6) =0, 1. e, at 0 = %, -m<k<m-1.
Under these considerations, we propose the following in order to compute ap-

proximately the integral I(m,a). Note that because of simmetry, one can write

I(m,a) :2/ _cosmb g, (7.2)
0o «+sin“mb

First, we have approximated (7.2) by means of the n—point Gauss-Legendre
formula for the interval [0, 7] and the Trapezoidal rule for n = 10,12, 14, 16. Here n
denotes both the number of nodes in the Gauss-Legendre formulas and the number
of subintervals in [0, 7]. The results are displayed in the following tables.

Quadrature rules n=10 n=12 n=14 n=16
Gauss-Legendre 2.26414 0.300761 0.00937743 | 0.000154023
Trapezoidal 0.0224394 | 0.000660554 | 0.000194449 | 5.72404E-7

Table 1: (m =14, a =1)

Quadrature rules n=10 n=12 n=14 n=16
Gauss-Legendre | 8.93136E-5 | 7.12412E-7 | 1.17708E-8 | 4.65022E-10
Trapezoidal 4.20833E-8 | 1.30695E-10 | 4.05799E-12 | 1.26807E-15

Table 2: (m =8, a =4)

Take into account that the trapezoidal rule coincides with the quadrature for-
mula with the highest degree of trigonometric precision (Szegé formula). This fact
might explain why the results provided by the Trapezoidal rule are better than
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those given by Gauss-Legendre formula. However, when « is closer to zero, the
results of both quadrature rules, as it could be expected, are rather poor. This is
shown in Table 3 corresponding to m = 12 and a = 0.25.

Quadrature rules n=>6 n==_§ n=10 n=12
Gauss-Legendre | 5.05696 | 5.60122 | 0.516198 | 0.0190433
Trapezoidal 11.2748 | 1.64061 | 0.239269 | 0.0349069

Table 3: (m =12, a = 0.25)

In order to overcome this drawback, we are going to take the factor as

1
a+sin? 6
a weight function. For this purpose, set T(f) = a+sin® 6, so that T'(6) is a positive
trigonometric polynomial of degree two. Then, by Theorem 2.6, one can write,

T(0) = ‘g (ew)|27 g € Ils.

Since T(0) = a +sin®6 = a + 1(1 — cos26), then by setting = 2a+1 > 1
and z = e,
1
2T(0) = B— 5(z* +27%),

yielding,
—24 42822 -1

22 '
Furthermore, since T(0) > 0 and z € T, then

AT(0) =

4T(0) = AT ()| = |2* — 282* + 1]. (7.3)

If we set z* — 2822 +1 =0, then 22 = 8+ /32 — 1. Let v = B+ /3% — 1, then,
it is easy to check that % = 3 — /32 — 1. Therefore, one has

228224+ 1= (22— ) (22 —y71). (7.4)
On the other hand, since z = ¢’ and v € R, we have:

A I G e [ R e e [
= (2 (5F) = =@ - NEE -

>From (7.3) and (7.4), one has:

0< |-y P =-——

Thus,
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Now, taking into account that for integrals of the form: f:r f(eie)%,
with A a monic polynomial with all its zeros in D, the coefficients of the n—point
Szegs quadrature formulas are explicitly known ([9]), we will transform our integral
I(m, a) as follows: (z = e*)

I(m,a) = [T —cosmlqg— [T cosme%l%i)|2

m a+sin? 0
_f (4”,2 + 2z~ m))(%).

Therefore, we can write:

I(m,a) = ! f(e®)w(6)ds, (7.5)

—T

where f(z) = %(zm + 27™) and the weight function is given by w(f) = W,

Land z = €%,

with g(2) = 2% —~~
In this case, from Corollary 6.14, one knows that the nodes {z;}}_; of the
n—point Szegd quadrature formula are the zeros of the para-orthogonal polynomial
B, ( ) = pn(2) + 705 (2), pn(2) being the n —th monic Szegd polynomial for w(f) =
2ﬂ|q(z)|2, with |7] = 1. Thus from Example 4.8, B,(z,7) = 2" 2g(z) + 79*(2) =
2" 2(22 =471 + 7(1 — 47 '2?). On the other hand, the coefficients {);}7_; of an
n—point Szegd’s formula are given by [9]:

ZJ+f

<n—2+ 1— ( 1 5 + 11 2))
ZJJrﬁ

2

_ NN +Z+ﬁ

= lg(z;)| <n 24 ( \g(zj>|2

1 L ? 1 ?
)\;1 = |g(ZJ)‘2 n_2+ ] ﬁ Pl + ﬁz

= lg(z)I?

/_\

—ER(z)+y + I+ ER(G)+S
=lg(z)P? (n—-2+0 ( BE )>
= 19(z)I2 (n =24 200~y )1+ 7 V) k)
= (n—2)[g(z)]” +2(1 - 2)7 j=1,...,n

Note that, if m < n — 1, then the n—point Szegs quadrature formula is exact
since the integrand f € A_,, .

Now, by (7.5), I(m, «) is going to be approximated by an n—point Szegd formula
I,(f) = Z?:l Ajf(z;) so that the absolute errors can be exactly computed since
I(m,a) can be calculated by the Residue’s Theorem.
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Indeed, since I = [ Snml 4y — () then

7T a+sin? 0

_ [T cos m0 . sin m#@ _ ™ cosmB+isinmb
I(m’ Oé) - f—ﬂ' a+sin? 6 do +1 f 7T a+sin? 6‘d9 f T(60) do

= =2 (8” m)ﬁ

5

™ Lmt2 1
= % —7 (_877) m 27rz f'I[‘ mdz
= 1
_Res( ,\f)—f—Res( ’ﬂ)’
m+1
where h(z) = (=87) =Ty
Now,
1
1 )™ 4my
Res <h, ) — _87 _ 7
v 2 (1-,)  WeTT)
and
1 (=ym*t A
_ _ (V)m+t m+1 —4my
fies (h’ ) ~8m (-1)
-2 (1 (a2 1
VI =2 (1) V"2 - 1)
Hence,
__8my .
I(m,a) = dmy(1 = (=)™ _ V(=) if m is even,
) (ﬂ)m(WQ — 1) 07 s odd.

Taking now m = 12 and a = 0.25, the absolute errors for the corresponding
n—point Szegd formula are displayed in Table 4 (Compare with Table 3).

n Error- Szegd formula
n=4 3.18008
n=8 | 1.8473911237281646E-15
n=12 | 6.949821829035384E-15

Table 4: (m = 12, a = 0.25)

The excellent behaviour of Segs formulas can be explained from [9, Theorem
3.3] taking into account that the integrand f(z) in (7.5) has one only pole at the
origin.
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