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1. Introduction

The statistical independence was studied by G. Rauzy [9], and later in the
papers [3], [5]. We remark that two arithmetical functions F, ¢ with values in [0, 1]
are called statistically independent if and only if
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as N — oo for all continuous real valued functions f, g defined on [0, 1] (cf. [9]). In
the papers [3], [5] a characterization of this type of independence is given in terms
of the LP-discrepancy.

The aim of the present note is to give a “statistical” condition of lLinear
dependence of some type of functions. We consider two polyadically continuous
functions f and g. Such functions can be uniformly approximated by the periodic
functions (cf. [8]). Let €© be the space of polyadic integers, constructed as a
completion of positive integers with respect to the metric d(z,y) = > 7, w
where ¢ (z) = 01if n|z and ¢, (2) = 1 otherwise, (see the paper [7]). For a survay on
the properties of this metric ring we refer also to the monograph [8]. The functions
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f, g can be extended to uniformly continuous functions f, g defined on 2. The space
Q is equipped with a Haar probability measure P, thus f,§ can be considered as
random variables on . Put
5= |E(f-3) - E(f) - E@)|
D2(f) - D*(g)

bl

where E(-) is the mean value and D?(-) is the dispersion (variance) (cf. [1], [10]).

The value p is called the correlation coeflicient of f, g, thus if p = 1 then g = Af+B
for some constants A, B. In the following we will prove a similar result for a greater
class of functions.
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2. Correlation on a set with valuation

Let M be a set with valuation
|- [:M — [0, 00)

such that
(1) The set M(x) = {a € M : |a| < x} is finite for every z € [0, c0),
(i) I N(x) = card M(x), then N(z) — o0 as ¥ — 0.
Let S € M and put for z > 0

card (S N M(x))

Then 7, is an atomic probability measure with atoms M(x). If for some S C M
there exists the limit

(2.1) lim 7,(S) = ~(S),

r— 00

then the value v(S) will be called the asymptotic density of S.

If his a real-valued function defined on M, then it can be considered as a
random variable with respect to v, for # > 0 with mean value

and dispersion

DAY = o 3 (@) Bu(h))? = o 3 W) — (B (h)?

(cf. [1]).

Remark. In the case M = N (the set of positive integers) we obtain by (2.1) the
well known asymptotic density. Various examples of such sets M with valuations
satisfying (i),(ii) are special arithmetical semigroups equipped with absolute value
| - | in the sense of Knopfmacher [6].

Let f, g be two real-valued functions defined on M and DZ(f) > 0, D%(g) > 0
for sufficiently large x. Consider their correlation coeflicient with respect to =,
given as follows

(22) P :px(fag) = Dx(f 5
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Clearly, if p, = 1, then for every oo € M(x) we have
g(o) = Az f(a) + By,

where

_Bf0) ~ B(f)E ()

Ae D2() ’

and

(ct. [1], [10]).
Note that if M = N and f, ¢ are statistically independent arithmetic functions,
then

pa(f,g9) — 0,2 — oo,

The line § = Aya+ B, is well known as the regression line of f, g on M(x) (cf. [1],
[10]). Consider now the function ¢ — A, f. By some calculations we derive

Ex(g - Axf) = B,

and
Di(g — A f) = (1 — p7)D3(g),

where p, is given by (2.2). Thus from Tchebyschev’s inequality we get

(1= 2020

2.3 e ({as lo(@) = A2 fla) = Bal 2 2)) < =12

Suppose now that there exist some A, B such that A, — A, B, — B.
We have

l9(a) — Af(a) = BI < lg(a) — A: f(a) = Bo| + |f(@)|As — Al + B, — B,

Thus if f is bounded we obtain for ¢ > 0 and sufficiently large =

l9(a) = Af(a) = B = & = |g(a) — Ao f(a) = B| > 5.

and so (2.3) yields

(2:4) ve({a:lgla) — Af(a) = Bl > ¢}) < =

Now we can state our main result.

Theorem 1. Let f, g be two bounded real-valued functions on M.
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(1) Suppose that D2(f) > 0, D2(g) > 0 for sufficiently large x and A, — A, B, —
B and py; — 1 (as © — oo). Then for every ¢ > 0

(2.5) ({a: lgla) - Af(a) = B| 2 £}) = 0.

(2) Let D2(g) > K > 0 for some K and assume (2.5) for every ¢ > 0 and suitable
constants A, B. Then p, — 1 (as # — o0).

Proof. If g is bounded, then also DZ(g) is bounded and the assertion (1) follows
directly from (2.4).

Put g1 := Af + B. The assumptions of (2) imply that A # 0 and D3(f) >
K1 >0,D%(g1) > K3 > 0 for some constants K;, K». Then we have

(2.6) palgr, f) =1

for each z.

Denote for two bounded real-valued functions Ay, ha:
hi ~ hy <= y({a : |h1(a) — ha(a)| > £}) = 0.

It can be verified easily that ~ is an equivalence relation compatible with addition
and multiplication, moreover for each uniformly continuous function F it follows
from (i4)

as ¥ — oo. In the case (2) we have g ~ gq. This yields
(2.7) Dx(g) — D%(g1) — 0,2 — oo,

but (2.6) gives
Dx(gl)Dx(f) = |Ex(glf) - Ex(gl)Ex(f)|

Hence, observing that D;(f) is bounded we obtain from (2.7).

Dl?(g)Df(f) - |Ex(glf) - Ex(gl)Ex(fﬂ — O,x — 00 .

Therefore
Dx(g)Dx(f) - |Ex(gf) - Ex(g)Ex(f)| — 0,z — o0,

and the assertion follows.

The Besicovitch functions. Consider now the case M = N. An arithmetic
function A is called almost periodic if for each € > 0 there exists a periodic function
h. such that

lgrlooﬁ > lh(n n)| < e.
n<N
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(These functions are also called Besicovitch functions). The class of all such
arithmetic functions will be denoted by B!. For a survey of the properties of B!
we refer to [8] or [2]. For each h € B! there exist the limits

lim En(h) = E(h)

N—oo

and

lim D3 (k) == D?*(h).

N—oo

If f,g € B! are bounded then also f + g, f - g € B.
Thus, if D2(f), D*(g) > 0 then the limits lim A,, lim B, and Lm p, always

r— 00
exist.
The relation h ~ L for an arithmetic function - and some constant L, used in
the proof of Theorem 1, is defined in [4] as the statistical convergence of h to L.

Salat [11] gives the following characterisation of the statistical convergence:

Theorem 2. Let h be an arithmetic function, and L a constant. Then h ~ L if
and only if there exists a subset K C N such that the asymptotic density of K is
1 and lim, .o nex h(n) = L.

Denote by B2 the set of all Besicovitch functions of A, such that A is bonded
and D?(h) > 0. Thus for two functions f,g € B? there exists the limit p(f,g) :=
limy, oo pn(f, g). Theorem 1 and Theorem 2 immediately imply:

Theorem 3. Let f,g € B%. Then p(f,g) = 1 if and only if there exist some
constants A, B and a set K C N of asymptotic density 1 such that

lim  f(n) — Ag(n) — B =0.

n—oo,n€K

Let us conclude this note by the remarking that the statistical convergence of
the real valued function on M can be characterized analogously as in the paper
[11], using the same ideas. Let h be a real valued function on M and L a real
constant. Consider KX C M, then we write

]ienll( h(a) = L & Ve > 03woVa € K : |a| > 2o = |h(a) — L| < ¢.

Theorem 4. Let h be a real valued function on M and L a constant. Then h ~ L
if and only if there exists a set K C M such that y(K) = 1 and limgex h(a) = L.

Sketch of proof. Put K, = {a € M : |h(a) — L| < 2} for n € N. Clearly it holds
that v(K,) = 1,n = 1,2,.... Thus it can be selected such an increasing sequence
of positive integers {x, } that for > x,, we have

1
e (Kn) > (1——), n=12....

n
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Put

K= D Ko (M(an) \ M(z, )).

Using the fact that the sequence of sets K, is non increasing it can be proved that
Y(K) =1, and limsex h(a) = L, by a similary way as in [11].

o — —
W N =
[/

o
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