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1. Introduction

The following assertion has been proved in [1] as a by-product of a study of
exponential congruences (Corollary to Theorem 5). Let a sequence wy,, of rational
integers satisfy the recurrence relation u,41 = au, + bu,_1, where a’ + 4b # 0.
If the congruence u, = ¢ (mod p) is soluble for almost all primes p and either
b=0,—1or b=1, a# d®+ 3d (d integer), then ¢ = u,, for an integer m.

The aim of this paper is to extend this result as follows.

Theorem 2. Let K be a number field, u, a sequence of elements of K satisfying
the relation

(1) Upy1 = AUy + bu,_1, where a® +4b £ 0.

If ¢ € K, the congruence u, = ¢ (mod p) Is soluble for almost all prime ideals p
of K and either b=0,—lorb=1,a=00r b=1, a®> +4 # d? (d an integer of K ),
then ¢ = u,,, where m Iis an integer.

Corollary 1. Let a sequence u, of rationals satisfy the recurrence relation (1).
If ¢ € Q, the congruence u, = ¢ (mod p) is soluble for almost all primes p and
b=0, or 1, then ¢ = u,, for an integer m.

Comparing Corollary 1 with Corollary quoted above from [1] we see that now
u, need not be integers and the condition a # d® + 3d has disappeared.

Corollary 2. Let K be an imaginary quadratic field and u, a sequence of
elements of K satisfying the recurrence relation (1). If ¢ € K, the congruence
up = ¢ (mod p) is soluble for almost all prime ideals p of K and b = 0, or +1,
then ¢ = u,, for an integer m.

Theorem 2 is a consequence of the following theorem concerning exponential
congruences.

Theorem 1. Let K be a number field, « € K*, f € KJ[z], deg f < 4. The
congruence

f(@")=0 (mody)
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1s soluble for almost all prime ideals p of K, if and only if one of the following cases

holds for a ( in the splitting field of f

(2) z—ao | f(z), relZ

() a=p% (=" *) (24 872) (= 4+ 77 | f(2), i €25

(4) o= 62’ (Z _ 627‘14-1) (Z _Cizﬁzh) <Z+627‘3+1) (Z _Ci4627‘4+1) | f(Z),
r; €74, eseq odd ;

(0) a=p (2= 8") (= =¢8™) (¢ = (3*A™) (= = (3*A™) | f(2), 1 €,

ear1 Z0, 13 =0, earg = —1, egra =1 (mod 3);
(6) o= 64’ (Z_62T1+1) <Z+64T2) <Z+62T3+1) <Z+64T4+2) | f(Z), e Z,

¢4 denotes a root of unity of order q.

Remark. In principle one could obtain a similar result for degree f bounded by
any number b. However, the number of possibilities increases fast with & and the
matter gets out of hand (cf. Theorem 5 in [1]).

Definition. A system of congruences Apoto + Ap1t1 =0 (modmyp) (1 < h < g)
is covering, if every integer vector [lo, ;] satisfies at least one of these congruences.

Lemma 1. A system of congruences
(7) Apoto + Ap1t1 =0 (HlOd m) (1 <h< 4)
1s covering, If and only if one of the following cases holds:

(8) for an ho <4 :m | (Anyo, Ang1);

9) 2 | m and for three distinct indices hy, ha, hs < 4
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(10) 3 | m and for a permutation (hi, ha, hs, he) of (1,2,3,4)

Ahlo = 0, Ahll = 61% (HlOd m),
Ah20 = 62%, Ah20 =0 (HlOd m),
Ath = Ah31 = 63% (HlOd m),

Ap,0 = —Ap = 64% (mod m);

where [61,62,63,64] c {—1, 1}4

(11) 4 | m and for a permutation (hi, ha, hs, he) of (1,2,3,4)
Ap0=0, Ap1= % (mod m),
Apyo = %, Ap,1 =0 (mod m),

Ath = Ah31 = 63% (HlOd m),

Ah40 = —Ah41 = 64% (HlOd m),

where [e3,¢4] € {1, —-1}?;
(12) 4 | m and for a permutation (hi, ha, hs, he) of (1,2,3,4)

Apo=0, Ap1=

vo| 3

(mod m),

Ah20 = Egﬂ, Ah21 =0 (HlOd m),

4
Apgo = Apg1 = % (mod m),
Ano=cay, Ana = % (mod m),
where [e2,¢4] € {—1,1}?;
(13) 4 | m and for a permutation (hi, ha, hs, he) of (1,2,3,4)
Ap0=0, Ap1= 61% (mod m),
Apyo = %, Ap,1 =0 (mod m),
Apgo = Apg1 = % (mod m),
Ap,o = %, Ap,1 = 64% (mod m),



150 A. Schinzel

where [£1,¢4] € {—1,1}2.

Proof necessity. Since each of the vectors [1,0] and [0,1] satisfies one of the
congruences (7) we have for some A1, ha

An0=0, Ap,1 =0 (modm).

If A1 = ha = h we have the case (8), thus assume hy # hy. Since each of the vectors
[1,—1] and [1, 1] satisfies one of the congruences (7) we have for some ji, j2

(14) Ajlo — Ajll =0, A]'20 + Aj21 =0 (HlOd m)

If j; € {h1,h2} (i = 1 or 2), we have the case (9) with hs = j;, thus we assume
Ji € {h1, ha} (i = 1,2) and distinguish two cases:

(15) J1# J2
and
(16) J1=J2.

In the case (15) excluding the case (8) we infer that Ap,1 Z0 (modm), Ap,0 #
0 (modm), 4j,0 Z0 (modm), Aj,0 Z0 (modm). Since each of the vectors
[£2,1], [1,+2] satisfies one of the congruences (7) for h € {hy, ha, j1, ja} we infer
that either

(15.1) 2| m, A= Ay = % (mod m),
or
(15.2) 3|m, Ajo= EHZ% (mod m), [e3,e4] € {—1,1}2.

In the case (15.1), since each of the vectors [+3, 1] satisfies one of the congruences
(7) for h € {j1, j2}, we infer that either for an i <2, Aj,o =5 (modm), or 4 | m
and Ajo = €422 (modm) (i = 1,2) where [e3,e4] € {—1,1}%. In the former
case we have (9) with hs = j;, in the latter case we have (11) with A; = j;_»
(i = 3,4). In the case (15.2), since each of the vectors [3,1], [1,3] satisfies one of
the congruences (7) for h € {hy, ha} we infer that

Ap1 = 61% (mod m), Ap,o= 62% (mod m)

where [e1,€2] € {—1,1}2, thus we have the case (10) with h; = j;_5 for i = 3,4.
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Consider now the case (16). Excluding (8) we infer that

An;1 Z0  (mod m),
Anyo Z0  (mod m),

m
Ajlo = Ahl =

5 (mod m).

Let {ja} = {1,2,3,4}\{h1, ha, j1}. Since each of the vectors [1, £2], [+2, 1] satisfies

one of the congruences (7) we infer that either

(16.1) 2|m, Apa= % (mod m),
or
(16.2) 2| m, Apyo= % (mod m)
or

Aj, 224, =0 (modm),

(16.3)
+24;,,+A;,, =0 (modm).

The conditions (16.3) lead to (8) with h = js, the conditions (16.1) and (16.2)
together lead to (9) with hs = ji. If (16.1) holds but (16.2) does not, then since
each of the vectors [+2, 1] satisfies one of congruences (7) for h € {hz, j3}, we have

(17) +2A;, .+ A;,, =0 (mod m),

hence

+4A;, , =24;,, =0 (modm).

If

Aj, . =0 (modm),
then either A;, , = a0
% (mod m), which gives (9) with hy = js, hs = ji. If A; 2 (mod m),

0 (modm), which gives (8) with h = js, or A4;,, =
Js,1 = 2
then (17) implies 4 | m,

Ajy o = 64% (mod m),

which gives (12) with k3 = j1, hy = j3. If (16.2) holds but (16.1) does not, then by
symmetry we have (8) or (9) or (13).

Sufficiency of the condition follows from the easily verified fact, that the
following systems of congruences are covering:
0=0 (mOdl);tlEO,toEO,to+tlEO (m0d2);t1EO,toEO,to—i—tlEO,
to — 11 = 0 (HlOd 3), = 0, to = 0 (HlOd 2), to+11 = 0, to— 11 = 0 (HlOd 4),
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tlEO, t0—|—t150 (m0d2), toEO, t0—|—2t150 (m0d4), toEO, to+11 =
0 (mod2),t;1 =020+t =0 (mod4).

Lemma 2. If K is a number field, « € K, 3; € Q (1 < j <), the congruence
1
(18) [[(«"=5)=0 (modp)
j=1

is soluble for almost all prime ideals p of the field K(f1,...,5) = K1 and w Is the
number of roots of unity contained in K, then there exist v € Ky and a subset H

of {1,...,l} such that

(19) a={(oq°,
(20) By = (™ (he H)

and the system of congruences
(21) to (adp —ebp) + wdpts =0 (mod we) (h € H)

1S covering.

Proof. Let

t
(22) a= (o st c B=e [ a<i<,
s=1

where 7, are elements of the multiplicative basis of the field Ky (see [1], Lemma 9).
Let ) be a unimodular matrix such that

(23) [a1,...,a:] Q@ =[e,0,...,0], e=(a1,...,a)
and put
(24) Bi1, ..., 054 Q = [dj1, ..., dj4].

We choose integers 72, ..., divisible by w such that for all 5 <1

13
(25) > " djins = 0 implies dj, = 0(2 < 5 < 1)
s=2
and set
(26) TR Zd”ns
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Further we set

n n
27 =27 lem. (g —1 =—1 —1
(27) n wmeqscmnie(q ), m = —t+ao——to,
¢ prime

where 7 i1s the greatest integer such that (- + Cz_rl € Ky,

€1 m
(28) o = —to, = Q
&t Nt

By Theorem 4 of [1] there exist infinitely many prime ideals P of Ki((, ) such
that

Let H be the set of these indices h <[ that for some integers z,tg,¢; and for
some prime ideal P satisfying (29) we have

(30) o = fy (mod ).
(%).-(3),

t t
n n
x (aneo + ;_1 ases) = Ebhoeo + E brses  (modn)

s=1

The congruence (30) gives

hence

and by (24) and (28)
n n ¢
x (—anto + 67]1) = —Ebhoto + Z dpsns  (mod n).

s=1

Substituting the value of 1y from (27) we obtain

n n w a !
31 0 = nty = ——bpoto + —d (—t —Ot) dps s dn).
(31) nrty wh00+wh1 61-1-60-1-;1177 (mod n)

It follows that

t
Zdhsﬁs =0 (modm)
s=2
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and, by (26) and (25),

¢
(32) Zdhsns — 0, dhs = 0 (2 S S S t)
s=2
Hence, by (23) and (24),
b — dp1
hs = —Qhs
e

and putting ag = a, bpo = by, dp1 = dj,

1
Y= Hﬂ'?s/e
s=1

we obtain (20) and (21). Moreover, since the congruence (18) is soluble for almost
all prime ideals p of K the system of congruences, resulting from (31) and (32)
(33) (adp — ebp)to+ wdpt1 =0 (modwe) (h € H)

must be covering.

Remark. The above proof is modelled on the proof of Theorem 5 in [1].

Lemma 3. If a system of congruences

(34) AhOtO + Ahltl =0 (HlOd m) (1 S h S g)
is covering, w | m, d = (m, Aq1,..., Ay1) and o = #™/4 then the alternative of
congruences

o’ = C;;‘h”ﬁAhl/d (modp) (1<h<yg)
is soluble for all prime ideals p of Q((y, ) for which § is a p-adic unit.

Proof. Since the system (34) is covering, for every prime ideal p there exists an
h < g such that

qe=1 ind
Mo g edm),
(ind 3, deU—l) (ind 3, deU—l)
hence
Np—1 A Np—1
Apo =2 L A48 =0 (mod ™ (ind 8, d=> .
w d d w

However

Np—-1
w

%(jndﬁ,d )zO(mod(inda,Np—l)),
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hence the congruence

Np_l_p%indﬁzxinda(mod]\fp—l)

Ano

is soluble for z and we obtain

o = C{;‘h”ﬁAhl/d (mod p).

Proof of Theorem 1. Necessity.
By Lemma 2 the system (33) is covering, hence we apply Lemma 1 with

AhO = adh — ebh, Ahl = wdh.

If the case (8) holds, then for a certain h € H

adp — ebp = wdp, =0 (mod we),

dn

hence e | dj and b, = a?: (mod w), which gives

Bp = a®/e

hence (2) holds with r = dj/e.
If the case (9) holds, then for some distinct indices hq, ha, k3

adp, —eby, =0, wdy, = % (mod we),

e

sci, c10dd, 2 | a, by, = §e1 (mod w);

hence 2 | e, dp, =

adp, — eby, = %, wdp, =0 (mod we),

hence dp, = eca, 2 € Z, bp, = § +acz  (mod w);

adp, — ebp, = wdp, = % (mod we),
hence dp, = §c3, czodd, by, = 5 4 acs  (mod w).

This gives (3) with
g = C{Z/z’ye/z, 2ri+1l=c1, ra=cz 2rs+1=cs.
If the case (10) holds, 3 | we and without loss of generality we may assume

that we
ady —eby =0, wdy = 61? (mod we),
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34, (mod w);

hence 3 | e, dy = §e1  (mode), 3 |a, by = §=

ady — eby = 62%, wdz =0 (mod we),

hence e | da, 3 | w, by = df —2%  (mod w);

ads — ebz = wdz = 63% (mod we),

hence d3 = ¢35 (mode), b3 = %% —e3%  (mod w);
ady — eby = —wdy = 64% (mod we),
hence dy = —c45 (mode), by = %% —4%  (mod w).

This gives (5) with

3d;

(&

B=Co3e 3 = (1<i<4), e=-¢ (mod3) (2<i<4).

If the case (11) holds, 4 | we and without loss of generality we may assume
that

(35) ady —eby =0, wdy = % (mod we),
(36) ads — eby = 62%, wdz =0 (mod we),
(37) ads — eby = wds = 53% (mod we),
(38) ady — eby = —wdy = 54% (mod we).

(35) implies 2 | e and dy = § (mode), 2 | a, by = § - % (mod w), (36) implies

dy =0 (mode), by = a%z — % (modw), (37) implies 4 | ¢, « = w (mod 4).
Now, we distinguish two subcases

(39.1) w=2 (mod4)
and
(39.2) w=0 (mod4).

In the case (39.1) we take
a(w42)

B="Co ®
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and find
o= oyt = B
by d RN 4d
=G " =G (G ° g
2d @ a(w42) aw
:Cwel (5_ 42)64d1/€:C;Td164d1/€:Cw%ﬁéldl/e:_ﬁ%,
4dy
do _a(w42) \ e
B2 =™ = —Cu* (Cw ® ) gz
2 o (u42)
— _Cwe2 (a 2 . )64d2/e CT e %B4dz/e 64de
(37) implies 4 | e, d3 = €35 (mode), b3 = *=7=%  (modw), c3 = 4d73 =
g3 (mod 4),
acg—cgw _ a(w+2) 4(23 4d
B3 = (2™ =Cu ° (cw ° ) 3
w
= e e - gyt
(38) implies 4 | e, dy = —e47 (mode), by = *475%  (mod w), cg = % =
—e4  (mod 2),

ady
aca—equ [ et \ e,
Je :Cfv47d4 =Cw * (Cw s ) B

a—2 4d 4

= c{Ene)E g gyt g

and we obtain the case (6).
Consider now the case (39.2). Here (37) implies 4 | a, we take

a—w

B=C
and find
o=l = A
61 — C31,}/d1 — Cg)dl/e,ydl — _64d1/e’
B = Cfvz,ydz — _C$d2/€7d2 — _64d2/€~
Moreover, (37) gives d3 = ¢35 (mode), bz = % —e3%  (mod w), hence

63 — C‘L—ascg)dg/e,yds — 64d3/e;
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(38) gives dy = —c45 (mode), by = % —¢e4%  (mod w), hence

fa = GGGyt = -l
and we obtain again the case (6).
Consider now the case (12). Here we have

ady —eb; =0 (mod we), wdy = 61% (mod we),

hence 4 | e, dy =¢15 (mode), 4 |a, by = % (mod w);

ady — eby = % (mod we), wdy =0 (mod we),

hence d2 =0 (mode), by = % — 5 (mod w);

ads — ebs = wds = % (mod we),

hence d3 = § (mode), b3 = *2* — % (mod w);

hence dy =¢e4§ (mode), by = #* — & (mod w).

Therefore, setting

we obtaln

o = 64a 61 = 64d1/€a 62 = _64d2/€a 63 = _64d3/€a 64 = _64d4/€a

which is again the case (6).

Consider now the case (13). Here we have

ady —eb; =0 (mod we), wdy = % (mod we),

hence 2 | e, dy = § (mode), 2| a, by = % (mod w);

ady — eby = 62% (mod we), wdy =0 (mod we),

hence ds =0 (mode), 4 | w, by = adz — 25 (mod w);

we

ads — ebs = wds = (mod we),
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w

5 (mod w);

hence d3 = £ (mode), b = ads —
ady — eby = 64% (mod we), wdy = % (mod we),

hence dy = § (mode), by = % —4%  (mod w).

Therefore, setting
B = (ultyelt

we obtaln
o= 62’ 61 = 62d1/€a 62 = C4—€262dz/€’ 63 = _62d3/€a 64 = C4_€462d4/€a

which is the case (4).

Sufficiency of the condition follows from Lemma 3 and the covering property
of the relevant systems of congruences, which in turn follows from Lemma 1. Indeed,
a prime ideal p of K is divisible by a prime ideal P of K(y, 8), which in turn divides
a prime ideal g of Q((y, f). Solubility of the congruence

i (a7 —¢roptn/®) =0 (mod q)

h=1

implies solubility of the congruence f(a”)=0 (mod ), and this, since f € K[z],
solubility of f(a®)=0 (mod p).

Lemma 4. If u, = \1a” +/\2(—a_1)” 18 a recurring sequence in K and « is a root
of unity, then solubility of the congruence

up =c¢  (modp)

for mfinitely many prime ideals p of K implies ¢ = u,,, where m Is an integer.

Proof. If « is a root unity of order ¢ we have u, € {ug,..., uz }, hence if ¢ # up,
the congruence in question is soluble for only finitely many prime ideals p dividing

Proof of Theorem 2. If » = 0 we have u,, = Aa™ and the assertion follows from
Theorem 1 applied to the polynomial f(z) = Az —c.

Ift 6 = —1, we have u, = A1a” + Aa™" and the assertion follows from
Theorem 1 applied to the polynomial f(z) = A1z? — ez + As.

Ifb=1, a=0wehave @« = %1 and the assertion follows by virtue of Lemma 4.
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Ifo =1, ¢c=0o0r Ay =0 or Ay = 0 the assertion follows from Theorem 1
applied to the polynomial f(z) = A1z 4+ Az or Azz — ¢ or A1z — e, respectively.
Therefore, assume b = 1, acA1 Az # 0.

Solubility of the congruence u, = ¢ (mod p) is equivalent to solubility of the
congruence

f (ozzn) =0 (modp),

where

f(z) = (M12? — ez 4+ Az) (Ma?2? — caz — A5) .

We apply Theorem 1 with o? in stead of o, considering successively the cases
(2)=(6).

In the case (2) we have z — a® | f(z), hence either z — o | A\122 — ¢z + A,
or z —a¥ | A10?2? — caz — Ag. In the former case u, = ¢ has the solution n = 2r,
in the latter case n = 2r + 1.

In the case (3) we have one of the following six cases:

Ao 12 a4 A, =0, Aa®? 4 a4+ A =0,

(40.1)

Apatrstd oo t2 _ ), =0,
s Ala‘llrl_l_z _ CO[2T1+1 + Az _ 0’ A]_OZ4T2+2 4 CO[2T2+1 _ AZ = 0’
( 0. ) A10[4,,.34_2 + COZ2T$+1 _|_A2 — 0’

Aa? it et hy =0, Aja®t? a2t -, =0,
40.
( 0 3) A10[4,,.34_4 + ca2r3-|—2 _ AZ — 0’

/\10[4’7‘14—4 _ CO[2T1+2 — /\2 = 0, /\10[4T2 + COZZT2 + /\2 = Oa
40.4
( ) A10[4,,.34_2 + COZ2T$+1 + AZ — 0’

/\10[4’7‘14—4 _ CO[2T1+2 — /\2 = 0, /\10[4T2 + COZZT2 + /\2 = Oa
40.5
( ) A10[4,,.34_4 + ca2r3-|—2 _ AZ — 0’

At — a1t )y =0, Aot 4 o™ - X =0,
(40.6)

Ara¥st? Lot 4 ), = 0.

Since cA1Az # 0 at least one of the determinants A;, ..., Ag is 0, where
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a4r1+2 _a2r1+1 1 a4fr1+2 _a2r1+1 1
Al — a47‘2 a27‘2 1 , AZ — a4fr2+2 a2r2+1 -1 ,
a47‘3+4 a2r3+2 -1 a4fr3+2 a2r3+1 1
a4r1+2 _a2r1+1 1 a4r1+4 _a2r1+2 -1
AS — a47‘2+2 a2r2+1 -1 , A4 — a4r2 a27‘2 1 ,
a47‘3+4 a2r3+2 -1 a4fr3+2 a2r3+1 1
a4r1+4 _a2r1+2 -1 a4r1+4 _a2r1+2 -1
A5 — a47‘2 a27‘2 1 , AG — a4fr2+2 a2r2+1 -1
a47‘3+4 a2r3+2 -1 a4fr3+2 a2r3+1 1

Suppose first that « is not an algebraic integer. Then in the expanded form of
the determinant A; the highest power of « must occur at least twice. However, the
exponents in the first column of A; are twice the exponents in the second column.
Denoting the latter by é;1, 8;2, 6;3 in the decreasing order, we infer that the greatest
power of o in A; is a?21%2 and it is not repeated unless two of the numbers i
(j = 1,2,3) are equal. This gives the following possibilities:
=1 ro=r3+1
t=2, ra=7ry, O T3=7ry, O T3=T3;

i = 3a s = T1;

=4, ro=r1+1

t=958 ro=r1+1, or rzg=ry, or ro=r3+1;
’ r3=T"T2

and in each case the equation A; = 0 gives «a as 0 or a root of unity, contrary to
the assumption, that « is not an algebraic integer.

Assume now that « is an algebraic integer. Since a? +4 # d? (d an integer of
K) we have o ¢ K. Hence « is conjugate over K to —a~! and A, is conjugate to

A1. By (40.1)-(40.6) we have for an ¢ € {1, -1},

1—e\ 2 1—e
(42) A (a2r1+1+ > ) _c(a2r1+1+7) Fedy =0,

hence

A a2T1+1+ e C:F\/C2 —46/\1A2
1 .

(43) z .
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If Ajo21 ¥4 %5 = ;i € K then

— 1 l== 1—¢ 14«
Al = po 2r;—1 el AZ — /,LOZ2T1+1+ > (_1) s
and from (42)
1—¢ s 14e s 1—¢
0= pa? 1 T EE g2t (L) Tt S o g

contrary to ¢ # 0.

1—¢

If \ja?1 145 ¢ K, then from (43) on taking conjugates we obtain

l—e  _on _q_l=e ct/c2 —4dsh )
Aa(-1)FamT T = 2 2,

hence on multiplication side by side with (43)

AlAg(—l)# = EAlAg,

contrary to A1Az # 0.

In the case (4) there exists a permutation ((§'a®, ... (j*a%) of (@® 141 (20?2,
—aZrstl (a4t such that

(44) ﬁ — Ci1+€2a51+52 — _C23+€4O‘63+64+2~

A1

If 61402 = 63+64+2, then 2(61+62) = 61+02+83+64+2 = 2r1 +2r2 +2r3+2r4+5,
which is impossible mod 2. If 81 + 62 # 3 + 64 + 2, then « is a root of unity and
the assertion follows by virtue of Lemma 4.

In the case (5) we have

a=%% [=9° wherey=a/f
and there exists a permutation

(G0 LG of (V27 G5 G5 )

such that
Az

bs+64+46 )
A1

v v

— C§1+€2 b1+62 _ _C§3+€4

If 61 + 82 = 63 + 64 + 6, we obtain (5'1°27°*7°* = —1, which is impossible. If
81 4 62 # 63+ 64 + 6, then v is a root of unity and so is «; the assertion follows by
virtue of Lemma 4.
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In the case (6) we have
o = 6062, (60 = :|:1)

and there exists a permutation

(61651’ 52662’ 63663’ 64664) of (62r1+1’ _647“2’ _62r3+1’ _64T4+2) such that
(e1, €2, €3, €4) € {1, —1}* and

(45) N 13" + €287 = coea BT 4 coea M1,
1
A
(46) T = e1eaBh ¥ = —egey ittt
1

If 5 is not an algebraic integer, then it follows from (45) that the greatest term
of the sequence (81, 62,83 +2, 84 +2) occurs in this sequence at least twice and from

(46) that 61 + 63 = b3 + 64 + 4. Hence
(47) 61:63+2, 62:64+2 or 61:64+2, 62:63+2
This gives the following possibilities:

{61, 62} = {27“1 + 1,47“2} s {63, 64} = {27“3 + 1,47“4 + 2} 3

{01,062} ={2r1 + 1, 4ry + 2}, {03,04} = {2r3 + 1L, 4ra};

{61a 62} = {47”2, 27Q3 + 1} ; {63a 64} = {27”1 + 1,47’4 + 2} 5

{01,062} ={2r5 + L dra + 2}, {03,04} = {271 + 1,412}
and we obtain from (45) the following equations

2 1 4 2 3 4 4
67‘14— _67‘2 :_606 73+ _606 74+ ’

2 1 4 2 2 3 4 2
67‘14— _67‘44— :_606 73+ _606 7‘2+’

_ 647‘2 _ 627‘3+1 — 6062r1+3 _ 6064r4+4’

_ 62r3+1 _ 647‘4+2 — 6062r1+3 _ 5064T4+2~

By (47) the exponents on both sides are equal in pairs, which gives for each value
of €9 : § =0, hence o« = 0, contrary to b = 1.
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If 3 is an algebraic integer so is «. Since a? +4 # d? (d an integer of K) we
have a € K, hence « is conjugate over K to a~! and ) is conjugate to As. On the
other hand, we have

1—2\ 2 1—e
(48) A1 (ozz“'l'l"' z ) —ca® T L)y =0, ee{l, -1},

which differs from (42) only by permutation of r; and r4 and hence leads to
contradiction.

Proof of Corollary 1. If a € Q, then either a = 0 or a® 4+ 4 # d?, d € Z hence
the assumptions of Theorem 2 are fulfilled.

Proof of Corollary 2. If ¢« € K and

(49) a>+4=d* dan integer of K

the zeros of 2% —az —1 are units of K. However, since K is quadratic imaginary, the
only units of K are roots of unity and the assertion follows by virtue of Lemma 4.

Example. The following example shows that the assumption a? +4 # d? (d an
integer of K) cannot be altogether omitted. Let K = Q(«), where a®+a?—a+1 =0
and take

Uy = A1a” + X (—a_l)n, /\1:—(1+a2), A=ao?—at c=a*41
As observed in the proof of Theorem 2 solubility of the congruence
(50) up, = ¢ (mod p),
18 equivalent to solubility of the congruence
(51) f(a®)=0 (modp),

where

f(z) = (M12? — ez 4+ Az) (Ma?2? — caz — A5) .

Now
(52) f(z) = /\%(z —a)z+1(z+a) (ozzz + 1) ,

hence by Theorem 1, case (3), the congruence (51) is soluble for almost all prime
ideals p of K and so is the congruence (50). On the other hand,op solubility of the
equation u, = ¢ would imply solubility of the equation f(a?") = 0, hence, by (52),
a would be a root of unity, which contradicts a®+a%* —a —1 = 0.
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