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Abstract. We consider the problem of existence of power integral bases in orders of
composite fields. Completing our former results we show that under certain congruence conditions
on the defining polynomial of the generating elements of the fields, the composite of the polynomial
orders does not admit power integral basis. As applications we provide several examples involving

also infinite parametric families of fields.
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1. Introduction

Let K be an algebraic number field of degree n with ring of mtegers Zg. It is
a classical problem in algebraic number theory to decide if there is an element «
in K such that
{1,a,0%, ..., 0"}

is an integral basis. Such an integral basis is called power integral basis. A further
problem is to find all elements which generate power mntegral bases.

The index of a primitive algebraic integer o of K is defined as the module-index
I(a) = (Z} : ZT[a]).

Obviously « generates a power integral basis if and only if 7(«) = 1.
Note that

_ ‘H1§j<k§n(a(j) - Of(k))‘
- | Dk |

(1) ()
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where o) (i =1,...,n) are the conjugates of & and Dg is the discriminant of K.

Let {l,ws,...,w,} be an mtegral basis of K. Then the discriminant of the
linear form /(X) = X1 + w2 X3 + -+ - + w, X, can be written as

Dy (X)) = I(zz, ..., 2,)* - Dx,

where I(z3,...,#,) is the index form corresponding to the integral basis {1, wz, ...,
wnt (see I Gadl [4]).
For any

a=2x1+wats+ - +wp, € Lk

we have

I{a) = [I(x2,...,2,)|

Hence if we want to determine all generators of power integral bases, we have
to solve the index form equation

(2) Ixa,...,2n) =1 (22,...,2, € Z).

Using Baker’s method the first effective upper bounds for the solutions of (2)
were given by K. Gy8ry [10]. This upper bound implies that (2) has only finitely
many solutions.

There are efficient algorithms for determining all generators of power integral
bases in lower degree number fields cf. I. Gadl and N. Schulte [9] for cubic, I. Gadl,
A. Pethd and M. Pohst [7] for quartic fields. A general algorithm for quintic fields
was given by I. Gaal and K. Gyd&ry [5], which already requires several hours of CPU
time. For algorithms for solving index form equations in certain special sextic, octic,
nonic fields see I Gadl [1], [3], L.Gaal and M. Pohst [8], I. J4rdsi [11]. For a more
complete overview on the topic see the monograph [4].

For higher degree number fields this problem is very complicated because of
the high degree and the large number of variables of equation (1). The resolution
of this equation is only hopeful if K has proper subfields, because in this case the
index form is reducible.

Higher degree fields having subfields are very often given as composites of
certain subfields. This is the case that we investigated in [2] and [6]. The purpose
of this paper is to add some recent results to this area. In order to make it easier
for the reader to compare our (old and new) results, we first summarize our former
results, then we detail the new results that can be used in some important cases
not covered by our former statements.
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2. Coprime discriminants

In 2] we considered the problem of existence of power integral bases i case
K is the composite of two subfields L and M with coprime discriminants. Let
L be of degree r with integral basis {/y = 1,l5,...,/,} and discriminant Dy.

Denote the index form corresponding to the integral basis {l; = 1,l5,...,1.} of
L by Ip(za,...,z,). Similarly, let M be of degree s with integral basis {m; =
1,msa,...,ms} and discriminant Djs. Denote the index form corresponding to the

integral basis {m1; = 1,mga,...,ms} of M by Iy(xa,...,2,). Assume, that the
discriminants are coprime, that is ged(Dgr, D) = 1.

Set K = L - M the composite of L and M. As it is known (cf. W. Narkiewicz
[12]) the discriminant of K is Dg = D3 - D}, and an integral basis of K is given
by {{i - m; :1<i<wr, 1<j<s} Hence, any integer o of K can be represented
in the form

r 5

(3) a:Zinj.li.mj

i=1 j=1

with z;; €Z (1 <i<r, 1<j<s).
I. Gadl [2] formulated a general necessary condition for o« € Zg to be a
generator of a power mtegral basis of K.

Theorem 1. (I. Gaal, [2]) Assume ged(Dy, Dyr) = 1. If o of (3) generates a power
integral basis in K = L - M then

(4) Nurrg (IL (Zs:xgzml,,zs:xmml)) =41
i=1

i=1

and

(5) NL/Q (IM (Zr:xlgll,,zr:l‘zsll))zil
i=1

i=1

This statement was applied e.g. for nonic fields [3].

3. Non-coprime discriminants

A sufficient condition for the non-existence of power integral bases in K was
formulated by I. Gadl, P. Olajos and M. Pohst [6] in the case when Dy and Dy
are usually not coprime.
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Let f,g € Z[#] be distinct monic irreducible polynomials (over @) of degrees
m and n, respectively. Let ¢ be a root of f and let ¢ be a root of ¢. Set L = Q(yp),
M = Q(¢) and assume that the composite field K = LM has degree mn. We also
assume that there is a prime number ¢, (¢ > 2) such that both f and ¢ have a
multiple linear factor (at least square) modulo ¢, that is, there exist ay and a, in
7. such that

©) {Hon) = o)

g(ag) = g'(ay)

=0 (mod ¢),
=0 (mod ¢).

Note that our assumption implies that ¢ divides both the discriminant d(f) of
the polynomial f and the discriminant d(g) of g. In our case the fields we consider
are composites of subfields whose discriminants are usually not coprime. This is
the case in many interesting examples.

Consider the order O = Z[p] of the field L, the order O, = Z[Y]
of the field M and the composite order Of, = 0;0, = Z[p,¢¥] in the
composite field K = ML. Note that {1,¢,...,¢™ 1}, {1,¢,...,¢¥""1} and

{1’ SD""’Spm_l’,l/)’gp,l/)""’Spm_l,l/)’""’l/)n_l’gp,l/)n_l’""Spm_l,l/}n_l} are Z bases
of Of, Oy and Oy, respectively.

Theorem 2. (I. Gaal, P. Olajos, M. Pohst [6]) Under the above assumptions the
index of any primitive element of the order O;, is divisible by q.

As a consequence we have:

Theorem 3. (I. Gaal, P. Olajos, M. Pohst [6]) Under the above assumptions the
order O, has no power integral basis.

In [6] we applied the above theorem to the parametric family of simplest sextic

fields.

4. New results on composite fields

We are going to formulate a further sufficient condition for the non-existence
of power integral bases in composite fields.

Let f,9 € Z[z] be monic, irreducible polynomials of degrees m,n € Z,
respectively. Let « be a root of f, and let 3 be a root of g. Denote the discriminants
of these polynomials by d(f),d(g). The conjugates of o and 3 will be denoted
by ap (k = 1,...,m) and 5 (I = 1,...,n), respectively. Further, let L =
Q(a), O = Z[a] with discriminant Do, = d(f) and M = Q(3), Om = Z§¥[5]
with discriminant Do ,, = d(g). We assume that there are square-free numbers
p,q € Z (p,q > 2) such that
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(A) flg) =2™ (mod p),
(B) g(z) = 2" (mod q).

This condition is of course restrictive, but (as we can see in the examples) it holds
in many cases which are important for the applications.

Let K = L-M and Ox = Og - Opm = Zov, f]. Then Do, = D, - Dy, and
any v € Ok can be written in the form

m—1n—1
_ E E 4 j
9= L5 -« ~ﬁ]
i=0 j=0
with conjugates
m—1n—1
— il
Upi = E E zij - o, - O
i=0 j=0

(1<k<m, 1<I<n).

Our main result is the following:

Theorem 4. Assume that there exists a power Integral basis in Ox. If (A) is
satisfied, then

(7) (d(g)™" ™ =21 (mod p).
If (B) is satisfied, then

(8) )"V =41 (mod g).

As a consequence we have:

Theorem 5. If (A) is satistied, but (7) does not hold, then Ox does not admit any
power integral basis. If (B) is satisfied, but (8) does not hold, then Ox does not
admit any power integral basis.

Proof of Theorem 4. If ¥ generates a power integral basis in A, then we have
©) 10) = ——— ] [Pty — Dot = 1
Y R A S

where the pairs (k1,l1) < (kz2,(2) are ordered lexicographically.
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This product splits into three factors taking mteger values. The first and second

are the following:
m
IR
- )
F=1 1<1; <ls<n P = B,
n
Uiyt — Vgt
p=11 II ——=
8% —
=1 1<k; <ko<m k1 Tz

The factors in these products are algebraic integers. By using symmetric polyno-
mials we can see that both Fj and Fs are complete norms, hence Fy, Fs € Z.

These factors absorb completely the discriminant \/|Do,|, thus the third factor
F5 consist of the remaining factors (Jg,1, — Jg,1,) of the product (9), and also takes
integer value.

Assume that f(z) = 2™ (mod p). Denote by N the smallest normal extension
of K, let po be a prime factor of p and let p, be a prime ideal of N lying above po.
Since f(z) = ™ (mod pog), hence f(z) = H;n:l (# — ;) = 2™ (mod py). This
means that for any root «; we have
0= f(aj) =a* (mod po) that is the roots of f are zero modulo pq.

Let us consider the factors Fy and F3  (mod py). Using o; = 0 (mod py)
for j =1,...,m we have

m
_ H (ﬁkh - ﬁklz)
k=1 1<1; <la<n P = B,

m—1n—-1

1IN GD 3 SEVRCRE R

i=0 j=0

1<, <12<n j=0

For similar reasons for F3 we have

H H (Ipy1, — Uhaly)

Ei#ks 1<1; <I12<n

m—1n—-1

II II > > wi-(ai, -8, —ai,-8))

k1#ke 1<l <lz<n i=0 j=0
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n—1
=11 II > e -0 -50)
k1#£ks 1<1; <12<n j=0
n—1 '17 _ -l7
P IRR I EAR Sa
kr#hs 1< <12<n = 1 — B
1 /2 n—1 { _ { —-m
~ o L S ()
1<l <12<n j=0 l 2
( 1)/2 n—1 -17 _ .l7 m-—m
= (d(9)) I Z(m) (mod ).
1<l <12<n j=0 l 2

In the case when ¥ € Oy generates a power integral basis in Oy then this
means that F; =¢; (i =1,2,3), where ¢ = 1 or —1. This implies

Fl =€ (HlOd po), Fg = E&s (HlOd po), F3 = €3 (IIlOd pO)
Comparing the above congruences for Fy and F3  (mod p,) we conclude
(dg))" "I P = s (mod py)

But this is a congruence with integers, hence it must also hold modulo pg in Z
(if an integer is divisible by a prime ideal then by taking norms it follows that a
certain power of the prime number under the prime ideal divides a power of the
integer, that is the prime number divides the integer):

(dig)™ " TP =25 (mod po)

This is satisfied for all prime factors pg of (the square-free) p hence we become
(dg))™ " ep Tt =25 (mod p),

that is

(10) (dg)™ "V =£1  (mod p).

Performing a similar calculation in the case g(x) = z” (mod ¢) for F% and
F3  (mod ¢) we obtain

(11) )"V =41 (mod g).

This theorem gives a simple condition to exclude the existence of power integral
bases n Og. If the congruences (7) and (8) are both valid and the discriminants
Dy, Dys are coprime (this means that we can not apply Theorem 4) then we have
to use Theorem 1 for finding the generator elements. On the other hand, if the
discriminants Dy, Das are coprime and if Theorem 4 is applicable, then we can
exclude the existence of power integral bases without any tedious computations.
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5. Examples

In the examples we use the polynomial orders O and Oaq in the same meaning
as m Theorem 2, and similarly Ox = OO0 .

Example I Let p, ¢ be square-free integers (> 2). One of the most straightforward
and frequently used applications of Theorem 4 is the case when f(z) = 2™ —p and

g(z) = 2" — q. Assume that K = Q( x/p, ¢/q) is of degree mn. We have
d(f) = (~1)mDmDI2 et

d(g) = (_1)(”—1)(”—2)/2 nt. qn—l.

By Theorem 4 if one of the congruences

(n" ~q"_1)m(m_1)/2 =41 (mod p),

(mm ~pm_1)n(n_1)/2 =41 (mod ¢).

is not satisfied, then Ox = Z[ t/p, 1/q] has no power integral basis.

L1. In the special case if m = 3, n = 2, the field K = L- M is an algebraic number
field of degree 6. We have d(f) = Do, = —27 - p?,d(g) = Do,, =4 q.

The above congruences are of the form

(12) 64-¢>=+1 (mod p).

(13) —27 - p* =41 (mod q).
If for example p =7, ¢ =5 then ged(Do,, Do,,) = 1. We have

(14) 64 -5 = 8000 =6=—1 (mod 7),

(15) —27 .7 = -1323 =2= -3 (mod 5).

Theorem 4 implies that there is no power mtegral basis m Of.

1.2. In the special case when m = 22, n = 15 and [K : Q] = 22 - 15 = 330, we have
d(f) = Do, = 22%2 . p*, d(g) = Do, = —15'% . ¢'*.
If for example we take p = 31, ¢ = 17 then

ng(DOL ) DOM) =1
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hence Theorem 1 would be applicable. But by applying Theorem 4, either

(_1515 . 1714)231 =4

—27 (mod 31)

or

(2222 .3121)1% =10 = -7  (mod 17)
implies that there exist no power integral basis in Og.

Example II. To cousider a different example let f(z) = 2° — p32% — p?2%2 —pr —p
and g(z) = 2 — ¢*2? —qr — ¢ (m = 5, n = 3). If Ok has power integral bases,
then the following congruences must be satisfied:

d(g)lo =41 (mod p),

d(f)3 =41 (mod g¢),

where
d(g) = —q*(—4q — ¢* + 18¢% + 4¢° + 27)

and
d(f) = —p*(108p™® — 56p™* + 12p™* + 75p° — 38p” + 11p° — 3750p* +

4250p° — 1600p* + 256p — 3125).

If one of these congruences is not satisfied, Ox = Z[a, 3] (o and /5 are being roots
of f, g respectively) has no power integral basis.

II.1. Let p=7, ¢ =29. Then [K : Q] =5 3 =15, and we have
d(f) = Do, = —23320969892806663 = —(7)*(11)%(5208131)(15413),

d(g) = Do,, = —68417338124 = —(2)*(29)%(41)(496051)

and
ng(DOL ) DOM) =1

hence Theorem 1 would be applicable. But by applying Theorem 4, either
d(g)** =2=-5 (mod T7)

or

d(f)? =6=-23 (mod 29)

implies that there exist no power integral basis in Og.
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