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ON THE CUBE MODEL OF
THREE-DIMENSIONAL EUCLIDEAN SPACE

I. Szalay (Szeged, Hungary)

Dedicated to the memory of Professor Péter Kiss

Abstract. In [4] the open interval IRI:]_l’l[ with the sub-addition @ and sub-multipli-
cation © was considered as a compressed model of the field of real numbers (R,+,-). Considering
the points of the open cube lRlsz{X:(xl \T2,T3) % xl,xz,xselRl} we give the concepts of sub-line
and sub-plane and construct a bounded model of the three dimensional Euclidean geometry which

is isomorphic with the familiar model R®.

Preliminary

The first exact formulation of classical Euclidean geometry was given by
Hilbert. Nowadays, Hilbert’s axiom-system is well-known. (For example, see [2],
pp. 172, 102, 31, 326, 135-136, 187, 351, 77, 326, 25, 45 and 405.) It is a very
comfortable model, the three-dimensional Descartes coordinate-system R3 is a real
vector space with a canonical inner product. It is used in the secondary and higher
schools, in general. Another model, given by Fjodoroff (see [2] p. 117), is less-known.
Its speciality is that it is able to interpret the points of R in a given basic plane by
a point (lying on the basic plane) together with a directed circle. Both mentioned
models, are boundless.

Our cube model, being an (open) cube in K2, is bounded. Its speciality is that
it is able to show the “end of line” or the “meeting of parallel lines” and so on.
On the other hand, the elements of this model are less spectacular in a traditional
sense. “Line” may be a screwed curve which does not lie in any traditional plane.
The form “ball” depends on not only its “radius” but the place of its “centre”, too.

The importence of the cube model is in the methodology of teacher training.
Seeing that the axioms are not trivial helps to understand the role of parallelism in
the history of mathematics: Namely, the axiom of parallelism was the only axiom
which seemed to be provable by the other axioms.

The cube model is based on the ordered field of compressed real numbers
situated on the open interval ]-1, 1] denoted by e Introducing the sub-addition &

and sub-multiplication ®, the ordered field (IRI’ @, ®) is isomorphic with the ordered
field (R,+, ). The points of open cube |R|3 =A{X = (#w1,®2,23): ®1,22,23 € |R|}
give the points of the cube model.
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Introduction

Having the compression function v € R — thu €] — 1, 1] ([1], I. 7.54-7.58) we
say that the compressed of u is given by the equation

(0.1) w=thu, weR

Hence, we have that the compresseds of real numbers are just on the open interval

i =] —1, 1. Considering the compression function as an isomorphism between the

fields (R, +, ) and (IRI’ @, ®) we define the sub-addition and sub-multiplication by
the identities

(0.2) Uy ®vi=u o, u,v € R
and
(0.3) WO U=y, u,v € R,

respectively. If x =

u and y = v, then (0,1), (0,2) and (0,3) yield the relations

_r

r+y

(0.4) Y= z,y € R
and
(0.5) @y = th((ar th z)(ar th y)), z,y € R,
Moreover, we can use the identities
(0.6) WO i=u—v, wvER
(0.7) |_|®|g|::|u:v|, uwvER, v#0
or
_*~Y
(0.8) x@y_l—xy’ x,yelﬁ
and
(0.9) e —th(a‘rthx) Ty € R y#0
. y_ arthy ) ay |_|ay )
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where the operations © and () are called sub-subtraction and sub-division, respec-
tively.

The inverse of compression is explosion defined by the equation
[
x

(0.10) —arthe, z€ R

LJ
and z is called the exploded of . Clearly, by (0.1) and (0.10) we have the identities

LJ
(0.11) r=(z), ze R
and

[I—
(0.12) u= (u), u€R

1. Operations on |R|3

Having the familiar three dimensional Euclidean vector-space R3 with the
traditional operations (addition, multiplication by scalar, mner product) as well as

the concepts of norm and metric, we give their isomorphic concepts for |R|3 which

is the set of points X = (21,23, 23) such that »1, 25,23 € e Clearly, |R|3 forms
an open cube in R3. Considering the vectors X = (x1,22,23) and Y = (y1, Y2, y3)

from |R|3 we define sub-addition as

(1.1) XOY = (r1 Dy, 22 ® y2,23 D y3),
sub-multiplication by scalar ¢ € IEI as

(1.2) cOX =(Or1,c@r2,c0 23)

and sub-inner product as

(1.3) XOY =(@10y)D (220 y2) ® (23 O y3).

Introducing the exploded of the point X = (z1, 23, z3) as

L I A I |
(1.4) X =(21, 22, 23), X€ER
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and the compressed of the point U = (u1, ug, uz) as

(1.5) U= (a2, u), U € R3

we have the identities

J 3
(1.6) X=(X), XeR
and

[E—
(L.7) U= (U), Uer’

Using (0.11), (0.2), (1.5) and (1.4), the identity (1.1) yields

LJ [ 3
(1.8) XaY=X+Y, XYeER.

Moreover, by (0.11), (0.3), (1.4) the identity (1.2) yields

[ R

(1.9) cOX=c X, ceR ad XeR

|’

Considering the operations (1.1) and (1.2) we have the following

Theorem 1.10. |R|3 is a real vector space with the sub-addition (1.1) and scalar

sub-multiplication (1.2). In detail, we have the following identities:

(1.11) XeY=Y®X, XYeRr
(1.12) Xev)eZ=Xa(l &), X,Y,ZeR’
(1.13) X@®o=X, where X€|R|3 arbitrary and o =(0,0,0),

X&(-X)=0, where —X
(1.14) s

is the familiar additive inverse of =z € IRI .

Moreover, the identities

(1.15) 1LO0X=X, XeR
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3
(1.16) cOXBY)=(coX)P(cOY), ce R, XY € R,
(1.17) (1@ e)OX =(10X)B(20X), cre2€R, e R,
(1.18) (1) 0X =ao(oX), aoeRXeR
also hold.

Remark 1.19. By Theorem 1.10 we say that |R|3 18 a sub-linear space with the
operations (1.1) and (1.2).
Using (0.11), (0.3), (0.2) and (1.4) the identity (1.3) yields

L L 3
(1.20) XoY=X-Y, XYER,

LJ [

“” means the familiar inner product (of vectors X and Y )in R3.

where

For the sub-inner product we have

Theorem 1.21. |R|3 m a Euclidean vector space with the sub-inner product defined

by (1.3) such that the sub-inner product has the following properties

(1.22) XoY=YoX, XYeRr

3
(1.23) XovieZ=(XoZ)al oZ), XY ZER
(1.24) (cOX)OY=co(X0Y), ceR, XYER

and for any X € |R|3 the mequality

(1.25) X ®X >0 bholds such that X ©®X =0 ifand only if X =0.

Remark 1.26. By Theorem 1.21 we say that |R|3 18 a sub-euclidean space with
the sub-inner product (1.3).
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In [4] the concept of sub-function was defined for one variable (see [4], (0.8)
and (0.9)). Hence, we have the sub-square root function

=5

(1.27) sub \/r = z, x€][0,1).

Having the property (1.25) and using the sub-square root function we can define
the sub-norm as follows:

(1.28) 1X]] jps = sub VX © X, re R’
1
Using (1.27), (1.20) and (0.12) the definition (1.28) yields

- 3
(1.29) IIXlllRls = [ Xllrsp, =€ R,

where || - || gs means the familiar norm of vectors.

Remark 1.30. Applying the familiar Cauchy’s inequality by (1.20), (0.1), (0.3)
and (1.29) we have the inequality

3
X YIS I o @ IVl o XYoE R

Corollary 1.31. The sub-norm has the following properties

(132)  [[X[| ps >0, (X € R}) such that||X|| ps = 0 if and only i X =0,
— T —

3
(1.33) @ X o = kIO IN] o, ey X €
and

3
1.34 XYl s <||X]|| »s Y| ,s, XY .
(1.34) IIX & IIQ <l H@ o || II&, Y € R

Remark 1.35. By Corollary 1.31 we say that |R|3 18 a sub-normed space with the
sub-norm (1.28).

Finally, we define the sub-distance of elements of |R|3 as follows

IRI

3
(1.36) d s(X,Y):||X6Y|||R|$’ XY e R,
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where the sub-subtraction of vectors is defined by
(1.37) XoY=Xa@(-Y).

Using (1.29), (1.37), (1.8), (1.7), (1.4) and (0.10) the definition (1.36) yields

I
3
(]_38) lels(X,Y) = IM’ X, Y e |£| )

where dgs is the familiar distance of the points of R3.

Corollary 1.39. The sub-distance has the following properties

3
IR| R|$(Y’X)’ X, Ye |£| ’

(1.40) ds(X,)Y)=d
|

(1.41) dRs(X,Y) >0 such that dRs(X,Y) =0 ifand only if
— —

X=Y, X,YeR
and

(1.42) d ps(X,Y) < d ps(X, 2) @ d

(2,Y), X)Y.Ze R

Remark 1.43. By Corollary 1.39 we say that |R|3 18 a sub-metrical space with the
sub-distance (1.36).

2. On the geometry of |R|3

Our starting point is the Euclidean geometry of R3 with its points, lines and
planes based on the axioms formulated by Hilbert. Now we construct the cube-
model of the classical Euclidean geometry. The points of the model will be the
points of R3. Considering a line ¢ in R? its compressed will be the set of compressed
points of ¢ denoted by IEI' Considering a plane s in R its compressed will be the

set of compressed points of s denoted by Sy The set A = IEI is called sub-line and

the set o = 5 1s called sub-plane. Clearly, A C |R|3 and ¢ C |R|3. Moreover, the

exploded of a sub-line is a line and the exploded;f a sub-plane is a plane, that is
LJ LJ
A=fand o =s.
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By the axioms of the euclidean geometry of B> we have the properties of the
geometry of |R|3.

Denoting by L the set of lines of R3, by P the set of planes of k3, (R3,L,P)
is a so-called incidence geometry (see [3]). Considering L = {(: ¢ € L} and

P, = {lslz s € P}, (|R|3,|L|,|P|) is also an incidence geometry. Now we give the
properties of “incidence”.

Property 2.1. If X and Y are distinct points of |R|3 then there exists a sub-line
A that contains both X and Y

Property 2.2. There is only one A such that X € A and Y € A.

Property 2.3. Any sub-line has at least two points. There exist at least three
points not all in one sub-line.

Property 2.4. If X,Y and Z not are in the same sub-line then there exists a
sub-plane ¢ such that X,Y and 7 are m ¢. Any sub-plane has a point at least.
Property 2.5. If X,Y and 7 are different non sub-collinear points, there is exactly
one sub-plane containing them.

Property 2.6. If two points lie in a sub-line, then the line containing them lies in
the plane.

Property 2.7. If two sub-planes have a joint point then they have another joint
point, too.

Property 2.8. There exists at least four points such that they are not on the same
sub-plane.

We will say that the point 7 is between the points X and Y on the sub-line
[ [ L LJ
Aif Z is between X and Y on the line A. The concept of “between” has the

following properties:

Property 2.9. If 7 is between X and Y then X,Y and Z are three different points
of a sub-line and 7 is between Y and X.

Property 2.10. For any arbitrary point X and Y there exists at least one point
Z lying on the sub-line determined by X and Y such that 7 is between X and Y.
Property 2.11. For any three points of a sub-line there is only one between the
other two.

Property 2.12. (Pasch-type property.) If X|Y and 7 are not in the same sub-line
and A is a sub-line of the sub-plane determined by the points X,Y and Z such
that A has not points XY or Z but it has a joint point with the sub-segment XY
of the sub-line determined by X and Y then A has a joint point with one of the
sub-segmentes X7 or YZ of the sub-lines determined by X and Z or Y and 7,
respectively.

We will say that two sets in |R|3 are sub-congruent if their explodeds are

congruent in the familiar sense. Let two half-lines be given with the same starting
point W and let be U and V their mner points. Let us consider the familiar convex



On the cube model of three-dimensional Euclidean space 23

angle  UWV. Compressing this angle we obtain the sub-angle sub U, /W V' (or
sub-angle sub 4X 7Y where X = U, Y =V and 7 = IWI) with the peak-point W/,
and bordered by the sub-half-lines determined by the points W U, and Wy v,
The concept of “sub-congruence” and “sub-angle” have the following properties

Property 2.13. On a given sub-half-line there always exists at least one sub-
segment such that one of its end-points is the starting point of the sub-half-line
and this sub-segment is sub-congruent with an earlier given sub-segment.

Property 2.14. If both sub-segments p; and ps are sub-congruent with the sub-
segments ps then p; and ps; are sub-congruent.

Property 2.15. If sub-segment p; is sub-congruent with sub-segment ¢; and ps is
sub-congruent with ¢ then p; U ps is sub-congruent with ¢; U gs.

Property 2.16. On a given side of a sub-half-lines there exists only one sub-angle
which is sub congruent with a given sub-angle. Each sub angle is sub-congruent
with itself.

Property 2.17. Let us consider two sub-triangles. If two sides and sub-angles
enclosed by these sides are sub-congruent in the sub-triangles mentioned above
then they have another sub-congruent sub-angles.
L

We say that the sub-lines Ay and Ay are sub-parallel if their explodeds A1 and
L1
As are parallel lines in the familiar sense. Now we have
Property 2.18. If a sub-line A; and a point X are given such that X is off Ay
then there exists only one sub-line As through X that is sub-parallel to A;.

Finally, we mention two properties for continuity.
Property 2.19. (Archimedes-type property.) If a point X is between the points
X and Y on a sub-line then there are points Xs Xj3,..., X, such that the sub-
segments X;_1X;; (i = 2,3,...,n) are sub-congruent with sub-segment X X; and
Y is between points X and X,,.
Property 2.20. (Cantor-type property.) If {X,Y,}°%; is a sequence of sub-
segments lying on a sub-line A such that for any n = 1,2,3,..., Xp41Yn41 C XpYy
then there exists at least one point 7 of A such that Z belongs to each X, Y.

To measure the sub-segments and sub-angles we can use the principle of
isomorphic expressed by the identities (1.8), (1.9) and (1.20). If the sub-segment p
has the end-points X and Y then its sub-measure can be defined as follows:

(2.21) sub meas p = meas ;P
L L
where meas p is understood i the traditional sense. Considering that p 8 a
segment bordered by ‘)_(, and l?, we have that
L [

meas p = Dps( X, V).
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Hence, by (2.21) and (1.38) we have

(2.22) submeasp =d ,s(X,Y),

IRI

which is the sub-distance of X and Y.

Similarly, to measure sub-angles we write

[ |
(2.23) sub meas sub X 7Y = | meas IX ZY |

I S Ry
where meas 4 X 7 Y is understood in the traditional sense. Using the concept of

sub-function again, we obtain that

LJ

(2.24) sub arc cosz = arccos z, T € [_Ill’l J

Moreover, we have the following

Theorem 2.25. If X, Y and Z are given points Of|R|3 such that X # Z andY # Z
then -

sub meas sub 4X 7Y

(226) qub are cos(X ©.2) 0 (Y ©2)) @ (d s(X, 2) & d (Y, 2)),
|

IEI

3. Examples for special subsets of |R|3

Example 3.1. First, we show that the equation

(3.2) X=B&(roM), r€R,

where B, M are given points of |R|3 with the condition

(3.3) 1941 o =

represents a sub-line. Really, using (1.8), (1.7) and (1.9) the equation (3.2) yields
the equation

L
B

[ L
(3.4) X=B+4iM, t=1€R
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which represents a line. Moreovoer, by (1.29) and (0.12) the condition (3.3) means
that

L1
(3.5) || M||gs =1

holds. Writing that B = (b1, b, b3) and M = (mq, ma, m3), the equation (3.2) is
equivalent to the equation-system

21 ="b1 B (T ©m1)
23 = by & (T ©®ma), TEIEI
23 = b3 B (T © m3)

which considering (0.4) and (0.5) can be written in the following form

by + th((ar th 7)(ar th my))
177 + bz th((ar th 7)(ar th my))
by + th((ar th 7)(ar th ms))
(3.6) 277 + b th((ar th 7)(ar th ma))’ (-l<r<1)
b3+ th((ar th 7)(ar th m3))
¥3 = 1 + bz th((ar th 7)(ar th ms))

In the special case B = (0, 0, %) and M = (th %,th \/i

1
z1=th | —arthr
' (JE )
1
o =th | —athr), -1<7<l1
’ (JE )

vy 1+ 2th (%arthr)

2 4 th (%arthr)

th 35) then (3.6) is

(3.7)

and the sub-line is shown in the following figure:

Fig. 3.8
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Example 3.9. The sub-line given by the equation-system (3.7) (see Fig. 3.8) and
the sub-line given by the equation-system

1
z1=th | —arthr
' (JE )

1
3.10 zy=th| —arthr)], —-1<7<1
@10) ’ (JE )

2
z3=th | —arthr
’ (JE )

are sub-parallel and their graphs are shown i the following figure:

Fig. 3.11

Example 3.12. The sub-line given by the equation system (3.7) (see Fig. 3.8) and
the sub-line given by the equation-system

1
xs = —th <%arth7'), -l<r<l1

142t (\/lga.rthr)
e 2 4+ th (\/lga,rthr)

(3.13)

has the joint point B = (0, 0, %) Their graphs are shown in the following figure:

Fig. 3.14
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Example 3.15. The sub-lines given by (3.10) (see Fig. 3.11) and (3.13) (see Fig.
3.14) have neither a joint point nor a joint sub-plane. They can be seen in the
following figure

Fig. 3.16
Example 3.17. The equation
1
(3.18) z:x@y@g, x,yelﬁ

represents a sub-plane. Really, by (0.11) and (0.2) the computation

L | I
[ \—1| [ [ ITI [ L Il_l
Z = x@y@§ :|(x)|@|(y)|@|( (E))|:|x + y|@|( (E))|
l [ [ [— l [ [ I
=(z+y+ (3))= 2+ y+3)
[ T
shows that if (x,y, z) satisfies (3.18) then the points ( #, y, z ) form a plane. By
(0.4) the equation (3.18) is equivalent to the
2 2 1
(3.19) _WrAr ATl <,

2ey+r+y+2°

so we have the surface of a sub-plane

Fig. 3.20
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The equation (3.19) shows that the sub-line (3.7) coincides with the sub-plane
given by (3.18) . The Fig. 3.20 shows this fact.

The sub-plane determined by the equation

_ _rty
(3.21) z_x@y<—1+xy), r,y € R,

is sub-parallel with the sub-plane given by (3.18). Their surfaces are shown in the
following figure:

Fig. 3.22

Fig. 3.22 shows that the sub-line (3.10) is on the sub-plane (3.21).
Example 3.23. Considering the set

(324)  Sx,())={X€R’: d (X, Xo)=p.Xo€ R’ and peRM}

IRI

by (1.38) and (0.12) we have

L1 L [
(325) dRs( X, Xo): P,

L [ LJ
that is the points X € R3 form a sphere with centre X, and radius p . Therefore

Sx,(p) is called a sub-sphere with centre Xo and radius p. By (1.4), (3.25) and
(0.10) we get the equation of sub-sphere

(ar th @ — ar th 29)® + (ar th y — ar th yo)*+

(3.26)
+(arth z — ar th 29)? = (ar th p)?

where X = (z,y,z) and Xo = (%o, ¥o, 20) are elements of |R|3.

Although the sub-sphere is determined anambiguously by its centre and radius,
its form depends on the place of the centre too. Moreover, it is not symmetrical in
a traditional sense for its centre. The following figures show the sub-spheres

1 3
Sty () S0, @) @S )@
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having the equations

1
(artha:—1)2—|—(arthy—1)2—|—(arthz—1)2 =1

(arthe — 1) + (arthy — 1)> + (arthz — 1)* = 1

and 0
(artha:—l)z—|—(arthy—1)2—|—(arthz—1)2 =T

respectively

Fig. 3.27

Fig. 3.28

Fig. 3.29
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The sub-spheres So(p) are symmetrical in a traditional sense for their centre
o. By (3.26) the sub-sphere So(p) has the following equation

(3.30) (ar th 2)? + (ar th y)? + (ar th 2)? = (ar th p)?.

Considering now the sub-spheres So(l(%)l), SO(Ill) and SO(I(%)I) we obtain their
equations by (3.30)

1
(ar th 2)? + (ar th y)? + (ar th 2)* = 1

(ar th 2)? + (arthy)? + (ar th 2)*> = 1

and

(ar th 2)? + (ar th y)? + (ar th 2)* = Z

and they are shown in the following figures:

Fig. 3.31

Fig. 3.32



On the cube model of three-dimensional Euclidean space 31

Fig. 3.33

4, Proof of Theorems

4.1. Proof of Theorem 1.10. Considering that the verifications of identitites
(1.11)-(1.14) are very similar, we give the proof of identity (1.12), only. After (1.8)
and (1.7) we apply the familiar associativity of addition of vectors and using (1.7)
and (18) again, we obtain:

L L1 L
XeY)eZ=XaV + Z,=(X+Y

Considering that the verifications of identities (1.15)-(1.18) are very similar,
we give the proof of identity (1.16), only. After (1.19), (1.8), and (1.7) we apply a
familiar distributive property of multiplication of vectors by scalar and using (1.9)
and (18) again, we get

[ |
[} L 1 [ W L1 [y L1
coXaY)=cd XY = (X +Y) =c(X+7Y)
L o oo oo
:'CX+CY':|(‘CX')+('CY')|

L1 [E—
=, cOX + c0Y =(oX)s (oY)

4.2. Proof of Theorem 1.21. The verifications of identities (1.22)-(1.24) are
very similar to the verifications mentioned above, so we prove the property (1.25),
only. Using (1.20), (1.4) and (0.1)
L [ [ [
XOX= X X =th((e))+ () +(2,)*)>0
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LJ
is obtained. Moreover, we have zero if and only f X = O which by (1.4) and

(0.10) means that X = O.

4.3. Proof of Theorem 1.31. The proof of property (1.32) is very similar to
the proof of property (1.25), so we omit it. The identity (1.33) does not need new
methods, so we accept it. We prove nequality (1.34). After (1.29), (1.8), (1.7) and
(0.1) we apply the Minkowski-inequality and using (0.2) and (1.29), we can write

L LU
X OV ps = | XBY [lrs;= | X + Y [lrs; <
]

L LJ L LJ
S X lrs + 1Y Mlrey = | Xlrey @[ Y llgsy = [[X]] s @ Y] s
| =1

4.4. Proof of Theorem 1.39. Identity (1.40) is trivial, the verification of property
(1.41) is easy, so we omit them. We verify the inequality (1.42), only. After (1.38)
we use the triangular inequality and using (0.2) and (1.38) again, we have

[y L ud [

lels(X,Y)IldRs(X, Y)ISIdRS(X’ Z)—l—dRs( Z Y)I:

L [
IldRs(X, Z)I@IdRS(Z’ Y)lzd

lRls(X, Z) $ lels(Z,Y).

4.5. Proof of Theorem 2.25. Qur proof is based on the well-known inequality
concerning the familiar angles enclosed by vectors. Namely,

(U =WV = W) = dps (U, W) - dgs(V, W) cos JUWV

L
where U, V,W € R? such that U # W and V # W. Hence, denoting by U = X ,
L [
V=Y and W = 7, we have

LU L LJ [ L [
X-72)(Y - 7
(4.6) meas <4 X 7 Y = arccos ( - I_l) ( - Ill :
dre( X, Z)-dps( Y, Z)
L L I L
Applying (1.7), (1.8) and (1.37) we have that X — 7 = X© 7 and ¥V —

[ I
7Z = Y &7 hold. Hence (1.7) and (1.20) yield

L [ L L | J
(4.7) (X - Z) (Y- Z)= (Xe2)o(¥ o).
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On the other hand, by (0.12), (1.38), (0.12) again, (0.3) and (0.11) we have

= dlﬁs(X, D)0 dpeV.2)) = d X, 2) 0d oV 7).

Hence, by (4.7), (0.12), (0.7) and (0.11) we can write

_7) Fonewed

=T
)~dR$(Y,Z) dRs(X,Y)Qd
I_ |

R|3 (Y’ Z)

_((| XeneYez |))

! lels(X,Z) @le

(Y, 7)
|

I ] | -
=(Xez)oY @Z))l@l( lels(X,Z) @lels(Y,Z) )I

= I((X )0V 672) @Wps(X, 7)o d
7 |

R|3 (Y’ Z)) :

Returning to (4.6) we obtain that

NE
~C

L
meas < X

—acos (X620 62)0Uy

(X, 2) 0 d (Y, 7

holds. Hence, (2.23) and (2.24) yield

sub meas sub 4X 7Y

= jmeces (X62)0(Y62) QW

(X 2) 0 d eV 2))
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=subarccos(((X )oY o2) O, s(X,2)06 dRs(Y, ZN),

|£|
that is, we have (2.26).
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