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ON THE CUBE MODEL OF

THREE-DIMENSIONAL EUCLIDEAN SPACE

I. Szalay (Szeged, Hungary)

Dedicated to the memory of Professor Péter Kiss

Abstract. In [4] the open interval R =]−1,1[ with the sub-addition ⊕ and sub-multipli-

cation ⊙ was considered as a compressed model of the field of real numbers (R,+,·). Considering

the points of the open cube R
3

={X=(x1,x2,x3) : x1,x2,x3∈ R } we give the concepts of sub-line

and sub-plane and construct a bounded model of the three dimensional Euclidean geometry which

is isomorphic with the familiar model R3.

Preliminary

The first exact formulation of classical Euclidean geometry was given by
Hilbert. Nowadays, Hilbert’s axiom-system is well-known. (For example, see [2],
pp. 172, 102, 31, 326, 135–136, 187, 351, 77, 326, 25, 45 and 405.) It is a very
comfortable model, the three-dimensional Descartes coordinate-system R3 is a real
vector space with a canonical inner product. It is used in the secondary and higher
schools, in general. Another model, given by Fjodoroff (see [2] p. 117), is less-known.
Its speciality is that it is able to interpret the points of R3 in a given basic plane by
a point (lying on the basic plane) together with a directed circle. Both mentioned
models, are boundless.

Our cube model, being an (open) cube in R3, is bounded. Its speciality is that
it is able to show the “end of line” or the “meeting of parallel lines” and so on.
On the other hand, the elements of this model are less spectacular in a traditional
sense. “Line” may be a screwed curve which does not lie in any traditional plane.
The form “ball” depends on not only its “radius” but the place of its “centre”, too.

The importence of the cube model is in the methodology of teacher training.
Seeing that the axioms are not trivial helps to understand the role of parallelism in
the history of mathematics: Namely, the axiom of parallelism was the only axiom
which seemed to be provable by the other axioms.

The cube model is based on the ordered field of compressed real numbers
situated on the open interval ]-1, 1[ denoted by R . Introducing the sub-addition ⊕
and sub-multiplication ⊙, the ordered field (R,⊕,⊙) is isomorphic with the ordered

field (R, +, ·). The points of open cube R
3

= {X = (x1, x2, x3) : x1, x2, x3 ∈ R}
give the points of the cube model.
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Introduction

Having the compression function u ∈ R 7→ th u ∈] − 1, 1[ ([1], I. 7.54–7.58) we
say that the compressed of u is given by the equation

(0.1) u = thu, u ∈ R.

Hence, we have that the compresseds of real numbers are just on the open interval
R =]−1, 1[. Considering the compression function as an isomorphism between the

fields (R, +, ·) and (R ,⊕,⊙) we define the sub-addition and sub-multiplication by

the identities

(0.2) u ⊕ v := u + v , u, v ∈ R

and

(0.3) u ⊙ v := u · v , u, v ∈ R,

respectively. If x = u and y = v , then (0,1), (0,2) and (0,3) yield the relations

(0.4) x ⊕ y =
x + y

1 + xy
, x, y ∈ R

and

(0.5) x ⊙ y = th((ar th x)(ar th y)), x, y ∈ R.

Moreover, we can use the identities

(0.6) u ⊖ v := u − v , u, v ∈ R

(0.7) u ©: v := u : v , u, v ∈ R, v 6= 0

or

(0.8) x ⊖ y =
x − y

1 − xy
, x, y ∈ R

and

(0.9) x ©: y = th
(ar th x

ar th y

)

, x, y ∈ R, y 6= 0,
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where the operations ⊖ and ©: are called sub-subtraction and sub-division, respec-
tively.

The inverse of compression is explosion defined by the equation

(0.10)
|

x
|

= ar thx, x ∈ R

and
|

x
|

is called the exploded of x. Clearly, by (0.1) and (0.10) we have the identities

(0.11) x = (
|

x
|

) , x ∈ R

and

(0.12) u =
|

(u )
|

, u ∈ R.

1. Operations on R
3

Having the familiar three dimensional Euclidean vector-space R3 with the
traditional operations (addition, multiplication by scalar, inner product) as well as

the concepts of norm and metric, we give their isomorphic concepts for R
3

which

is the set of points X = (x1, x2, x3) such that x1, x2, x3 ∈ R . Clearly, R
3

forms

an open cube in R3. Considering the vectors X = (x1, x2, x3) and Y = (y1, y2, y3)

from R
3

we define sub-addition as

(1.1) X ⊕ Y = (x1 ⊕ y1, x2 ⊕ y2, x3 ⊕ y3),

sub-multiplication by scalar c ∈ R as

(1.2) c ⊙ X = (c ⊙ x1, c ⊙ x2, c ⊙ x3)

and sub-inner product as

(1.3) X ⊙ Y = (x1 ⊙ y1) ⊕ (x2 ⊙ y2) ⊕ (x3 ⊙ y3).

Introducing the exploded of the point X = (x1, x2, x3) as

(1.4)
|

X
|

= (
|

x1

|

,
|

x2

|

,
|

x3

|

), X ∈ R
3
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and the compressed of the point U = (u1, u2, u3) as

(1.5) U = (u1 , u2 , u3 ), U ∈ R3

we have the identities

(1.6) X = (
|

X
|

) , X ∈ R
3

and

(1.7) U =
|

(U )
|

, U ∈ R3.

Using (0.11), (0.2), (1.5) and (1.4), the identity (1.1) yields

(1.8) X ⊕ Y =
|

X
|

+
|

Y
|

, X, Y ∈ R
3
.

Moreover, by (0.11), (0.3), (1.4) the identity (1.2) yields

(1.9) c ⊙ X =
|

c
|

·
|

X
|

, c ∈ R and X ∈ R
3
.

Considering the operations (1.1) and (1.2) we have the following

Theorem 1.10. R
3

is a real vector space with the sub-addition (1.1) and scalar

sub-multiplication (1.2). In detail, we have the following identities:

(1.11) X ⊕ Y = Y ⊕ X, X, Y ∈ R
3
,

(1.12) (X ⊕ Y ) ⊕ Z = X ⊕ (Y ⊕ Z), X, Y, Z ∈ R
3
,

(1.13) X ⊕ o = X, where X ∈ R
3

arbitrary and o = (0, 0, 0),

(1.14)
X ⊕ (−X) = o, where − X

is the familiar additive inverse of x ∈ R
3
.

Moreover, the identities

(1.15) 1 ⊙ X = X, X ∈ R
3
,
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(1.16) c ⊙ (X ⊕ Y ) = (c ⊙ X) ⊕ (c ⊙ Y ), c ∈ R, X, Y ∈ R
3
,

(1.17) (c1 ⊕ c2) ⊙ X = (c1 ⊙ X) ⊕ (c2 ⊙ X), c1, c2 ∈ R, x ∈ R
3
,

(1.18) (c1 ⊙ c2) ⊙ X = c1 ⊙ (c2 ⊙ X), c1, c2 ∈ R X ∈ R
3
,

also hold.

Remark 1.19. By Theorem 1.10 we say that R
3

is a sub-linear space with the

operations (1.1) and (1.2).

Using (0.11), (0.3), (0.2) and (1.4) the identity (1.3) yields

(1.20) X ⊙ Y =
|

X
|

·
|

Y
|

, X, Y ∈ R
3
,

where “·” means the familiar inner product (of vectors
|

X
|

and
|

Y
|

) in R3.

For the sub-inner product we have

Theorem 1.21. R
3

in a Euclidean vector space with the sub-inner product defined

by (1.3) such that the sub-inner product has the following properties

(1.22) X ⊙ Y = Y ⊙ X, X, Y ∈ R
3
,

(1.23) (X ⊕ Y ) ⊙ Z = (X ⊙ Z) ⊕ (Y ⊙ Z), X, Y, Z ∈ R
3

(1.24) (c ⊙ X) ⊙ Y = c ⊙ (X ⊙ Y ), c ∈ R, X, Y ∈ R
3

and for any X ∈ R
3

the inequality

(1.25) X ⊙ X ≥ 0 holds such that X ⊙ X = 0 if and only if X = 0.

Remark 1.26. By Theorem 1.21 we say that R
3

is a sub-euclidean space with

the sub-inner product (1.3).
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In [4] the concept of sub-function was defined for one variable (see [4], (0.8)
and (0.9)). Hence, we have the sub-square root function

(1.27) sub
√

x =

√

|

x
|

, x ∈ [0, 1).

Having the property (1.25) and using the sub-square root function we can define
the sub-norm as follows:

(1.28) ‖X‖
R

3 = sub
√

X ⊙ X, x ∈ R
3
.

Using (1.27), (1.20) and (0.12) the definition (1.28) yields

(1.29) ‖X‖
R

3 = ‖
|

X
|

‖R3 , x ∈ R
3
,

where ‖ · ‖R3 means the familiar norm of vectors.

Remark 1.30. Applying the familiar Cauchy’s inequality by (1.20), (0.1), (0.3)
and (1.29) we have the inequality

|X ⊙ Y | ≤ ‖X‖
R

3 ⊙ ‖Y ‖
R

3 , X, Y,∈ R
3
.

Corollary 1.31. The sub-norm has the following properties

(1.32) ‖X‖
R

3 ≥ 0, (X ∈ R
3
) such that‖X‖

R
3 = 0 if and only if X = 0,

(1.33) ‖c ⊙ X‖
R

3 = |c| ⊙ ‖X‖
R

3 , c ∈ R, X ∈ R
3

and

(1.34) ‖X ⊕ Y ‖
R

3 ≤ ‖X‖
R

3 ⊕ ‖Y ‖
R

3 , X, Y ∈ R
3
.

Remark 1.35. By Corollary 1.31 we say that R
3

is a sub-normed space with the

sub-norm (1.28).

Finally, we define the sub-distance of elements of R
3

as follows

(1.36) d
R

3(X, Y ) = ‖X ⊖ Y ‖
R

3 , X, Y ∈ R
3
,
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where the sub-subtraction of vectors is defined by

(1.37) X ⊖ Y = X ⊕ (−Y ).

Using (1.29), (1.37), (1.8), (1.7), (1.4) and (0.10) the definition (1.36) yields

(1.38) d
R

3(X, Y ) = dR3(
|

X
|

,
|

Y
|

) , X, Y ∈ R
3
,

where dR3 is the familiar distance of the points of R3.

Corollary 1.39. The sub-distance has the following properties

(1.40) d
R

3(X, Y ) = d
R

3(Y, X), X, Y ∈ R
3
,

(1.41) d
R

3(X, Y ) ≥ 0 such that d
R

3(X, Y ) = 0 if and only if

X = Y, X, Y ∈ R
3

and

(1.42) d
R

3(X, Y ) ≤ d
R

3(X, Z) ⊕ d
R

3(Z, Y ), X, Y, Z ∈ R
3
.

Remark 1.43. By Corollary 1.39 we say that R
3

is a sub-metrical space with the

sub-distance (1.36).

2. On the geometry of R
3

Our starting point is the Euclidean geometry of R3 with its points, lines and
planes based on the axioms formulated by Hilbert. Now we construct the cube-
model of the classical Euclidean geometry. The points of the model will be the
points of R3. Considering a line ℓ in R3 its compressed will be the set of compressed
points of ℓ denoted by ℓ . Considering a plane s in R3 its compressed will be the

set of compressed points of s denoted by s . The set λ = ℓ is called sub-line and

the set σ = s is called sub-plane. Clearly, λ ⊂ R
3

and σ ⊂ R
3
. Moreover, the

exploded of a sub-line is a line and the exploded of a sub-plane is a plane, that is
|

λ
|

= ℓ and
|

σ
|

= s.
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By the axioms of the euclidean geometry of R3 we have the properties of the

geometry of R
3
.

Denoting by L the set of lines of R3, by P the set of planes of R3, (R3,L,P)
is a so-called incidence geometry (see [3]). Considering L = { ℓ : ℓ ∈ L} and

P = { s : s ∈ P}, (R
3
, L , P ) is also an incidence geometry. Now we give the

properties of “incidence”.

Property 2.1. If X and Y are distinct points of R
3

then there exists a sub-line

λ that contains both X and Y

Property 2.2. There is only one λ such that X ∈ λ and Y ∈ λ.

Property 2.3. Any sub-line has at least two points. There exist at least three
points not all in one sub-line.

Property 2.4. If X, Y and Z not are in the same sub-line then there exists a
sub-plane σ such that X, Y and Z are in σ. Any sub-plane has a point at least.

Property 2.5. If X, Y and Z are different non sub-collinear points, there is exactly
one sub-plane containing them.

Property 2.6. If two points lie in a sub-line, then the line containing them lies in
the plane.

Property 2.7. If two sub-planes have a joint point then they have another joint
point, too.

Property 2.8. There exists at least four points such that they are not on the same
sub-plane.

We will say that the point Z is between the points X and Y on the sub-line

λ if
|

Z
|

is between
|

X
|

and
|

Y
|

on the line
|

λ
|

. The concept of “between” has the
following properties:

Property 2.9. If Z is between X and Y then X, Y and Z are three different points
of a sub-line and Z is between Y and X .

Property 2.10. For any arbitrary point X and Y there exists at least one point
Z lying on the sub-line determined by X and Y such that Z is between X and Y .

Property 2.11. For any three points of a sub-line there is only one between the
other two.

Property 2.12. (Pasch-type property.) If X, Y and Z are not in the same sub-line
and λ is a sub-line of the sub-plane determined by the points X, Y and Z such
that λ has not points X, Y or Z but it has a joint point with the sub-segment XY

of the sub-line determined by X and Y then λ has a joint point with one of the
sub-segmentes XZ or Y Z of the sub-lines determined by X and Z or Y and Z,
respectively.

We will say that two sets in R
3

are sub-congruent if their explodeds are

congruent in the familiar sense. Let two half-lines be given with the same starting
point W and let be U and V their inner points. Let us consider the familiar convex
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angle ∡ UWV . Compressing this angle we obtain the sub-angle sub ∡ U W V

(or sub-angle sub ∡ XZY where X = U , Y = V and Z = W ) with the peak-point

W and bordered by the sub-half-lines determined by the points W , U and W ,

V . The concept of “sub-congruence” and “sub-angle” have the following properties

Property 2.13. On a given sub-half-line there always exists at least one sub-
segment such that one of its end-points is the starting point of the sub-half-line
and this sub-segment is sub-congruent with an earlier given sub-segment.

Property 2.14. If both sub-segments p1 and p2 are sub-congruent with the sub-
segments p3 then p1 and p2 are sub-congruent.

Property 2.15. If sub-segment p1 is sub-congruent with sub-segment q1 and p2 is
sub-congruent with q2 then p1 ∪ p2 is sub-congruent with q1 ∪ q2.

Property 2.16. On a given side of a sub-half-lines there exists only one sub-angle
which is sub congruent with a given sub-angle. Each sub angle is sub-congruent
with itself.

Property 2.17. Let us consider two sub-triangles. If two sides and sub-angles
enclosed by these sides are sub-congruent in the sub-triangles mentioned above
then they have another sub-congruent sub-angles.

We say that the sub-lines λ1 and λ2 are sub-parallel if their explodeds
|

λ1

|

and
|

λ2

|

are parallel lines in the familiar sense. Now we have

Property 2.18. If a sub-line λ1 and a point X are given such that X is off λ1

then there exists only one sub-line λ2 through X that is sub-parallel to λ1.

Finally, we mention two properties for continuity.

Property 2.19. (Archimedes-type property.) If a point X1 is between the points
X and Y on a sub-line then there are points X2 X3, . . . , Xn such that the sub-
segments Xi−1Xi; (i = 2, 3, . . . , n) are sub-congruent with sub-segment XX1 and
Y is between points X and Xn.

Property 2.20. (Cantor-type property.) If {XnYn}∞n=1 is a sequence of sub-
segments lying on a sub-line λ such that for any n = 1, 2, 3, . . ., Xn+1Yn+1 ⊂ XnYn

then there exists at least one point Z of λ such that Z belongs to each Xn Yn.

To measure the sub-segments and sub-angles we can use the principle of
isomorphic expressed by the identities (1.8), (1.9) and (1.20). If the sub-segment p

has the end-points X and Y then its sub-measure can be defined as follows:

(2.21) sub meas p = meas
|

p
|

,

where meas
|

p
|

is understood in the traditional sense. Considering that
|

p
|

is a

segment bordered by
|

X
|

and
|

Y
|

we have that

meas
|

p
|

= DR3(
|

X
|

,
|

Y
|

).
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Hence, by (2.21) and (1.38) we have

(2.22) sub meas p = d
R

3(X, Y ),

which is the sub-distance of X and Y .

Similarly, to measure sub-angles we write

(2.23) sub meas sub ∡XZY = meas ∡

|

X
| |

Z
| |

Y
|

where meas ∡

|

X
| |

Z
| |

Y
|

is understood in the traditional sense. Using the concept
of sub-function again, we obtain that

(2.24) sub arc cosx = arc cos
|

x
|

, x ∈ [−1 , 1 ].

Moreover, we have the following

Theorem 2.25. If X, Y and Z are given points of R
3

such that X 6= Z and Y 6= Z

then

(2.26)
sub meas sub ∡ XZY

= sub arc cos(((X ⊖ Z) ⊙ (Y ⊖ Z)) ©: (d
R

3(X, Z) ⊙ d
R

3(Y, Z))).

3. Examples for special subsets of R
3

Example 3.1. First, we show that the equation

(3.2) X = B ⊕ (τ ⊙ M), τ ∈ R

where B, M are given points of R
3

with the condition

(3.3) ‖M‖
R

3 = 1

represents a sub-line. Really, using (1.8), (1.7) and (1.9) the equation (3.2) yields
the equation

(3.4)
|

X
|

=
|

B
|

+ t
|

M
|

, t =
|

τ
|

∈ R
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which represents a line. Moreovoer, by (1.29) and (0.12) the condition (3.3) means
that

(3.5) ‖
|

M
|

‖R3 = 1

holds. Writing that B = (b1, b2, b3) and M = (m1, m2, m3), the equation (3.2) is
equivalent to the equation-system

x1 = b1 ⊕ (τ ⊙ m1)

x2 = b2 ⊕ (τ ⊙ m2)

x3 = b3 ⊕ (τ ⊙ m3)

, τ ∈ R

which considering (0.4) and (0.5) can be written in the following form

(3.6)

x1 =
b1 + th((ar th τ)(ar thm1))

1 + b2 th((ar th τ)(ar th m1))

x2 =
b2 + th((ar th τ)(ar thm2))

1 + b2 th((ar th τ)(ar th m2))
, (−1 < τ < 1)

x3 =
b3 + th((ar th τ)(ar thm3))

1 + b3 th((ar th τ)(ar th m3))
.

In the special case B =
(

0, 0, 1
2

)

and M =
(

th 1√
6
, th 1√

6
, th 2√

6

)

then (3.6) is

(3.7)

x1 = th

(

1√
6

ar th τ

)

x2 = th

(

1√
6

ar th τ

)

, −1 < τ < 1

x3 =
1 + 2 th

(

2√
6

ar th τ
)

2 + th
(

2√
6

ar th τ
)

and the sub-line is shown in the following figure:

Fig. 3.8
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Example 3.9. The sub-line given by the equation-system (3.7) (see Fig. 3.8) and
the sub-line given by the equation-system

(3.10)

x1 = th

(

1√
6

ar th τ

)

x2 = th

(

1√
6

ar th τ

)

x3 = th

(

2√
6

ar th τ

)

, −1 < τ < 1

are sub-parallel and their graphs are shown in the following figure:

Fig. 3.11

Example 3.12. The sub-line given by the equation system (3.7) (see Fig. 3.8) and
the sub-line given by the equation-system

(3.13)

x1 = th

(

1√
6

ar th τ

)

x2 = − th

(

1√
6

ar th τ

)

, −1 < τ < 1

x3 =
1 + 2 th

(

2√
6

ar th τ
)

2 + th
(

2√
6

ar th τ
)

has the joint point B =
(

0, 0, 1
2

)

. Their graphs are shown in the following figure:

Fig. 3.14
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Example 3.15. The sub-lines given by (3.10) (see Fig. 3.11) and (3.13) (see Fig.
3.14) have neither a joint point nor a joint sub-plane. They can be seen in the
following figure

Fig. 3.16

Example 3.17. The equation

(3.18) z = x ⊕ y ⊕ 1

2
, x, y ∈ R

represents a sub-plane. Really, by (0.11) and (0.2) the computation

|

z
|

= x ⊕ y ⊕ 1
2

|

= (
|

x
|

) ⊕ (
|

y
|

)

|

⊕ (
|

(1
2 )

|

) =
|

x
|

+
|

y
|

⊕ (
|

(1
2 )

|

)

|

= (
|

x
|

+
|

y
|

+
|

(1
2 )

|

)

|

=
|

x
|

+
|

y
|

+(1
2 )

|

shows that if (x, y, z) satisfies (3.18) then the points (
|

x
|

,
|

y
|

,
|

z
|

) form a plane. By
(0.4) the equation (3.18) is equivalent to the

(3.19) z =
xy + 2x + 2y + 1

2xy + x + y + 2
, −1 < x, y < 1,

so we have the surface of a sub-plane

Fig. 3.20
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The equation (3.19) shows that the sub-line (3.7) coincides with the sub-plane
given by (3.18) . The Fig. 3.20 shows this fact.

The sub-plane determined by the equation

(3.21) z = x ⊕ y

(

=
x + y

1 + xy

)

, x, y ∈ R

is sub-parallel with the sub-plane given by (3.18). Their surfaces are shown in the
following figure:

Fig. 3.22

Fig. 3.22 shows that the sub-line (3.10) is on the sub-plane (3.21).

Example 3.23. Considering the set

(3.24) SX0
(ρ) = {X ∈ R

3
: d

R
3(X, X0) = ρ, X0 ∈ R

3
and ρ ∈ R+ }

by (1.38) and (0.12) we have

(3.25) dR3(
|

X
|

,
|

X0

|

) =
|

ρ
|

,

that is the points
|

X
|

∈ R3 form a sphere with centre
|

X
|

0
and radius

|

ρ
|

. Therefore

SX0
(ρ) is called a sub-sphere with centre X0 and radius ρ. By (1.4), (3.25) and

(0.10) we get the equation of sub-sphere

(3.26)
(ar thx − ar thx0)

2 + (ar th y − ar th y0)
2+

+(ar th z − ar th z0)
2 = (ar th ρ)2

where X = (x, y, z) and X0 = (x0, y0, z0) are elements of R
3
.

Although the sub-sphere is determined anambiguously by its centre and radius,
its form depends on the place of the centre too. Moreover, it is not symmetrical in
a traditional sense for its centre. The following figures show the sub-spheres

S
(1 , 1 , 1 )

(

(1
2 )

)

, S
(1 , 1 , 1 )

( 1 ) and S
(1 , 1 , 1 )

( (3
2 ) )
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having the equations

(ar thx − 1)2 + (ar th y − 1)2 + (ar th z − 1)2 =
1

4

(ar thx − 1)2 + (ar th y − 1)2 + (ar th z − 1)2 = 1

and

(ar thx − 1)2 + (ar th y − 1)2 + (ar th z − 1)2 =
9

4
,

respectively

Fig. 3.27

Fig. 3.28

Fig. 3.29
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The sub-spheres SO(ρ) are symmetrical in a traditional sense for their centre
o. By (3.26) the sub-sphere S0(ρ) has the following equation

(3.30) (ar thx)2 + (ar th y)2 + (ar th z)2 = (ar th ρ)2.

Considering now the sub-spheres SO( (1
2 ) ), SO( 1 ) and So( (3

2 ) ) we obtain their

equations by (3.30)

(ar thx)2 + (ar th y)2 + (ar th z)2 =
1

4

(ar thx)2 + (ar th y)2 + (ar th z)2 = 1

and

(ar thx)2 + (ar th y)2 + (ar th z)2 =
9

4

and they are shown in the following figures:

Fig. 3.31

Fig. 3.32
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Fig. 3.33

4. Proof of Theorems

4.1. Proof of Theorem 1.10. Considering that the verifications of identitites
(1.11)–(1.14) are very similar, we give the proof of identity (1.12), only. After (1.8)
and (1.7) we apply the familiar associativity of addition of vectors and using (1.7)
and (18) again, we obtain:

(X ⊕ Y ) ⊕ Z =
|

X ⊕ Y
|

+
|

Z
|

= (
|

X
|

+
|

Y
|

)

|

+
|

Z
|

= (
|

X
|

+
|

Y
|

) +
|

Z
|

=
|

X
|

+ (
|

Y
|

+
|

Z
|

) =
|

X
|

+ (
|

Y
|

+
|

Z
|

)

|

=
|

X
|

+
|

Y ⊕ Z
|

= X ⊕ (Y ⊕ Z).

Considering that the verifications of identities (1.15)–(1.18) are very similar,
we give the proof of identity (1.16), only. After (1.19), (1.8), and (1.7) we apply a
familiar distributive property of multiplication of vectors by scalar and using (1.9)
and (18) again, we get

c ⊙ (X ⊕ Y ) =
|

c
|

⊕
|

X ⊕ Y
|

=
|

c
|

(
|

X
|

+
|

Y
|

)

|

=
|

c
|

(
|

X
|

+
|

Y
|

)

=
|

c
| |

X
|

+
|

c
| |

Y
|

= (
|

c
| |

X
|

)

|

+ (
|

c
| |

Y
|

)

|

=
|

c ⊙ X
|

+
|

c ⊙ Y
|

= (c ⊙ X) ⊕ (c ⊙ Y ).

4.2. Proof of Theorem 1.21. The verifications of identities (1.22)–(1.24) are
very similar to the verifications mentioned above, so we prove the property (1.25),
only. Using (1.20), (1.4) and (0.1)

X ⊙ X =
|

X
|

·
|

X
|

= th((
|

x
|

1
)2) + (

|

x
|

2
)2 + (

|

x
|

3
)2) ≥ 0
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is obtained. Moreover, we have zero if and only if
|

X
|

= O which by (1.4) and
(0.10) means that X = O.

4.3. Proof of Theorem 1.31. The proof of property (1.32) is very similar to
the proof of property (1.25), so we omit it. The identity (1.33) does not need new
methods, so we accept it. We prove inequality (1.34). After (1.29), (1.8), (1.7) and
(0.1) we apply the Minkowski-inequality and using (0.2) and (1.29), we can write

‖X ⊕ Y ‖
R

3 = ‖
|

X ⊕ Y
|

‖R3 = ‖
|

X
|

+
|

Y
|

‖R3 ≤

≤ ‖
|

X
|

‖R3 + ‖
|

Y
|

‖R3 = ‖
|

X
|

‖R3 ⊕ ‖
|

Y
|

‖R3 = ‖X‖
R

3 ⊕ ‖Y ‖
R

3 .

4.4. Proof of Theorem 1.39. Identity (1.40) is trivial, the verification of property
(1.41) is easy, so we omit them. We verify the inequality (1.42), only. After (1.38)
we use the triangular inequality and using (0.2) and (1.38) again, we have

d
R

3(X, Y ) = dR3(
|

X
|

,
|

Y
|

) ≤ dR3(
|

X
|

,
|

Z
|

) + dR3(
|

Z
|

,
|

Y
|

) =

= dR3(
|

X
|

,
|

Z
|

) ⊕ dR3(
|

Z
|

,
|

Y
|

) = d
R

3(X, Z) ⊕ d
R

3(Z, Y ).

4.5. Proof of Theorem 2.25. Our proof is based on the well-known inequality
concerning the familiar angles enclosed by vectors. Namely,

(U − W )(V − W ) = dR3(U, W ) · dR3(V, W ) cos ∡ UWV

where U, V, W ∈ R3 such that U 6= W and V 6= W . Hence, denoting by U =
|

X
|

,

V =
|

Y
|

and W =
|

Z
|

, we have

(4.6) meas ∡

|

X
| |

Z
| |

Y
|

= arc cos
(

|

X
|

−
|

Z
|

) · (
|

Y
|

−
|

Z
|

)

dR3(
|

X
|

,
|

Z
|

) · dR3(
|

Y
|

,
|

Z
|

)

.

Applying (1.7), (1.8) and (1.37) we have that
|

X
|

−
|

Z
|

=
|

X ⊖ Z
|

and
|

Y
|

−
|

Z
|

=
|

Y ⊖ Z
|

hold. Hence (1.7) and (1.20) yield

(4.7) (
|

X
|

−
|

Z
|

) · (
|

Y
|

−
|

Z
|

) =
|

(X ⊖ Z) ⊙ (Y ⊖ Z)
|

.
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On the other hand, by (0.12), (1.38), (0.12) again, (0.3) and (0.11) we have

dR3(
|

X
|

,
|

Z
|

) · dR3(
|

Y
|

,
|

Z
|

) = (dR3(
|

X
|

,
|

Z
|

) )

|

· (dR3(
|

Y
|

,
|

Z
|

) )

|

=
|

d
R

3(X, Y )
|

·
|

d
R

3(Y, Z)
|

= (
|

d
R

3(x, Y )
|

·
|

d
R

3(Y, Z)
|

)

|

= (
|

d
R

3(X, Z)
|

) ⊙ (
|

d
R

3(Y, Z)
|

)

|

=
|

d
R

3(X, Z) ⊙ d
R

3(Y, Z)
|

.

Hence, by (4.7), (0.12), (0.7) and (0.11) we can write

(
|

X
|

−
|

Z
|

) · (
|

Y
|

−
|

Z
|

)

dR3(
|

X
|

,
|

Z
|

) · dR3(
|

Y
|

,
|

Z
|

)

=

|

(X ⊖ Z) ⊙ (Y ⊖ Z)
|

|

d
R

3(X, Y ) ⊙ d
R

3(Y, Z)
|

=
(

(

|

(X ⊖ z) ⊙ (Y ⊖ Z)
|

|

d
R

3(X, Z) ⊙ d
R

3(Y, Z)
|
)
)

|

= (
|

(X ⊖ Z) ⊙ (Y ⊖ Z)
|

) ©: (
|

d
R

3(X, Z) ⊙ d
R

3(Y, Z)
|

)

|

=
|

((X ⊖ Z) ⊙ (Y ⊖ Z)) ©: (d
R

3(X, Z) ⊙ d
R

3(Y, Z))
|

.

Returning to (4.6) we obtain that

meas ∡

|

X
| |

Z
| |

Y
|

= arc cos
|

((X ⊖ Z) ⊙ (Y ⊖ Z)) ©: (d
R

3(X, Z) ⊙ d
R

3(Y, Z))
|

holds. Hence, (2.23) and (2.24) yield

sub meas sub ∡ XZY

= arc cos
|

((X ⊖ Z) ⊙ (Y ⊖ Z)) ©: (d
R

3(X, Z) ⊙ d
R

3(Y, Z))
|
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= sub arc cos(((X ⊖ Z) ⊙ (Y ⊖ Z)) ©: (d
R

3(X, Z) ⊙ d
R

3(Y, Z))),

that is, we have (2.26).
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