Residual Lie nilpotence of the augmentation ideal

BERTALAN KIRALY*

Abstract. In this paper we give necessary and sufficient conditions for the residual
Lie nilpotence of the augmentation ideal for an arbitrary group ring RG except for the
case when the derived group of G is with no generalized torsion elements with respect
to the lower central series of G and the torsion subgroup of the additive group of R
contains a non-trivial element of infinite height. From this results we get the residual Lie

nilpotence of the augmentation ideal of the p-adic integer group rings.

1. Introduction

Let R be a commutative ring with identity, G' a group and RG its group
ring. The group ring RG may be considered as a Lie algebra, with the usual
bracket operation. The study of this Lie algebra was initiated by 1. B. S.
Passi, D. S. Passman and S. K. Sehgal [5]. Additional results on the Lie

structure of RG may be found in [4] and [6].

Let A(RG) denote the augmentation ideal of R(/, that is the kernel
of the homomorphism RG onto R which sends each group element to 1.
It is easy to see that as R-module A(RG) is a free module with elements
g—1(g € G) as a basis.

There are many problems and results relating to A(RG) ([4], [6]). In
particular, it is an interesting problem to characterize the group rings whose
augmentation ideal satisfy some conditions. In this paper, we treat the Lie
property.

The Lie powers AN (RG) of A(RG) are defined inductively: AM(RG) =
A(RG), AMU(RG) = [AP(RG), A(RG)}RG, if X is not a limit ordinal, and
for the limit ordinal A\, AMN(RG) = N, <\ AM(RG), where [K, M] denotes
the R-submodule of RG' generated by [k,m]| = km — mk (kK € K C RG,
m € M C RG), and for K - RG denotes the right ideal generated by K in
RG.
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For the first limit ordinal w we adopt the notation:

ARG = ﬁ Al(RG).

i=1

The ideal A(RG) of the group ring RG is said to be residually Lie
nilpotent if AXI(RG) = 0.

In this paper we give necessary and sufficient conditions for the residual
Lie nilpotence of the augmentation ideal for an arbitrary group ring RG
except for the case when the derived group of G is with no generalized
torsion elements with respect to the lower central series of G and the torsion
subgroup of the additive group of R contains a non-trivial element of infinite

height.

Our main results are given in section 3. These results (Theorem A, B
and C) are rather technical so they are not stated in the introduction.

2. Notations and some known facts

If H is a normal subgroup of GG, then I[(RH) (or I(H ) for short) denotes
the ideal of RG generated by elements of the form h —1,(h € H). It is well
known that (R H) is the kernel of the natural epimorphism ¢: RG' — RG/H
induced by the group homomorphism ¢ of G onto G/H. It is clear that
I(RG) = A(RG).

Let F be a free group on the free generators ; (1 € I) and ZF be
its integral group ring (7 denotes the ring of rational integers). Then every
homomorphism ¢: F — ( induces a ring homomorphism ¢: ZF — RG by
letting ¢(>_ nyy) = Y. n,d(y). ¥ f € ZF, we denote by A;(R(G) the two-
sided ideal of R generated by the elements ¢(f), ¢ € Hom(F, (), the set of
homomorphism from /' to . In other words A;(R(G) is the ideal generated
by the values of f in RG as the elements of G are substituted for the free
generators x;-s.

An ideal J of RG is called a polynomial ideal if J = A¢(R(G') for some
f € ZF.It is easy to see that the augmentation ideal A(R() is a polynomial
ideal. Really, A(R(/) is generated as an R-module by elements ¢—1 (¢ € G),
ie. by the values of the polynomial = — 1.

We also use the following

Lemma 2.1. ([4], Proposition 1.4., page 2.) Let f € ZF'. Then f defines
a polynomial ideal A;(R(G) in every group ring RG. Further, if : RG — K H
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is a ring homomorphism induced by a group homomorphism ¢:G — H and
a ring homomorphism : R — K, then

B(A;(RG)) C A (K H).

(It is assumed here that ¢(1g) = 1x, where 1 and 1x are identities of
rings R and K respectively.)

For every natural number n Al"(RG) is a polynomial ideal (see in
particular [4], Corollary 1.9., page 6.) and by Lemma 2.1.

d(AM(RG)) C ARG/ L)
for every n. From this inclusion it can be obtained easily that
1) H(AM(RG)) € AM(RG/ L),

If K denotes a class of groups we define the class RK of residually-K groups
by letting G € RK if and only if: whenever 1 # g € (4, there exists a normal
subgroup H, of the group G such that G/H, € K and g ¢ H,. It is easy
to see that G € RK if and only if there exists a family {H;};c; of normal
subgroups (' such that G'/H; € K for every ¢ € I and N;erH; = (1).

A group G is said to be discriminated by K if for every finite set
91,92, .-,y of distinct elements of G, there exists a group H € K and
a homomorphism ¢:G — H such that ¢(g;) # &(g;) if ¢ # 7,(1 < i,5 < n).

Lemma 2.2. Let a class of groups K be closed with respect to forming
subgroups and finite direct products and let G be a residually-K group.
Then G is discriminated by K.

The proof can be obtained easily.

It is easy to show that if G is discriminated by a class of groups K and
if x is a non-zero element of R(/, then there exists a group H € K and a

homomorphism ¢ of RG to RH such that ¢(z) # 0.
From this fact and from inclusion (1) we have

Lemma 2.3. If GG is discriminated by a class of groups K and for each
H € K the equation AI(RH) = 0 holds, then A(RG) = 0.

We use the following notations for standard group classes:
Dy — the class of those nilpotent groups whose derived groups are torsion-
free.
D, — the class of nilpotent groups whose derived groups are p-groups of
bounded exponent.
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Ny — the class of torsion-free nilpotent groups.

N, — the class of nilpotent p-groups of bounded exponent.
NQ = UpEQNp and

Dq = UpeqD,, where ) is a subset of the set of primes.

The ideal J,(R) of a ring R is defined by J,(R) = NSZ, p"R.

Theorem 2.4. ([4], Theorem 2.13., page 85.) Let GG be a residually
D,-group and J,(R) = 0. Then A}(RG) = 0.

We shall use the following lemma, which gives some elementary pro-
perties of the Lie powers of A(RG).

Lemma 2.5. ([4], Proposition 1.7., page 4.) For arbitrary natural num-
bers n and m are true:

(1) 1(7a(G)) € AV(RG),
(2) (A (RG), Al (RG)] € AL+ (RG),

(3) AM(RG)- A" (RG) C Altm=(RG),
where 7,,(() is the nth term of the lower central series of (.

We write Dp,,|(R() for the nth Lie dimension subgroup Dy, (RG) of G
over K. That is

Dy (RG) = {g € Glg — 1 € A" (RG)}.
By Lemma 2.5. it follows that for every natural number n the inclusion
1n(G) € Dpy (RG)

holds.
We also use the following theorems

Theorem 2.6. ([1], Theorem 3.2.) Let a group ( contain a non-
trivial generalized torsion element. Then A(RG') is residually nilpotent if
and only if there exists a non-empty subset ) of the set of primes such that
Npealp(R) = 0, G is discriminated by the class N and for every proper
subset A of the set € at least one of the conditions

(1) Npeadp(R) =0

(2) G is discriminated by the class of groups Nga
holds.

Let T(R™1) denote the torsion subgroup of the additive group R* of a
ring R and let AY(RG) = N2, A"(RG), where A"(R(G) is the nth associa-
tive power of A(RG).
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Theorem 2.7. ([4], Theorem 2.7., page 87.) If G € RN and R is
a ring with identity such that its additive group R™ is torsion-free, then
A“(RG) = 0.

3. Residual Lie nilpotence

It is clear, that API(RG) = 0 if and only if G is an Abelian group.
Therefore we may assume that the derived group G’ = 7,(G) of G is non-
trivial.

For a nilpotent group ' the following inclusion is true

2) ARG € A“(RGRG

(see in particular [4]). For every natural number ¢ > 1 we define the normal
subgroup
L; = {g € G'|g* € 7(G) for a suitable k > 1}

of . Tt is easy to see that v,(G) C L; and also that G/L; € Dy for every
1> 1.

An element ¢ of a group G is called a generalized torsion element with
respect to the lower central series of G if for every n the order of the elements

97n(G) of the factor group G'/7,(G) is finite.

We recall that if the derived group G’ of GG contains no generalized
torsion elements with respect to the lower central series of (¢, then G’ has
no generalized torsion elements with respect to the lower central series of
G

Theorem A. Let R be a commutative ring with identity, T(RT) = 0
and let G’ be with no generalized torsion elements with respect to the lower

central series of G. Then A“!(RG) = 0 if and only if G is a residually-D,
group.

Proof. Since G’ is with no generalized torsion elements with respect
to the lower central series of (7, then N$2, L; = (1) and so, G € RDy.

Conversely. Let G € RDy and T(RT) = 0. Since class D is closed
with respect to forming subgroups and finite direct products, by Lemmas
2.2. and 2.3. it is enough to show that A“)(RG) = 0 for all G' € Dy. So let
G' € Dy. Then by (2)

AFI(RG) C A% (RGRG.

Because (' is a torsion-free nilpotent group, by Theorem 2.7. A¥(RG') =0,
and so, A’I(RG) = 0. The proof is completed.
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Let p be a prime and 7 a natural number. Then G?" is the subgroup
of G generated by all elements of the form ¢*", g € G.
For a prime p and a natural number % the normal subgroup G/, 3 of G

is defined by

o0

G = [ (GV 7(G).

n=1

We have the following sequence
G =Gy 202 2---2 Gy
of normal subgroups G/, j of G, where
Gy = () Glo-
k=1

It is clear, that G//(G')"" 74(G) are in D, and G/G}, and G/Gy, are
residually-D,, groups for every k and n.

Lemma 3.1. If n > ks and h € (G')?" 7x(G), then
h—1=p*X(k,h) (mod AF(RGY)

for a suitable X (k,h) € API(RG).

Proof. Let h € (G')?" v,(G). We can write element h as

b=
where h; € G,y € vi(G). Using the identity
(3) ab—1=(a—1)(b-1)+(e—-1)+(b-1)
to h — 1 we have that
h—1= (B BE - b = D)y — 1)+ (B BE - hb = 1) + (yx = 1).

By Lemma 2.5. I(y4(G)) C AM(RG) and hence y, — 1 € AM(RG). There-
fore

h—1= (YR - h?" —1) (mod AM(RG)).

m
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Applying identity (3) repeatedly to (h] ' hgn ---hP" — 1) from the previous
congruence it follows that

n

m m Y4 n
h=1=) (b —Dbi=>"Y (j )(hi —1)’b; (mod AM(RG)),

where b; € RG. Because h; € ' = 75(G), from Lemma 2.5. (cases 1 and 3)
we obtain that (h; — 1)/ € AUtU(RG) for every i and j. If n > sk, then p*
divides (p].n) for every j = 1,2,...,k — 1. Therefore

m m k—1
h=1=3 (b =1 =p* Y > di(hi —1)°b;
=1 i=1 j=1

= p°X(k,h) (mod AM(RG)),

where X (k,h) = Y0, Y00, di(hi —1)’b;, bi € RG, p*d; = (7). The

Lemma is proved.

It is easy to show that if ¢ € G’ and ¢*" € Dy (RG) then
(4) p"(g - 1) € AM(RG)

for a large enough m.

Lemma 3.2. ([1], Lemma 3.6.) Let K be a class of groups and {G',, }aer
a family of normal subgroups of Gi such that for all o (o € I) the conditions

(1) G/G, e K

(2) G, is torsion-free
hold. If G is not discriminated by K then there exists a finite set of distinct
elements ¢1,9s,...,9s from G such that the non-zero element y = (g1 —
1)(g2 —1)---(g9s — 1) lies in the ideal Ny (G ).

The torsion subgroup 7'(R™) of the additive group R™ of aring R is the
direct sum of its p-primary components S,(R™). Let II be the set of those
primes for which the p-primary components S,(R*) of T(R") are non-zero.

An element @ of an additive Abelian group A is called an element of
infinite p-height for a prime p, if the equation p"2z = « has a solution in A
for every natural number n.

Proposition 3.3. ([1], Theorem 3.3.) Let T(R™) # 0, and suppose that
for some p € II group T(R™') has no element of infinite p-height. Further



10 Bertalan Kirdly

let G be a group with no generalized torsion elements. Then A“(RG) = 0
if and only if (i is a residually-N,, group for all p € II.

Theorem B. Let T(Rt) # 0. If G' is with no generalized torsion
elements with respect to the lower central series of G and T'(R*) is with no
non-trivial elements of infinite p-height then Al“l(RG) = 0 if and only if G
is a residually-D, group for all p € 1L

Proof. Let p an arbitrary prime of II, A (RG) = 0, and let p* (s > 1)
be the order of element a € T'(RT). Since the equation

Gy = (] Gk = () (1@ (@) = ()
k=1 n=1 k=1
implies that G € RD,, it is enough to show, that G, = (1).
Suppose that g € G,). Then g € (G'" 74(G) for every n and k and by
Lemma 3.1. we have that

g—1=p°X(k,g) (mod AM(RG))
for every k. From p°a = 0 it follows that a(g — 1) € AM(RG) for every
k. Hence a(g — 1) € AM(RG) and a(g — 1) = 0. This implies that g = 1.
Consequently (i) = (1). This means that (i is a residually-D,, group for all
pell

Conversely. Let G € RD,, for p € II and let 1 # g be an arbitrary
element of G'. Then there exists a normal subgroup H of G such that
G/H € D, and ¢ ¢ H. Since G/H € D, then (G/H) € N,. By the
isomorphism G'H/H = ('/H N G' we have that § = g(H N G') # 1. This
means that if ¢ € RD, then G’ € RN,. Using Proposition 3.3. we have
that A“(RG') = 0 and from (2) it follows that A“l(RG) = 0.

Lemma 3.4. Let
ve ()N NG Y (G
pel j=1 n=1
Then for a prime p € I’ and arbitrary natural numbers k and s
y=p*Y (p,k,s,y) (mod AW (RQ)),
where Y (p, k,s,y) € RG and I' is a subset of the set of prime numbers.

Proof. Let p € I'. For every natural n we can express y as

!
y= Z%‘Zi(hi - 1),
=1
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where h; € (G')"" yx(G), a; € R and every z; is from a set of coset repre-
sentatives of (G')?" v;(G) in G. For a large enough n by Lemma 3.1.

hi —1=p°X(k,h;) (mod AF(RG))

for every i (i = 1,2,...,0) and the proof follow.

If g € G' is a generalized torsion element of a group ¢ then , denotes
the set of the prime divisors of the order of the elements gv,(G) € G/7,(G)
for every k =2,3,....

Lemma 3.5. Let ¢ € G’ be a generalized torsion element of a group
G/, A an arbitrary subset of Q,, a € NyepJ,(R) and let

e ) N NG Y (@),

PEQ\A k=1 i=1

Then one of the following statements
(1) if A is a proper subset of Q,, then a(g — 1)z € AM(RG)
(2) if A = Q,, then a(g — 1) € AXI(RG)
(3) if A = 0, then (g — 1)z € AM(RG)

holds.

Proof. It is enough to show that for an arbitrary natural number £ the
elements a(g — 1), (g — 1)z,a(g — 1)z are in the ideal A (RG).

If g € v,(G) then by Lemma 2.5. (g—1) € A (RG), and the statements
follow. Now let ¢ ¢ v4(G) and let

— 1 12 M
N =P Py~ P

be the prime factorization of the order of the elements ¢v;(G) of the nilpo-
tent group G//vx(G). It is clear that p; € Q, for every ¢ = 1,2,...,s.Let Aa
subset of {},. With loss of generality we may assume that py,ps,...,p € A
and p; ¢ A for ¢ > [.

Let ¢ = ¢g192-- - gs7%(G) be the decomposition of the element ¢v;(G)
of the nilpotent group //v4(G) in the product of p;-elements g;7,(G) (¢ =
1,2,...,s). Then

9 =4192 " 9sYk, giElei:1727"'78

for a suitable y;, € 7;(G). Then there exists m; (1 = 1,2,...,s) such that

gl € (@)
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Using identity (3) repeatedly to (¢ — 1) we conclude that

g—1l=v+w+yr—1)=v+w (mod AM(RR)),

{ s

where v = > (9, — 1)a;, w= > (9; —1)x; and z; € RG. In the case when
i=1 i=I+1

An{p1,ps,....ps} = 0 we assume that v = 0, and if AN{py,p2,...,ps} =

{p1,p2,...,ps} we put w = 0. Because

g7 € (@) C Dy (@)

and ¢; € G' for every i = 1,2,..., s, we conclude from (4) that there exists
a natural number r; (: = 1,2,...,s) such that
(5) pi"i(gs — 1) € AFI(RG).

Also, since
!

ac ﬂ Jp(R) C ﬂ Jp(R)

pEA =1

we can express a as ¢ = p;'a; (a; € R) for each ¢ <[. Then by (5)

!
av = Z%P;i (9i — Dx; =0 (mod AM(RG)).

=1
Therefore
(6) alg —1) = av 4 aw = aw (mod AM(RG)).

If A=, then w = 0 and case 2) is proved.
By Lemma 3.4.

x=p'Y(pi,k,ri,2) (mod Al (RGY),

and so,

wr = E pii(gi — V)Y (pi, by riy2)  (mod AlH (RG)).
i=l+1

Hence by (5)

(7) wr =0 (mod AM(RG)).
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If A =0, then v = 0, and so,
(g—Vz=ve+wzr=wr=0 (mod AM(RG))

and case 3) is proved.
Also, since

a(g — V)& = ave + awz  (mod AF(RG))

from congruences (6) and (7) the proof (of case 1)) follows.

We recall that for a prime p N, denotes the class of nilpotent groups
whose derived groups are p-groups of bounded exponent, and if {2 a subset
of the set of primes, then Ng = U,eqN, and Do = U,eqD,.

Let a group G be discriminated by the class of groups Dy (I' # () and
let ¢1,92,...,9, be a finite set of distinct elements of G'. Then there exists
a normal subgroup H of G such that ¢;H # g;H if i # j and G/H € Dr.
Therefore (G/H) € N, for any prime p € I'. By the isomorphism G'H/H =
G'/H NG we have ¢; H(NG") # g;,(HNG")if ¢ # 7 (1,7 =1,2,...,n). This
means, that if G is discriminated by the class D, then G’ is discriminated
by the class of groups A .

Lemma 3.6. Let € be a non-empty subset of the set of primes such
that
Npeadp(R) = 0 and a group G is discriminated by the class of groups Dgq.
If for every proper subset A of the set ) at least one of the conditions

(1) Npeadp(R) =0

(2) G is discriminated by the class of groups Da\a
holds, then A(RG) = 0.

Proof. Let .

r = Zaigi e AM(RG).
=1

By Lemma 2.3. it is enough to show that Al“/(RG) = 0 for all groups
G € Dgq. So let GG € Dq. Then G is a nilpotent group and by (2)

AFI(RG) C A% (RGRG.

Clearly, G' € Ng. If (¢ is discriminated by the class of groups D, where
I' is an arbitrary non-empty subset of , then G’ is discriminated by the
clas A7, which was showed above. Then (i’ satisfies Theorem 2.6. and so,
A“(RG") = 0. Consequently AX(RG) = 0.
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Theorem C. Let the derived group G' contain a generalized torsion
element of (G with respect to the lower central series of GG. Then A(RG) is
residually Lie nilpotent if and only if there exists a non-empty subset §} of
the set of primes such that NycqJ,(R) = 0, G is discriminated by the class
of groups Dq and every proper subset A of the set Q0 at least one of the
conditions

(1) Npeadp(R) =0

(2) G is discriminated by the class of groups Da\a
holds.

Proof. Let Al“)(RG) = 0. Let us first consider the case when G’ conta-
ins a non-trival torsion element. Then there exists a p-element ¢ in G’ with
p € Q. Then by (4) for every k there exists a natural number m such that

®) p"(g — 1) € AV (RG).

If a € J,(R), then for each m we can write element ¢ as « = p”'a,, (a,, € R).
Therefore a(g—1) € AM(RG) for every k, that is a(¢—1) € A“I(RG). Hence
a(g — 1) = 0 and so, ¢ = 0. Consequently J,(R) = 0.

Now we show, that ( is discriminated by Dy,;. Let

he () NEY (@)

k=1i=1

Then -
h=1e () Iy (@)

k=1 1:=1

and by Lemma 3.4. for every k and m
(9) h—1=p™Y(p,k,m,h—1) (mod AM(RG)).
By (8) and (9) we have that
(9= D(h—1) = p"(g = V(h — DY (pem.k,h— 1) (mod AVI(RG))
for every k. This implies that
(9 —1)(h — 1) € A¥(RG) and so, (g — 1)(h —1) = 0.

From this equation we have that the characteristic of R is p (= 2) and from
(9) it follows that h — 1 € AlYl(RG). Therefore h = 1 and so

N D@ (@) = (.

k=1i=1
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For every k and i G//(G')" v,(G) € Dy,y. The class Dy, is closed with

respect to forming subgroups and finite direct products, and by Lemma 2.2.

G is discriminated by Dy,;. Consequently we can choose the set Q = {p}.
Let us consider the case when G’ is a torsion-free group and 1 # g € G’

is a generalized torsion element of . We put Q@ = (Q,. From Lemma 3.5.
(case 2) it follows that

() 7x(R) =0.

pe

From Lemma 3.2. (here we put {G, }aer={(G' )" 7:(G), k,n = 1,2,.. .} ,eq)
and Lemma 3.5. (case 3) we have that G is discriminated by the class Dg.

Let A be an arbitrary subset of Q and let N,epJ,(R) # 0. If G is not
discriminated by the class of groups Dg\,, then by Lemma 3.2. there exists
a set of elements ¢1,9s,...,9, (9; € G) of infinite orders such that

0# (@~ (g2~ (gn—1e () ()L 3(G)).

pEQ\A k=1 1:=1

By Lemma 3.5. (case 1) for every element a € Nyep/p(R)

alg = 1)(g = (g2 = 1)+~ (g9 — 1) € A¥I(RG).

Because Al“l(RG) = 0 we have that

alg = 1)(g1 — (g2 = 1)+ (9, — 1) = 0.

Since element ¢; (« = 1,2,...,n) has infinite order and so has zero left (and
right) annihilator in R/, then for g,, we have

alg — (g1 = 1)(g2 = 1) -+ (g1 — 1) = 0.

Continuing this procedure for : = n —1,n —2,...,1 on the last step we get
that
a(fg —1) =0.

Since the element g has infinite order, its left annihilator is zero in RG,
which implies @ = 0. Consequently, if  is not discriminated by the class of
groups Dgy\ 4, then NpeaJp(R) = 0.

The sufficiency part is proved in Lemma 3.6.

Corollary. Let R = Zp, the ring of p-adic integers. Then Al (ZpG) =0
if and only if either
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(1) G is discriminated by the class Dy  or
(2) G is discriminated by the class D,.

Proof. If ' is with no generalized torsion elements (with respect to
the lower central series of (), then by Theorem A A[W](ZPG) = 0 if and
only if (G is discriminated by the class Dy.

Let us consider the case when ' contains a generalized torsion element.

Let Al (ZApG) = 0. By Theorem C there exists a non-empty subset {2

of the set of primes, such that ﬂqEQJq(Zp) = 0. It is known that Jp(Zp) =0

and for a prime ¢ # p, J,(Z,) = Zp. Therefore p € Q. If @ = {p}, then
by the last theorem G is discriminated by D,. If ) contains a prime ¢ # p,

-~

then we choose A C Q such that Q\ A = {p}. Then NyeaJ4(Z,) # 0 and by
Theorem C G is discriminated by the class D,.

Conversely. If GG is discriminated by the class D,, we put @ = {p}, and
the proof follows from Theorem C.

From Theorem A and C we also get the results of I. Musson and A.
Weiss ([2], Theorem A).
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