Some congruences concerning second
order linear recurrences

JAMES P. JONES and PETER KISS*

Abstract. Let U, and V,, (n=0,1,2,...) be sequences of integers satisfying a second
order linear recurrence relation with initial terms Uy=0, U; =1, Vu=2, V3 =A. In this paper
we investigate the congruence properties of the terms U, and V,;, where the moduli are

powers of U, and V,.

Let U, and V,, (n = 0,1,2,...) be second order linear recursive sequ-
ences of integers defined by

U, = AUn—l - BU,_» (n > ]-)
and

Vn = AVn_l — an_z (n > 1),

where A and B are nonzero rational integers and the initial terms are Uy = 0,
Uy =1, Vo = 2, Vi = A. Denote by «,3 the roots of the characteristic
equation 2 — Az + B = 0 and suppose D = A% — 4B # 0 and hence that
a # (. In this case, as it is well known, the terms of the sequences can be
expressed as

_an_ﬁn

1) U= e wd V=

for any n > 0.

Many identities and congruence properties are known for the sequences
U, and V,, (see, e.g. [1], [4], [5] and [6]). Some congruence properties are
also known when the modulus is a power of a term of the sequences (see [2],
[3], [7] and [8]). In [3] we derived some congruences where the moduli was
U3, V2 or V2. Among other congruences we proved that

Unr = kB" = U, (mod U?)
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when £ is odd and a similar congruence for even k. In this paper we extend
the results of [3]. We derive congruences in which the moduli are product

of higher powers of U,, and V,.

Theorem. Let U, and V,, be second order linear recurrences defined
above and let D = A? — 4B be the discriminant of the characteristic equa-
tion. Then for positive integers n and k we have

k—1 2 k—3
1. Upp=kB 2 "U,+2E D pp~2 "U?  (mod D2U?), k odd,

k4, 3 2 5
z "V,U, (mod D*V,U,), k even,

k=2 2
2. Up=tB 2 "V, U+ =8 pp

k—1 k—1 2 k=8 k—3
3. Var=k(-1) 2 B 2 "V, +E0 D1y B 2 "V? (mod V), k odd,

13 13 k—2 k—2
4. Voy=2-1)2B2"+E2(=1)"2 B Z "VZ? (mod V), k even,

k—1

k—1 n kZ_1 k—3 k—3
5. Upp=Un(-1)"2 B 2 "+25=(-1)"2 B

z "U,V2 (mod U,V}?), k odd,

k=2

k—2 2 k—4 k—4
6. Upp=k(-1)"2 B 2 "U,V,+2 =9 (1)"2 B

z "U, V2 (mod U,V?), k even,

k—1 k—3
7. Vax=B Z "V, +E=1ppTT "V, 02

n

(mod D?*V,,U?), k odd,

k2, 2 2774
2 "DU; (mod D*U}), k even.

k
8. V,,=2B2"4+i2B

We note that the congruences of [3] follow as consequences of this the-
orem.

For the proof of the Theorem we need some auxiliary results which are
known (see e.g. [6]) but we show short proofs for them. In the followings we
suppose that A > 0 and hence that

A++D A—+D
a=—(p — an =—3

d s
so that o — 3 =+D, a+ = A, afp = B and hence by (1)

_an_ﬁn

2 U, =
@) i
Lemma 1. For any integer n > 0 we have

Us, = 3U,B" + DU?.

Proof. By (2), using that a3 = B, we have to prove that

a3n_ﬁ3n_ an_ﬁn . an_ﬁn 3
e ()
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which follows from 3" — 33" = 3(a™ — 3™)a" 3" + (o™ — 7).

Lemma 2. For any non-negative integers m and n we have

Um—|—2n = VnUm—I—n - BnUm

Proof. Similarly as in the proof of Lemma 1,
am—|—2n _ ﬂm—|—2n . . am—l—n _ ﬁm—l—n
= (o 4

VD VD

is an identity which by (1) and (2), implies the lemma.

am_ﬁm

VD

— ()"

Lemma 3. For any n > 0 we have

Vo = 2B™ + DU2 = V2 —2B" and U, = U,V,,.

Proof. The identities

- an . an_ﬁn 2 a2n_ﬂ2n _an_ﬂn . .
a“t 4+ 5" = 2(ap) —I—D(i\/ﬁ ) and 75 - b (" + 5")

prove the lemma.

Proof of the Theorem. We prove the first congruence of the Theorem
by double induction on k. For £ = 1 and k£ = 3, by Lemma 1, the congruence
is an identity. Suppose the congruence holds for k& and k + 2, where £ > 1
is odd. Then by Lemma 2 and 3 we have

Un(k—|—4) = Unk—|—4n = V2n Unk-|—2n — an Unk
(3) = (2B" + DU, (ky2) — B Unyp
= (2B" + DU2)Q — B*R (mod D*U}),

where

@ Q=(+rpEep, ¢ EECS D" =1 pptsteys
and

(5) R=kB="U, + MDB'%S”UE;.

24
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After some calculation (3), (4) and (5) imply

(6) Upersy = U, T+ ULS  (mod D*UY),
where tas ety
T=(2k+2)—-k)BZ"=(k+4B =
and
. E+2)((k+2)? -1 .
k(k? — 1)DB'%” k4 ((k+9)?-1) ppte=2,
24 B 24 ’
and so by (6),

(k+4)—1

Un(k-|—4) = (k + 4)B z U,

ko 4) ((k+4)? -1 0es
(k + )<(24+ ) >DB%”U§; (mod D2U?).

_I_

Hence the congruence holds also for & + 4 and for any odd positive integer
k.

The other congruences in the Theorem can be proved similarly using
Lemma 1, 2, 3 and the identities

Uy, = Vi Uy,

Vo, = V2 —2B"™ = 2B"™ + DU?,

Us, = U, V2 - B"U,,

Va, = V3> —3B"V, = B"V, + DV, U2,
Uy = U, V2 = 2B"U, V,,,

Van =V —4B"V?E 4 2B,
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