
Chapter V

Dynamic Bifurcation of Nonlinear

Evolution Equations

In this chapter, we mainly discuss the bifurcation of invariant sets the at-
tractors and invariant manifolds for the finite and infinite dimensional dynam-
ical systems. In section 5.3-5.4, we present a set of theory to deal with this
problem which generalizes the Hopf bifurcation to the more general cases. We
have known that the Hopf bifurcation will occur when the real parts of a pair
of complex eigenvalues pass through zero. In fact, the dynamic bifurcation
theory set in this chapter tells us that under some conditions the bifurcation of
invariant sets likewise appears provided the real parts of some eigenvalues pass
through zero. In addition, in Section 5.3 we also give a stability theorem on
the bifurcation for the finite dimensional dynamical systems, which amounts
to saying that there is an open and dense set F in the space C3,10 (Ω×R,Rn) of
the parameterized vector fields, for any vector field v ∈ F there exists a neigh-
borhhod O ⊂ C3,10 (Ω×R,Rn) of v such that all the vector fields in O have the
same bifurcation structure, i.e. the same number of the bifurcation points and
the same topological structure near the bifurcated invariant manifolds.
In section 5.5, we apply the theories and methods developed in section 5.3-

5.4 to investigate the bifurcation of invariant manifolds for the nonlinear partial
differential equations with the dissipative structure related with the mechanical
and physical problems.
In the final section (section 5.6), we study the dynamical properties of 2D

Navier-Stokes equations with the free, the Dirichlet, and the periodic boundary
conditions. We find that the eigen-spaces of the Laplacian are invariant for the
2D Navier-Stokes equations with the Dirichlet boundary condition and the
periodic boundary condition, and they are also invariant for all the considered
boundary conditions in the domain having the genus zero. By virtue of this
property, the problems of the global stability of the stationary solutions, the
Taylor vortex type of periodic structure, and the existence of asymptotically
time-periodic solution are discussed.
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5.1. Examples and Introduction

5.1.1. Pendulum in a symmetric magnetic field

A famous example of the dynamic bifurcation is given by the Hopf’s bi-
furcation. In fact, the dynamic bifurcation is very general in the nonlinear
evolution equations. In order to illustrate this point, we shall in this subsec-
tion investigate the pendulum in a vertical plane with a symmetric magnetic
field, which is a typical example of the dynamic attractor bifurcation.
We consider a pendulum in a verticalplane, see Fig. 5.1 below.

Fig. 5.1
Suppose that the length of this pendulum l = 1, and the one end of motion

is tied a small iron ball of mass m = 1. The small ball moves with friction on
a vertical unite circle. On the both sides of the small ball there symmetric are
two magnetized plates attracting it, which have the same magnetic magnitude.
The distances r from the magnetized plates to the downward vertical of the
pendulum are equal, and r  1.
From the intuition, we can see that as the magnitude λ of the magnetic

fields on the both laterals is smaller to some critical value λ0, i.e. λ < λ0,
under the action of friction and gravity, the pendulum will gradually stop at
the position θ = 0, where θ is the angle of the pendulum with the downward
vertical. But, as the magnitude λ exceeds the critical value λ0, on the both
sides of the center position θ = 0 two equilibrum positions ±θλ 9= 0(λ > λ0)
will symmetrically appear, at where the small ball under the action of friction
will gradually stop. And that the small ball will stop at which one of the two
positions ±θλ entirely depends on the initial state of the small ball.
In the following, we shall discuss in detail the problem. The motion equation

of the pendulum in a vertical plane with symmetric magnetic field is as follows

d2θ

dt2
= −kdθ

dt
− g sin θ + f cos θ
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with the initial condition

θ(0) = α1,
dθ

dt
|t=0 = α2

where k > 0 is the damping coeficient, g the gravity, and f the magnetic force.
By the Coulomb lows

f = F2 − F1 = Λ

(r − sin θ)2 −
Λ

(r + sin θ)2

=
4rΛ sin θ

(r2 − sin2 θ)2 * λ sin θ, (by r  1)

where λ = 4Λ
r3 ,Λ is propotional to the magnitude of the magnetic field. Thus,

the motion equation can be approxitively expressed by

d2θ

dt2
= −kdθ

dt
− g sin θ + λ sin θ cos θ.

Letting x1 = θ, x2 = dθ/dt, then the motion equation is transformed into the
following system

(5.1.1)

�
dx1
dt = x2
dx2
dt = −kx2 − g sinx1 + λ sinx1 cosx1

with the initial condition

(5.1.2) x1(0) = α1, x2(0) = α2

By the Taylor expansion

λ sinx1 cosx1 − g sinx1 = (λ− g)x1 − 1
6
(λ− g)x31

−1
2
λx31 + o(|x1|3)

then the system (5.1.1) near x = 0 can be expressed as

(5.1.3)

�
dx1
dt = x2
dx2
dt = (λ− g)x1 − kx2 + 1

6(g − λ)x31 − 1
2λx

3
1 + o(|x1|3)

It is clear that as λ < g, the eigenvalues of(5.1.3) is as follows

λ± =
−k ±sk2 − 4(g − λ)

2

whose real parts are negative. In this case the equilibrum point x = 0 of(5.1.1)
is asymptotically stable.
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As λ = g, the equation (5.1.1) near x = 0 is as follows

(5.1.4)

�
dx1
dt = x2
dx2
dt = −kx2 − 1

2gx
3
1 + o(|x1|3)

The eigenvalues of (5.1.4) are λ1 = 0,λ2 = −k, namely the system (5.1.4) is
on the critical state. By using Theorem 5.1.2 in Subsection 5.1.4, it is easy to
derive that x = 0 is asymptotically stable.
As λ > g, two stationary solutions (x±1 , x

±
2 ) = (±θλ, 0) of (5.1.1) bifurcate

from x = 0, which are as follows

θλ = cos
−1 g/λ.

And it is easy to verify that (±θλ, 0) are two asymptotically stable equilibrum
points.
The discussion above can be summarized as the following theorem.

Fig. 5.2. When λ ≤ g, x = 0 is an attractor

Fig 5.3. When λ > g, two attracted basins U1 and U2
bifurcate from the attracted basin U .

Theorem 5.1.1. There exists an open set U ⊂ R2, 0 ∈ U , such that when
λ ≤ g, for all the initial values (α1,α2) ∈ U , the solutions of (5.1.1)(5.1.2)
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satisfy that
lim
t→∞x(t,α) = 0, α = (α1,α2) ∈ U

and when λ > g with λ− g sufficiently small, two stationary solutions (±θλ, 0)
of (5.1.1) bifurcate from x = 0, and the open set U is decomposed into two
open subsets U1, U2(U1∩U2 = φ, Ū = Ū1+ Ū2) with (θλ, 0) ∈ U1, (−θλ, 0) ∈ U2
and 0 ∈ ∂U1 ∩ ∂U2, such that the solutions of (5.1.1)(5.1.2) satisfy

lim
t→∞(x1(t,α), x2(t,α)) = (θλ, 0), as α = (α1,α2) ∈ U1

lim
t→∞(x1(t,α), x2(t,α)) = (−θλ, 0), as α = (α1,α2) ∈ U2.

This theorem describes the dynamic attractor bifurcation of a pendulum in a
symmetric magnetic field, which can be shown by Fig 5.2-5.3.

5.1.2. Business cycles for the Kaldor’s model

In this subsection, we shall use the Hopf bifurcation theorem to discuss the
business cycle problems for the Kaldor’s model, which is also a typical example
of the dynamic attractor bifurcation. The Kaldor’s model is given by

(5.1.5)

�
dx
dt = I(x, y,λ)− S(x, y,λ)
dy
dt = I(x, y,λ).

where x is the total social income, y the total socal captal, λ the industrial
technique parameter, I(x, y,λ) the investing function and S(x, y,λ) the savings
function.
For each technique parameter λ, the social business has an equilibrum state

(x0, y0), x0 > 0, y0 > 0, which is the function of λ. For the sack of simplicity,
we assume that (x0, y0) is independent of λ. According to the ecnomic laws, in
neighbor-hood of (x0, y0) ∈ R2, I and S satisfy that

∂I

∂x
> 0,

∂I

∂y
≤ 0, ∂S

∂x
> 0,

∂S

∂y
> 0

By the basic conditions, in a neighborhood of (x0, y0), I and S are taken as the
following forms

I = aλ(x− x0)− αx(y − y0)3
S = bλ(x− x0) + cλ(y − y0) + βy(x− x0)3 + γx(y − y0)3.

where aλ, bλ, cλ > 0 are the continuous function of λ, and α,β, γ > 0 are the
constants.
Thus the Kaldor’s model reads as

(5.1.6)

�
dx
dt = kλ(x− x0)− cλ(y − y0)− δx(y − y0)3 − βy(x− x0)3
dy
dt = aλ(x− x0)− αx(y − y0)3

260



where kλ = aλ − bλ, δ = α+ γ. The eigenvalues of the matrix

Aλ =

�
kλ −cλ
aλ 0

�
are as follows

λ± =
kλ ±

s
k2λ − 4aλcλ
2

Near kλ = aλ − bλ = 0, the eigenvalues of Aλ are complex number, and
Reλ± = 1

2kλ.
As kλ < 0, the equilibrum point (x0, y0) of (5.1.6) is asymptotically stable.

As kλ = 0, the eigenvalues λ± = ±i
√
4aλcλ. By Theorem 5.1.4 in Subsection

5.1.4, we can infer that (x0, y0) is also asymptotically stable. To see this, we
notice that the divergence of the nonlinear term of (5.1.6) is negative in a
neighborhood of (x0, y0):

∂

∂x
[−δx(y − y0)3 − βy(x− x0)3] + ∂

∂y
[−αx(y − y0)3]

= −[3βy(x− x0)2 + 3αx(y − y0)2]− δ(y − y0)3
< 0; ∀(x− x0)2 + (y − y0)2 < � and (x, y) 9= (x0, y0)

where � > 0 is sufficiently small.
Suppose that there exists a λ0 ∈ R, such that

(5.1.7) kλ = aλ − bλ =
 < 0, as λ < λ0
= 0, as λ = λ0
> 0, as λ > λ0

(a) as λ ≤ λ0, (x0, y0)
(b) as λ > λ0, a cycleis asymptotically stable attractor Γ bifurcates from (x0, y0)

Fig. 5.4.
Then, under the condition (5.1.7), by the Hopf bifurcation theorem we know

that as λ > λ0 the equation (5.1.6) bifurcates from (x0, y0) a cycle attractor,
see Fig. 5.4 (a) and (b) above.
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The economic explanation of this cycle attractor bifurcation of (5.1.6) is
given by the following.
When the industral technique level λ < λ0, the investing interest and the

social income are lower, therefore the investment intention is weaker than that
of the social savings, namely aλ < bλ. Thus, kλ = aλ − bλ < 0. In this case,
the social economy develops slowly on the stable equilibrum state.
When the technique level is promoted to exceed the critical state λ0, i.e.

λ > λ0, the new industrial technology brings the higher investing interest, in
this time the investing intention is stronger than that of the social savings,
therefore kλ = aλ − bλ > 0. In this case, the devolopment of social economy is
transferred from the stable equilibrum state to the periodic fluctutation form,
which is that we have seen today.

5.1.3. Basic idea of the dynamic attractor bifurcation

The above two examples show that the dynamic attractor bifurcation of a
dynamical system always occurs in this case that the real parts of some eigen-
values of the dynamical system at an equilibrum point pass through from the
neigative to the positive, and the other eigenvalues remain to stay in the nega-
tive. In the following, we shall illustrate the basic idea of the dynamic attractor
bifurcation by considering the below equation

(a) the flows of (5.1.8)(5.1.9) in Rn are squeezed to
S

λ

(b)
S

λ = {(x, y) ∈ Rn|x ∈ Rm, y = h(x,λ)}
Fig. 5.5.

(5.1.8)
dx

dt
= λx+G1(x, y)

(5.1.9)
dy

dt
= −y +G2(x, y).
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where x ∈ Rm, y ∈ Rn−m(0 < m ≤ n), and

Gi(x, y) = o(|x|, |y|), i = 1, 2.

It is known that as λ < 0, the steady state z = (x, y) = 0 of (5.1.8) (5.1.9)
is asymptotically stable. And when λ passes through from the negative to
the positive, the flows of (5.1.8) (5.1.9) in a neighborhood of z = 0 in Rn are
squeezed to a m-dimensional surface

S
λ(λ ≥ 0), and the surface

S
λ is tangent

to Rm at x = 0, which can be expressed by a function y = h(x,λ), x ∈ Rm, y ∈
Rn−m, see Fig 5.5. (a) and (b) above(in fact thus surface

S
λ exists for all

λ ∈ R):
Obviously, the m-dimensional surface

S
λ is an local invariant surface, and the

flows of (5.1.8)(5.1.9) in
S

λ are topologically equivalent to the flows of the
below equation in a neighborhood of x = 0 in Rm,

(5.1.10)
dx

dt
= λx+G1(x, h(x,λ)).

where G1(x, h(x,λ)) = o(|x|)∀λ ≥ 0, and the function y = h(x,λ) is continuous
on λ. Suppose that as λ = 0, z = 0 is asymptotically stable for the equation
(5.1.8)(5.1.9), then x = 0 is also asymptotically stable for the below equation

(5.1.11)
dx

dt
= G1(x, h(x, 0))

When λ > 0 sufficiently small, the equation (5.1.10) is a small perturbation
of (5.1.11), namely

dx

dt
= G1(x, h(x, 0)) + λx+K(x,λ).

where K(x,λ) = o(|x|), and

K(x,λ) = G1(x, h(x,λ))−G1(x, h(x, 0))→ 0 as λ→ 0+.

Near x = 0, the linear term λx of the perturbation plays the key role, thereofre
the flows of (5.1.10) near x = 0 are ”outward”. But, in the place for from
x = 0, the nonlinear term G1(x, h(x, 0)) plays the key role, which implies that
the flows far from x = 0 are ”inward”. Thus the outward flows and inward
flows in Rm squeeze an attractor, as shown in Fig. 5.6. below.
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Fig. 5.6.
Because the surface

S
λ is attracting, thus we infer that as λ > 0 the

equation (5.1.8)(5.1.9) bifurcates from z = 0 an attractor. In many cases, the
attractor is homeomorphic to a (m− 1)−dimensional sphere.

5.1.4. Appendix: Lyapunov stability on the critical states

From the previous discussion we can see that the determination of the
asymptotical stability of steady solutions on the critical states is very impor-
tant for the dynamic attractor bifurcation. Here we shall give some simple
methods to treat this problem.
First, we consider the 2D system given by

(5.1.12)

�
dx1
dt = G1(x1, x2)
dx2
dt = G2(x1, x2)

where G(0, 0) = 0,G = {G1, G2}. Suppose that
G = f + g

and

(5.1.13) divf =
∂f1
∂x1

+
∂f2
∂x2

= 0

We denote

V (x1, x2) =

] x2

0

f1(x1, x2)dx2 −
] x1

0

f2(x1, 0)dx1

Then we have the following theorem.

Theorem 5.1.2. Under the condition (5.1.13), if there exists an open set
Ω ⊂ R2, 0 ∈ Ω such that G(x) has only one zero point x = 0 in Ω, and
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i). V (x) > 0 for all x ∈ Ω, x 9= 0;
ii). f1g2 − f2g1 ≤ 0 ∀x ∈ Ω;
iii). divg < 0,∀x ∈ Ω and x 9= 0;
then x = 0 is asymptotically stable for the equation (5.1.12).

Proof. From (5.1.13) it follows that

∂V

∂x2
= f1;

∂V

∂x1
= −f2

Hence, by (ii) we deduce that for the equation (5.1.12),

dV (x)

dt
=

∂V

∂x1
G1 +

∂V

∂x2
G2

= −f2g1 + f1g2
≤ 0, ∀x ∈ Ω

which implies, by the condition i), that V (x) is the Lyapnov function. Hence
x = 0 is stable. On the other hand, by (5.1.13) and (iii) we know that (5.1.12)
has no limit cycle in Ω. Thus, from the Poincare-Bendixson theorem and the
fact that x = 0 is an isolated singular point of G, this theorem follows. The
proof is complete.

The method to seek the Lyapnov function as above can be generalized to
the higher dimensional systems as follows

(5.1.14)
dx

dt
= G(x), x ∈ R2n, n ≥ 1

where x = {x1, · · · , xn, y1, · · · , yn}, and G(0) = 0. Suppose that
G = J∇H + g(x)

where H is a Hamilton function, with H(0) = 0, and

J =

�
0 −I
I 0

�
In the same fashion as using in Theorem 5.12, we can obtain the following result.

Theorem 5.1.3. If there is an open set U ⊂ R2n, o ∈ U , such that G(x)
has only one zero point x = 0 in U , and
i). H(x) > 0 for all x ∈ U and x 9= 0;
ii).

Sn
i=1

k
∂H
∂xi

· gi + ∂H
∂yi
gn+i

l
< 0; ∀x ∈ Ω, x 9= 0

then H(x) is a Lyapunov function of (5.1.14), and x = 0 is asymptotically
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stable.

By applying Theorem 5.1.2, we can deduce that for the equation (5.1.4)
in Subsection 5.1.1, x = 0 is asymptotically stable. In fact, for the equation
(5.1.4) we have �

G1(x1, x2) = x2
G2(x1, x2) = −kx2 − 1

2gx
3
1 + o(|x1|3)

Obviously, x = 0 is an isolated zero point of G = {G1, G2}. Let

f1 = x2, f2 = −1
2
gx31 + o(|x1|3)

g1 = 0, g2 = −kx2
then divf = 0, and

V (x1, x2) =
1

2
x22 +

1

8
gx41 + o(|x1|4)

f1g2 − f2g1 = −kx22 ≤ 0
divg = −k < 0.

It is easy to see that the conditions i)-iii) in Theorem 5.1.2 are satisfied, hence
x = 0 is asymptotically stable for (5.1.4).
Next, we discuss the system as follows

(5.1.15)
dx

dt
=

�
α11 α12
α21 α22

��
x1
x2

�
+G(x).

where G(x) = o(|x|), and

(5.1.16)

�
α11 + α22 = 0
α11α22 − α12α21 > 0

By (5.1.16), the eigenvalues of (5.1.15) are as follows

β± = ±i
√
α11α22 − α12α21

On this critical state, the equilibrum point x = 0 of (5.1.15) must be one of the
three cases: a center, a stable focus and an unstable focus. In the following,
we give a determining theorem.

Theorem 5.1.4. Let U ⊂ R2 be a neighborhood of x = 0. Under the
condition (5.1.16), the following assertions hold:
i). if divG = 0 in U , then x = 0 is a center of (5.1.15);
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ii). if divG ≤ 0( 9≡ 0) in U , then x = 0 is a stable focus;
iii). if divG ≥ 0(9≡ 0) in U , then x = 0 is an unstable focus.

Proof. Because the orbits of (5.1.15) are winding in U around x = 0, for
x0 ∈ U(x0 9= 0), take T the winding period of the point x0 defined by (see
Fig.5.7)

T = min{t > 0|x(t, x0) intersects with the ray emitted
from x = 0 passing through point x0}.

where x(t, x0) denotes the solution of (5.1.15) with the initial condition x(0) =
x0.

Fig. 5.7.

Let C be the closed curve enclosed by {x(t, x0)|0 ≤ t ≤ T} and the segment
connecting x0 and x(T, x0), i.e.

C = {x(t, x0)|0 ≤ t ≤ T} ∪ {τx0 + (1− τ)x(T, x0)|0 ≤ τ ≤ 1}
For any t ≥ 0, we consider a homeomorphism:

Φt : U → Φt(U)
Φt(z) = x(t, z), ∀z ∈ U

Let AC be the closed region enclosed by C, and At = Φt(AC). Obviously we
have that A0 = Φ0(AC) = AC , and for t > 0,

|At| =
 > |AC |, if x = 0 is an unstable focus;
= |AC |, if x = 0 is a center
< |AC |, if x = 0 is a stable focus.

On the other hand, we have

|At| =
]
At

dx1dx2
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d

dt
|At| =

]
At

divGdx1dx2

Hence we infer that

divG =

 ≥ 0(9≡ 0) in U ⇒ x = 0 an unstable focuse
= 0 in U ⇒ x = 0 a center
≤ 0(9≡ 0) in U ⇒ x = 0 a stable focuse.

This theorem is proven.

5.2. Some Related Concepts and Lemmas

5.2.1. Invariant sets and attractors

Let H,H1 be the Hilbert spaces, and H1 /→ H be a compact and dense
embedding. Hereafter, we always concern the dynamical properties of the below
abstract nonlinear evolution equations.

(5.2.1)

�
du
dt = Lλu+G(u,λ)
u(0) = φ

where λ ∈ R is a parameter, and Lλ : H1 → H is a linear completely continuous field
G(·,λ) : H1 → H is a continuous operator with
G(x,λ) = o(nxnH1

), ∀λ ∈ R
When H1 = H = Rn(n ≥ 1), the equation (5.2.1) is the usual system of

ordinary differential equations.

Definition 5.2.1. A set
S ⊂ H1 is called an invariant set of (5.2.1), if

u(t,
S
) =

S
,∀t ≥ 0, here u(t,φ) is the solution of (5.2.1).

We know that the system (5.2.1) generates an operator semigroup S(t), t ≥
0, which enjoys the properties (Cf.[Te]): S(t) : H1 → H1 a continuous mapping,∀t ≥ 0

S(0) = I (identity inH1)
S(t+ s) = S(t) · S(s), ∀s, t ≥ 0

The solution of (5.2.1) can be expressed as

u(t,φ) = S(t)φ, t ≥ 0
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Thus, an invariant set
S
of (5.2.1) can be equivalently stated as

S(t)Σ = Σ,∀t ≥ 0

Definition 5.2.2. A set
S ⊂ H1 is termed an attractor of(5.2.1), if S is

a compact invariant set of (5.2.1), and there exists a neighborhood U ⊂ H1 ofS
, such that for any φ ∈ U we have

(5.2.2) dist(u(t,φ),Σ)→ 0 in H − norm, as t→∞.

The largest open set U satisfying (5.2.2) is called the attracted basin of
S
.

If
S ⊂ H1 is an invariant set (or an attractor) of (5.2.1) which is homeo-

morphic to a m-dimensional sphere Sm, then we say that
S
is a Sm-invariant

set (or a Sm-attractor).
For φ ∈ H1(or for

S ⊂ H1), we define the ω-limit of φ (or S) by
ω(φ) =

_
s≥0

^
t≥s
S(t)φ

or

ω(Σ) =
_
s≥0

^
t≥s
S(t)Σ

where the closures are taken in H1. Likewise, when it exists, the α-limit set of
φ ∈ H1 and

S ⊂ H1 are defined by
α(φ) =

_
s≥0

^
t≥s
S(−t)φ

and

α(Σ) =
_
s≥0

^
t≥s
S(−t)Σ

The following lemmas can be found in [Te].

Lemma 5.2.3. Suppose that for some subset
S ⊂ H1,

S 9= φ, and for
some t0 > 0, the set

V
t≥t0 S(t)

S
is relatively compact in H. Then ω(

S
) is

nonempty, compact, and invariant. Similarly, if the sets S(−t)S, t ≥ 0 are
nonempty and for some t0 > 0, Ut≥t0S(−t)

S
is relatively compact, then α(

S
)

is nonempty, compact, and invariant.
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The following lemma shows how to obtain the existence of an attractor. To
this end, we introduce a related concept of absorbing set.

Definition 5.2.4. Let
S ⊂ H1 be a subset and U an open set containingS

. We say that
S
is absorbing in U if the orbit of any bounded set of U enter

into
S
after a certain time (which may depend on the set):� ∀B0 ⊂ U,B0 bounded

∃t0(B0) such that S(t)B0 ⊂
S
,∀t ≥ t0(B0)

Lemma 5.2.5. Suppose that the operators S(t) are uniformly compact
for t larg, i.e. for any bounded set B there exists t0 such that Ut≥t0S(t)B is
relatively compact in H1. We also assume that there exists an open set U and
a bounded set B of U such that B is absorbing in U . Then the ω-limit set
of B,

S
= ω(B) is an attractor which attracts the bounded sets of U , and it

is the maximum attractor in U . Furthermore, if U is connected, then
S
is

connected too.

5.2.2. Center manifolds

Let us consider the system of ordinary differential equations as follows

(5.2.3)

�
dx
dt = Ax+G1(x, y,λ)
dy
dt = By +G2(x, y,λ)

where x ∈ Rm, y ∈ Rn−m(0 < m ≤ n), A and B are respectively the m ×m
and (m−m)× (n−m) matrices, Gi(x, y,λ)(i = 1, 2) are continuous on λ, and
Cr(r ≥ 1) on (x, y) ∈ Rm ×Rn−m, moreover
(5.2.4) Gi(x, y,λ) = o(nxn, nyn), ∀λ ∈ R, (i = 1, 2)
The following are the well known center manifold theorems, which can be

be found in [CH].

Theorem 5.2.6. Suppose that all the eigenvalues of A have non-negative
real parts, and all the eigenvalues of B have negative (or positive) real parts.
Then, for the system (5.2.3) with the condition (5.2.4), there exists a Cr func-
tion

h(·,λ) : Ω→ Rn−m; Ω ⊂ Rm a neighborhood of x = 0

such that h(x,λ) is continuous on λ, and
i). h(0,λ) = 0, h3x(0,λ) = 0;
ii). the set

Mλ = {(x, y)| x ∈ Ω ⊂ Rm, y = h(x,λ)}
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called the local center manifold, is a local invariant manifold of (5.2.3);
iii). ifMλ is positive invariant (or negative invariant), namely z(t,φ) ∈Mλ(z(−t,φ)
∈Mλ),∀t ≥ 0 provided φ ∈Mλ, then Mλ is an attracting set of (5.2.3)(or
a repelling set) , i.e. there is a neighborhood U ⊂ Rn of Mλ, as φ ∈ U , we
have

lim
t→∞ dist(z(t,φ),Mλ) = 0

or
lim
t→∞ dist(z(−t,φ),Mλ) = 0

where z(t,φ) = {x(t,φ), y(t,φ)} is the solution of (5.2.3) with the initial
condition z(0,φ) = φ.

The center manifold theorem amounts to saying that there is am-dimensional
surfaceMλ ⊂ Rn tangent to the eigenspace Rm of A at x = 0, which is invariant
and attracting under the orbits of (5.2.3), see Fig. 5.5 (a) and (b).
Although, as we know, the local center manifold may not be unique, we

have the following result, see [CH].

Theorem 5.2.7. There is a neighborhood U ⊂ Rn of zero such that every
invariant set (5.2.3) in U belong to the intersection of all local center manifolds
in U .
This theorem ensure us to apply Theorem 5.2.6 to the bifurcation of invari-

ant sets without the trouble of non-uniqueness

5.2.3. Global stable manifolds

We continue to consider the system (5.2.3) with the condition (5.2.4). In
the following, we give the global stable manifold theorem (see [HPS]) which
plays an important role on the investigation of the structure of attractor in
bifurcation.

Definition 5.2.8. LetM,N be two differentiable manifolds. AC1 mapping
h :M → N is an immersion if for every point x ∈ M , the rank of the tangent
mapping

Dh(x) : TxM → Th(x)N

equals to the dimension of M

rankDh(x) = dimM, ∀x ∈M.

The image h(M) ⊂ N is called an immersion submanifold.

271



Theorem 5.2.9. Let all the eigenvalues of A have positive real parts, and
all the eigenvalues of B have neigative real parts. Then, there uniquely exist
the injective immersions �

h1 : R
m → Rn

h2 : R
n−m → Rn

which satisfy:
i). h1(0) = 0, h2(0) = 0;
ii). h1(R

m) and h2(R
m) are respectively the unstable and stable manifolds of

(5.2.3) at the singular point (x, y) = 0:

Wu = h1(R
m) = {x ∈ Rn| lim

t→∞ s(−t)x = 0}

W s = h2(R
n−m) = {x ∈ Rn| lim

t→∞ s(t)x = 0}
where S(t) is the semigroup generated by (5.2.3);

iii). Wu and W s are respectively tangent to the eigenspace of A and B at
z = (x, y) = 0: �

Tz=0W
u = Rm

Tz=0W
s = Rn−m

5.3. Bifurcation of Attractors and Invariant
Manifolds of the Finite Dimensional Vector
Fields

In this section, we shall discuss the dynamic bifurcation of attractors and
sm-invariant manifold for the following finite dimensional systems

(5.3.1)
dx

dt
= Aλx+G(x,λ), λ ∈ R, x ∈ Rn (n ≥ 2)

where G : Rn ×R→ Rn is cr(r ≥ 1) on the argument x ∈ Rn and continuous
on λ ∈ R with
(5.3.2) G(x,λ) = o(|x|), ∀λ ∈ R
and

(5.3.3) Aλ =

 a11(λ) · · · a1n(λ)
...

...
an1(λ) · · · ann(λ)


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is a n× n matrix, aij are the continuous function of λ. Let all the eigenvalues
(counting the multiplicities) of (5.3.3) are given by

(5.3.4) β1(λ), · · · ,βn(λ)
We know that the eigenvalues βi(λ)(1 ≤ i ≤ n) are continuous on λ.

5.3.1. Equilibrium attractor bifurcation

The example of pendulum in a symmetric magnetic field in Subsection 5.1.1
well describes the phenomena of equilibrum attractor bifurcation. Now, we
investigate more generally the equilibrum attractor bifurcation for the systems
(5.3.1).
Suppose that the eigenvalues (5.3.4) satisfy

(5.3.5)

 β1(λ) =

 < 0, λ < λ0
= 0, λ = λ0
> 0, λ > λ0

Reβi(λ0) < 0,∀2 ≤ i ≤ n
The following is the equilibrum attractor bifurcation theorem.

Theorem 5.3.1. Under the condition (5.3.5), we also assume that G(x,λ)
is analytic at x = 0, and x = 0 is asymptotically stable for the system (5.3.1)
with λ = λ0. Then there exists an open set U ⊂ Rn with 0 ∈ U , such that as
λ > λ0 the system (5.3.1) bifurcates from x = 0 exactly two equilibrum points
x1, x2 ∈ U , and the open set U is decomposed into two open sets U1 and U2,

Ū = Ū1 + Ū2, U1 ∩ U2 = φ, and 0 ∈ Ū1 ∩ Ū2
with xi ∈ Ui(i = 1, 2), such that

lim
t→∞x(t,φ) = xi, as φ ∈ Ui(i = 1, 2).

where x(t,φ) is the solution of (5.3.1) with x(0,φ) = φ.

Proof. Under an appropriate coordinate transformation, the system (5.3.1)
can be rewritten as the following form

(5.3.6)

�
dz
dt = β1(λ)z + g1(z, y,λ)
dy
dt = Bλy + g2(z, y,λ)

where z ∈ R1, y ∈ Rn−1, and by (5.3.2)
(5.3.7) gi(z, y,λ) = o(|z|, |y|), i = 1, 2,∀λ ∈ R
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and Bλ a (n − 1) × (n − 1) matrix whose eigenvalues are βj(λ)(2 ≤ j ≤ n).
By the center manifold theorem (Theorem 5.2.6) there is an one dimensional
manifold [

λ

= {(z, h(z,λ))| z ∈ R1, h(z,λ) ∈ Rm−1,λ ∈ R}

where
h(·,λ) : I → Rn−1 is artitrary order differentiable,

(5.3.8) h(0,λ) = 0,
dh(0,λ)

dz
= 0, I = (−a, a) for some a > 0

and
S

λ is local invariant for the system (5.3.1).
It is not difficult to see that the topological stracture of the orbits of (5.3.6)

in
S

λ is equivalent to that of the below equation in I ⊂ R for all λ ∈ R

(5.3.9)
dz

dt
= β1(λ)z + f(z,λ), z ∈ I = (−a, a).

where f(z,λ) = g1(z, h(z,λ),λ). By (5.3.7) and (5.3.8), we have

(5.3.10)
∂f(0,λ)

∂z
= 0, ∀λ ∈ R

By the assumptions, x = 0 is asymptotically stable for (5.3.6) at λ = λ0,
therefore z = 0 is also asymptotically stable for the following equation (note
β1(λ0) = 0),

(5.3.11)
dz

dt
= f(z,λ0), z ∈ (−a, a), a > 0

We need to show that there is a K ≥ 2, such that
(5.3.12) f(z,λ0) = αzk + o(|z|k), α 9= 0
By the hypothese, G(x,λ0) is analytic at x = 0, and so is the vector field

{g1(z, y,λ0), g2(z, y,λ0)}, for the sake of simplicity, we drop the sign λ0. Be-
cause x = 0 is asymptotically stable for (5.3.6) at λ = λ0, in a neighborhood
of z = 0, we have

(5.3.13)
dy

dz
=
By + g2(z, y)

g1(z, y)
9= 0 for (z, y) = (z, h(z))

If (5.3.12) is not valid, then

dkg1(z, h(z))

dzk
|z=0 = 0, ∀1 ≤ k <∞
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We denote N(z) the class of functions that

∂kN(0)

∂zk
= 0, ∀1 ≤ k <∞.

From (5.3.13) it follows that

Bh(z) + g2(z, h(z)) = 0 mod(N(z))

Because g2(z, y) is analytic, from (5.3.13) we can infer that

h(z) = h1(z) +N(z)

where h1(z) is an analytic function which satisfies

(5.3.14) h1(z) +B
−1g2(z, h1(z)) = 0

((5.3.14) can be ensured by the implicity theorem). On the other hand we have

g1(z, h(z)) = g1(z, h1(z) +N(z))

= g1(z, h1(z)), mod(N(z))

= 0, mod(N(z))

Since g1(z, y) and y = h1(z) are analytic, the function g1(z, h1(z)) is also
analytic. Hence we have

(5.3.15) g1(z, h1(z)) = 0

The analytic function satisfying (5.3.14) and (5.3.15) does not exist. Otherwise
(z(t), y(t)) = (z0, h1(z0)) satisfies

dz
dt = g1(z, y)
dy
dt = By + g2(z, y)
z(0) = z0, y(0) = h1(z0)

∀z0 ∈ (−a, a). It is a contradiction with that (z, y) = (0, 0) is asymptotically
stable for (5.3.6). Thus we obtain the equality (5.3.12).
By the asymptotic stability of z = 0 for (5.3.11), from (5.3.12) it follows

that �
k = an add number
α < 0

which implies that the equation (5.3.9) bifurcates from z = 0 exactly two
asymptotically stable equilibrum point z1, z2 ∈ I = (−a, a) for λ − λ0 > 0
sufficiently small, and z = 0 is unstable. Hence, by Theorem 5.2.7, the two
points xi = {zi, h(zi,λ)}(i = 1, 2) are asymptotically stable singular points
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of (5.3.6) because
S

λ are positive invariant for all λ − λ0 sufficiently small,
therefore are attracting.
It is easy to see, by the stable manifold theorem that as λ < λ0, x = 0 has

a (n− 1)-dimensional stable manifold Mn−1
s and an one-dimensional unstable

manifold M1
u . Obviously, M

n−1
s divides the open set U into two parts U1 and

U2 with xi ∈ Ui, and xi are attracting in Ui(i = 1, 2), for instance see Fig. 5.3.
The proof is complete.

If the vector field G(x,λ) is not analytic, in general Theorem 5.3.1 is not
valid. But, we can still obtain some criterion for the equilibrum attractor
bifurcation of (5.3.1).
First of all, we recall some simple properties of matrix. Let A be a n-

order matrix, A∗ its conjugate matrix. We know that A∗ and A have the
same eigenvalues. Let βj(1 ≤ j ≤ n) be all the eigenvalues of A(counting
multiplicities). We say the vectors ξj ∈ Rn(1 ≤ j ≤ n) are eigenvectors of A,
if they satisfy

(A− βjI)
kjξj = 0, as βj are real numbers

(A− βjI)
kj (ξj + iξj+1) = 0

(A− βj+1I)
kj (ξj − iξj+1) = 0 as βj+1 = β̄j are complex numbers

for some 1 ≤ kj ≤ mj ,mj the multiplicity of βj .
Let ξj = {ξj1 , · · · , ξjn} and ξ∗k = {ξ∗k1 , · · · , ξ∗kn} be respectively the eigenvec-

tors of A and A∗, and

P =


ξ11 ξ21 · · · ξn1
ξ12 ξ22 · · · ξn2
...

...
...

ξ1n ξ2n · · · ξnn

 , P ∗ =


ξ∗11 ξ∗12 · · · ξ∗1n
ξ∗21 ξ∗22 · · · ξ∗2n
...

...
ξ∗n1 ξ∗n2 · · · ξ∗nn


Then we have the properties as follows�

P ∗ = P−1

P ∗AP = J

where J is the Jordan form of A, and ξ∗j , ξj are corresponding to the same
eigenvalue βj . If

βj+1 = βj+2 = · · · = βj+mj = β

then the eigenvectors ξj+l and ξ∗j+l(1 ≤ l ≤ mj) satisfy

(A− βI)ξj+l = ξj+l+1, as l < mj , and (A− βI)ξj+mj
= 0

(A∗ − βI)ξ∗j+l = ξ∗j+l−1, as l > 1, and (A∗ − βI)ξ∗j+1 = 0
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The properties are in fact the anather expression of the Jordan theorem
and the Fredholm’s alternative theorem.
Now we return to continue our discusion on the bifurcation of (5.3.1). Let

ξj and ξ∗j (1 ≤ j ≤ n) be respectively the eigenvectors of Aλ and A
∗
λ at λ = λ0.

We take the coordinate transformation�
x = Phx, hx = {z1, · · · , zn}
x = z1ξ1 + · · ·+ znξn

Under the transformation above, the equation (5.3.1) at λ = λ0 can be written
as to read

(5.3.16)

+
dz
dt =

hG1(z, y)
dy
dt = Ly +

hG2(z, y)
where {z, y} = hx, z = z1, y = {z2, · · · , zn}, L is the (n− 1)-order submatrix of
the Jordon form of Aλ0 corresponding to the eigenvalues βj(λ0)(2 ≤ j ≤ n),
and hG1(z, y) =< G(x(z, y)), ξ∗1 >hG2(z, y) =< G(x(z, y)), ξ∗ >, ξ∗ = (ξ∗2 , · · · , ξ∗n)
Suppose that the functions hG1 and hG2 have the expansions
(5.3.17)

+ hG1(z, y) = ρ1z
k1 + o(|z|k1) + yg1(z, y), ρ1 9= 0hG2(z, y) = ρ2z
k2 + o(|z|k2) + yg2(z, y), ρ2 ∈ Rn−1

where 1 < k1 <∞, 1 < k2 ≤ ∞(as k2 =∞, it means that hG2 = yg2(z, y)mod(N(z))),
and gi(0, 0) = 0(i = 1, 2). Then we have

Theorem 5.3.2. Under the conditions (5.3.5) and (5.3.17), if k1 ≤ k2 in
(5.3.17),and x = 0 is asymptotically stable for (5.3.1) at λ = λ0, then the
conclusion of Theorem 5.3.1 holds true.

Proof. We only need to show that the function f(z) = hG1(z, h(z)) has the
expansion (5.3.12). By (5.3.16), in a neighborhood of z = 0 we have

dy

dz
=

Ly + hG2(z, y)hG1(z, y)
=

Ly + ρ2z
k2 + yg2(z, y) + o(|z|k2)

ρ1zk1 + yg1(z, y) + o(|z|k1)
where y = h(z). By the fact that

dy

dz
|z=0 = dh(0)

dz
= 0
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as k1 ≤ k2(ρ1 9= 0), we can infer that
h(z) ∼ z2k1−1 as z → 0

By k1 > 1, it implies that

f(z) = hG1(z, h(z)) = ρ1z
k1 + o(|z|k1), ρ1 9= 0

Thus the expansion (5.3.12) is derived. The proof is complete.

5.3.2. Bifurcation of the higher dimensional attractors

Naturally, the bifurcation theorem of equilibrum attractors(Theorem 5.3.1)
suggests us to investigate further the dynamic bifurcation of the higher dimen-
sional attractors. To this end, we here give the difinition of bifurcation of the
invariant sets.

Definition 5.3.3. We say that the system (5.3.1) bifurcates from (x,λ) =
(0,λ0) an invariant set

S
, if there exists a sequence {Sλn

} of invariant sets of
(5.3.1), o 9∈Sλn

with
S

λn
homeomorphic to

S
, such that�

limn→∞ λn = λ0
limn→∞ d(

S
λn
, 0) = limn→∞maxx∈Σλn |x| = 0

Suppose that the eigenvalues (5.3.4) satisfy

(5.3.18)

 Reβi(λ) =

 < 0, λ < λ0
= 0, λ = λ0
> 0, λ > λ0.

(1 ≤ i ≤ m)

Reβj(λ0) < 0, ∀m+ 1 ≤ j ≤ n ( if n > m)

where 1 ≤ m ≤ n.
The following is the main theorem in this section.

Theorem 5.3.4. Under the condition (5.3.18), if x = 0 is asymptotically
stable for (5.3.1) at λ = λ0, then the following assertions hold true for λ−λ0 > 0
sufficiently small.
i). The system (5.3.1) bifurcates from x = 0 an attractor

S
λ with m− 1 ≤

dim
S

λ ≤ m, which is connected as m > 1.
ii).

S
λ is the limit of a family of manifolds Mτ (0 ≤ τ <∞):[

λ

=
_
τ≥0

Mτ , Mτ2 ⊂Mτ1 , ∀τ2 ≥ τ1

where Mτ possesses the hometopy type of m-annulus for all τ ≥ 0.
iii). If

S
λ is a finit simplicial complex, then

S
λ is a deformation retract
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of a manifold having the homotopy type of m-annulus. Therefore,
S

λ have
the homotopy type of Sm−1, (if m = 1,

S
λ is homotopicaly equivalent to

two distinct points).
iv). If the equilibrum points of (5.3.1) in

S
λ are finite, then the following

index formula is valid[
xi∈
S

λ

ind[−(Aλ +G), xi] =

�
2, m = odd
0, m = even

In order to prove this theorem, we need the following technical lemmas, the
first one of which is also useful in the orbit analysis of vector fields for the other
purposes.
Let F (·,λ) ∈ Cr(Ω, Rn)(r ≥ 1) be a family of vector fields, Ω ⊂ Rn an open

set, and F (x,λ) continuously depends on λ ∈ R.
We say that Γ ⊂ Rn is an orbit curve of a vector field F if Γ is an union

of the orbits γi(i = 1, 2, · · ·) of F , i.e. Γ = V
i γ̄i, and they are connected in

order each other (see Fig. 5.8 below) in this way that the end point of γi is the
starting point of γi+1. Each of γi or consists of all singular points of F , which
is called the singular orbit, or an orbit connected by the singular points of F ,
which is called the non-singular orbit.

Fig. 5.8. an orbit curve Γ
According to the definition, in an orbit curve Γ, if γi and γi+1 are the

non-singular orbits, then the limit sets of γi and γi+1 satisfy that

ω(γi) = α(γi+1).

The starting point p1 of Γ need not a singular point.

Lemma 5.3.5. Let Γλ be an orbit curve of F (x,λ) with the starting point
pλ. If pλ → p0(λ → 0), then Γλ converge to an orbit curve Γ0 of F (x, 0) with
the starting point p0.
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Proof. Because F (x,λ) is continuous on λ, it is easy to see that if the
singular points zλ of F (x,λ) converge to z0 as λ → 0, then z0 must be a
singular point of F (x, 0). Hence it sufficies to prove this lemma only for the
case that {Γλ} is a sequence of the non-singular orbits with bounded length (if
Γλ are the orbits possessing infinite length, then we can divid Γλ into countable
segments with finite length lλi (i = 1, 2, · · ·), and then proceed for each lλi in the
same fashion).
Let Γλ = γ̄λ be a closure of a non-singular orbit γλ of F (x,λ), with the

starting point pλ and the end point qλ, where {qλ} ⊂ Rn is bounded. By
the definition, qλ is a singular point of F (x,λ). Without loss of generality, we
assume that the starting points pλ of Γλ are the singular points, then Γλ is a
complete orbit xλ(t) of F (x,λ) satisfiying

(5.3.19)


dxλ
dt = F (xλ,λ)
xλ(t)→ pλ, t→ −∞
xλ(t)→ qλ, t→ +∞

If we define
xλ(−∞) = pλ, xλ(∞) = qλ

the the closed segment Γλ is parameterized by

Γλ = {xλ(t)|t ∈ [−∞,∞]}.

In order to avoid the infinity interval, let

t = tgτ

Then in new variable τ , (5.3.19) becomes

dyλ(τ)

dτ
= F (yλ,λ)

dtgτ

dτ
, τ ∈ [−π

2
,
π

2
]

yλ(τ) = pλ, τ → −π
2

yλ(τ) = qλ, τ → π

2

(5.3.20) yλ(τ) = xλ(tgτ)

Obviously, the solution of (5.3.20) satisfies

(5.3.21) yλ(τ) = pλ +

] τ

−π
2

F (yλ,λ)
dtgτ

dτ
dτ
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By (5.3.21) we have

|yλ(τ1)− yλ(τ2)| = |
] τ2

τ1

F (yλ,λ)
dtgτ

dτ
dτ |

= (ti = tgτi)

≤
] tg−1t2

tg−1t1
|F (xλ,λ)|dt

≤ C|tg−1t2 − tg−1t1|
≤ C|τ2 − τ1|

Namely yλ : [−π
2 ,

π
2 ]→ Rn are equicontinuous. By the Arzela-Ascoli theorem,

{xλ(tg)} has a convergent subsequence for λ→ 0, still denote it by {xλ(tg)}:

xλ(tgτ)→ x0(tgτ) inC[−π
2
,
π

2
] as λ→ 0

x0(tg) ∈ C[−π
2
,
π

2
]

x0(tg(−π
2
)) = p0

x0(tg(
π

2
)) = q0

It is then easy to see that x0(t) can be consided as a continuous curve in R
n

connecting p0 and q0, and defined on (−∞,∞) such that�
x0(t)→ p0, as t→ −∞
x0(t)→ q0, as t→∞

In fact, x0(t) is an union of complete orbits of F (x, 0). To see this we infer
from (5.3.19) that

xλ(t) = xλ(t1) +

] t

t1

F (xλ,λ)dt

Passing to the limit λ→ 0, we obtain

x0(t) = x0(t1) +

] t

t1

F (x0, 0)dt

Hence
dx0
dt

= F (x0, 0), ∀t ∈ (−∞,∞).
Consequently, Γ0 = {x0(t)|t ∈ [−∞,∞]} is an orbit curve of F (x, 0), which is
the limit of {Γλ} for λ→ 0. The proof is complete.
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Lemma 5.3.6. Suppose that x = 0 is an asymptotically stable singular
point of F (x, 0), then there is an open set Ω ⊂ Rn, 0 ∈ Ω, such that the ω-limit
sets of Ω satisfy

(5.3.22)


limλ→0 d(ωλ(Ω), 0) = 0
d(ωλ(Ω), 0) = supx∈ωλ(Ω) |x|
ωλ(Ω) =

W
τ≥0

V
t≥τ Sλ(t)Ω.

where Sλ(t) is the operator semigroup generated by F (x,λ).

Proof. Because Sλ(t) : R
n → Rn is a homeomorphism for all t ∈ R,Sλ(t)Ω

is an open set and ∂[Sλ(t)Ω] = [Sλ(t)∂Ω]. Hence

∂[
^
t≥τ

Sλ(t)Ω] ⊂
^
t≥τ

Sλ(t)∂Ω

Therefore, to prove (5.3.22) it is sufficient to verify that

(5.3.23) lim
λ→0

d(ωλ(∂Ω), 0) = 0

Assuming that the equality is false, we shall deduce a contradiction. We divide
this proof into two cases.

Case a). The distances between ωλ(∂Ω) and x = 0 satisfy

(5.2.24) lim
λ→0

dist(ωλ(∂Ω), 0) = lim
λ→0

inf
x∈ωλ(∂Ω)

|x| = 0

By (5.2.24), there is a sequence of pλ ∈ ωλ(∂Ω) such that pλ → 0(as λ→ 0).
Because (5.3.23) is not true, and ωλ(∂Ω) is a connected and invariant set of
F (x,λ)(by Lemma 5.2.3), there is a number δ > 0 and an orbit curve Γλ ⊂
ωλ(∂Ω) of F (x,λ) with the starting point pλ, such that

(5.3.25)

�
Γλ
W
∂Bδ(0) 9= φ, ∀λ 9= 0,

Bδ(0) = {x ∈ Rn||x| < δ}
On the other hand, by Lemma 5.3.5, we have

Γλ → Γ0, as λ→ 0

where Γ0 is an orbit curve of F (x, 0) with the starting point x = 0, and from
(5.3.25) it follows that

Γ0
_

∂Bδ(0) 9= φ

Thus, we read a contradiction with the assumption that x = 0 is an asymptot-
ically stable singular point of F (x, 0).
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Case b) There is a number δ > 0, such that

(5.3.26) dist(ωλ(∂Ω), 0) ≥ δ > 0, ∀λ 9= 0
If ωλ(∂Ω)

W
Ω 9= φ, we take a point pλ ∈ ω(∂Ω)

W
Ω and an orbit curve

Γλ ⊂ ωλ(∂Ω) with the starting point pλ. By (5.3.25) we have

(5.3.27) dist(Γλ, 0) ≥ δ > 0

Because {pλ} is bounded, let pλ → p0 ∈ Ω̄(λ → 0), then the orbit curves Γλ,
by Lemma 5.3.5, converge to Γ0, an orbit curve of F (x, 0), with the starting
point p0 ∈ Ω̄. From (5.3.27) it follows

dist(Γ0, 0) ≥ δ > 0

which is a contradiction with that the solution u(t, p0) of F (x, 0) satisfies that
limt→∞ u(t, p0) = 0,∀p0 ∈ Ω̄ (we take Ω̄ ⊂ Rn in the attracted basin of x = 0).
If ωλ(∂Ω)

W
Ω = φ, then we take

Γλ = {xλ(t)| dxλ
dt

= F (xλ, λ), xλ(0) = ψ ∈ ∂Ω, 0 ≤ t <∞}

Hence, the ω-limit sets

(5.3.28) ω(Γλ)
_
Ω = ψ

On the other hand, Γλ → Γ0(λ → 0), an orbit curve of F (x, 0) with the end
point of Γ0 is x = 0, a contradiction with (5.3.28). Thus, this lemma is proven.

Now, we return to prove Theorem 5.3.4.
The Proof of Theorem 5.3.4. Under a proper coordinate transformation,

the system (5.3.1) can be rewritten as

(5.3.29)

�
dx
dt = Bλx+ g1(x, y,λ)
dy
dt = Cλx+ g2(x, y,λ)

where x ∈ Rm, y ∈ Rn−m, Bλ is the m × m matrix with the eigenvalues
β1(λ), · · · ,βm(λ), Cλ is the (n − m) × (n − m) matrix with the eigenvalues
βm+1(λ), · · · ,βn(λ), and
(5.3.30) gi(x, y,λ) = o(|x|, |y|), ∀λ ∈ R, (i = 1, 2)
For the sake of simplicity, we assume that λ0 = 0, i.e.

βi(λ) =

 < 0, λ < 0
= 0, λ = 0
> 0, λ > 0

(1 ≤ i ≤ m)
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βj(0) < 0, ∀m+ 1 ≤ j ≤ m.
Let h(x,λ) be the function defined as in the center manifold theorem (The-

orem 5.2.6), and Mλ = {(x, y)|y = h(x,λ), x ∈ Ω ⊂ Rm} be a center manifold
of (5.3.29). It is known that the topological structure of the orbits of (5.3.29)
in Mλ is equivalent to that of the below system in Ω ⊂ Rm

(5.3.31)
dx

dt
= Bλx+ f(x,λ), x ∈ Ω ⊂ Rm

where
f(x,λ) = g1(x, h(x,λ),λ)

While, by (5.3.30) and the property i) in Theorem 5.2.5, we have

f(x,λ) = o(|x|), ∀λ ∈ R.
By the assumption, z = 0(z = (x, y)) is asymptotically stable for (5.3.29)

at λ = 0, therefore, x = 0 is also asymptotically stable for the following system

dx

dt
= B0x+ f(x, 0), x ∈ Ω ⊂ Rm

Let F (x,λ) = Bλx + f(x,λ). Then F (x,λ) is continuous on λ, and x = 0
is an asymptotically stable singular point of F (x, 0). By Lemma 5.3.6, there
exist an open set Ω0 ⊂ Rm, 0 ∈ Ω0 ⊂ Ω, and constants r,λ1 > 0, such that
Br = {x ∈ Rm||x| < r} is an obsorbing set of F (x,λ) in Ω0 for all |λ| < λ1.
Therefore, from Lemma 5.2.5 it follows that

(5.3.32) Aλ = ωλ(B̄r) ⊂ Br, ∀|λ| < λ1

is an attractor of (5.3.31) in Ω0 ⊂ Rm.
In addition, by the global stable manifold theorem (Theorem 5.2.9) we have

the global unstable manifold Mu
λ at x = 0 of (5.3.31) in R

m for all 0 < λ < λ1,
and

Mu
λ = I(R

m,λ) ⊂ Rm
where

I(·,λ) : Rm → Rm (I(0,λ) = 0)

is an injective immersion. From (5.3.32) we can see that

Mu
λ ⊂ Aλ ⊂ Br, ∀0 < λ < λ1

which implies that Mu
λ is homeomorphic to a m-dimensional open disk(notice

that the closure of Mu
λ may not be homeomorphic to a m-dimensional closed

disk, because Mu
λ ⊂ Rm is an immersion. Hence we can claim that

S
λ = Aλ/M

u
λ is an attractor of (5.3.29) for 0 < λ < λ1,

m− 1 ≤ dimSλ ≤ m; and
limλ→0+ d(

S
λ, 0) = 0, (by (5.3.22))
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Thus, we obtain the conclusion i).
In the following, we prove the conclusion ii). We denote

Dτ =
^
t≥τ

Sλ(t)B̄r (τ ≥ 0)

It is clear that Dτ is shrunk for τ ≥ 0, or
(5.3.33) Dτ1 ⊂ Dτ2 as τ1 > τ2 ≥ 0
By the semigroup properties of Sλ(t), it is easy to see that

(5.3.34)

�
Dτ = Sλ(τ)D0 ∀τ ≥ 0
D0 =

V
t≥0 Sλ(t)B̄r

Obviously, Dτ is homeomorphic to D0,∀τ ≥ 0, and B̄r ⊂ D0. We divide the
proof into the following several steps.

Claim 1. D0 is a closure of an open set.
This is easily seen by that

D0 =
^
t≥0
Sλ(t)B̄r =

^
t≥0
Sλ(t)Br

and
V
t≥0 Sλ(t)Br is an open set because Sλ(t)Br are open sets for all t ≥ 0.

Claim 2. D0 is a m-dimensional manifold with boundary.
Suppose that the claim is false, then there exists a point x ∈ ∂D0 such

that, for any neighborhood O of x in Rm,D0
W
O is not homeomorphic to

Rm+ = {(x1, · · · , xm) ∈ Rm|xm > 0}, or

(3.3.35)

�
D0
W
Ō = Ō1 + Ō2, O1 and O2 are open sets, and

O1
W
O2 = φ, x ∈ Ō1

W
Ō2

which can be shown as in Fig. 5.9 below
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Fig. 5.9.

From (5.3.35) we can see that

(5.3.36)

�
O/D0 9= φ is an open set, Ō1

W
Ō2 9= φ, and

Ō1
W
Ō2 ⊂ ∂(O/D0) = ∂D0

W
O.

Because Sλ(τ) : R
m → Rm is a homeomorphism ∀τ ∈ R, the case that

Sλ(τ)Ō1 ⊂ O1 and Sλ(τ)Ō2 ⊂ O2 for some τ ∈ R does not occur, see Fig
5.10(a). Hence, from (5.3.33) and (5.3.34) we can deduce that there is at least
a point x0 ∈ Ō1

W
Ō2 such that

(5.3.37) Sλ(τ)x0 ∈ Ō1
_
Ō2, ∀τ ≥ 0

Otherwise, from (5.3.36) we can see that there are τ0 > 0 and points y ∈ O1(or
y ∈ O2), such that

Sλ(τ0)y ∈ O/D0
see Fig. 5.10(b), which is a contradiction with (5.3.33).

Fig 5.10.

Because Ō1
W
Ō2∈̄Br, from (5.3.37) we can get that

d(Sλ(τ)(Ō1
_
Ō2), 0) ≥ r > 0, ∀λ, τ ≥ 0

Thus, we read a contradiction with that

lim
τ→∞λ→0

d(Sλ(τ)D0, 0) = 0 (by (5.3.22))

Claim 3. D0 is homotopically equivalent to a disk.
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We know that B̄r is a m-disk, and B̄r ⊂ D0. We shall show that D0 and B̄r
have the same homotopy type. By (5.3.32), there is a T > 0 such that

DT = Sλ(T )D0 ⊂ B̄r
For the two mappings

h : D0 → B̄r defined as h(x) = Sλ(T )x
i : B̄r → D0 an inclusion mapping

we define the homotopies

H : D0 × [0, T ]→ D0

H ◦ i : B̄r × [0, T ]→ B̄r
where the homotopy H is defined by

H(x, t) = Sλ(t)x, ∀x ∈ D0, t ∈ [0, T ].
It is easy to see that the two homotopies H and H ◦ i give that

id * i ◦ h : D0 → D0

id * h ◦ i : B̄r → B̄r
Hence, D0 and B̄r are homotopy equivalence.

Claim 4.
S

λ is the limit of a family of manifolds having the homotopy
type of a m-annulus.
By (5.3.33), we have

(5.3.38)

�
limτ→∞Dτ = Aλ

Mu
λ ⊂ Aλ ⊂ Dτ ,∀τ ≥ 0

Because Mu
λ = I(R

m,λ) is bounded, I(·,λ) : Rm → Rm is an injective immer-
sion, for any Bρ = {x ∈ Rm||x| < ρ}(0 < ρ),

Bρ = I(Bρ,λ), 0 < ρ <∞
is an embedding open m-disk, and

(5.3.39)

�
Bρ1 ⊂ Bρ2 as ρ2 < ρ1
d(∂Bρ, ∂M

u
λ ) = maxx∈∂Bρ dist(x, ∂M

u
λ )→ 0, (ρ→∞).

From (5.3.8) and (5.3.39) we can obtain

(5.3.40)

� S
λ ⊂ Dτ2\Bρ2 ⊂ Dτ1\Bρ1 , ∀τ2 ≥ τ1, ρ2 ≥ ρ1

Dτ\Bρ →
S

λ = Aλ\Mu
λ , τ →∞, ρ→∞
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Obviously, Dτ\Bρ is homotopically equivalent to a m-annulus for all τ ≥ 0, ρ >
0. The conclusion ii) is verified.
We are now in a position to prove the conclusion iii). We need to show thatS
λ is a deformation retract of D0\B1, (B1 = I(B1,λ)).
It is easy to see that any embedding submanifold M ⊂ D0\B1, which is

homeomorphic toD0\B1, is a deformation retract ofD0\B1 provided
S

λ ⊂M .
Let M be a smooth manifold with boundary. For each point x ∈ ∂M we

denote
Z(x,λ) = the point Z ∈M, which lies on the inward
normal line starting from x, and the arc length

from z to x is λ(λ ≥ 0).
Obviously, z(x, 0) = x.
By (5.3.40), we can take a sequence of smooth submanifolds {Mn} ofD0\B1,

such that

(5.3.41)


S

λ ⊂Mn+1 ⊂Mn ⊂ D0\B1,∀n ≥ 1
Mn homeomorphic to D0\B1, and
limn→∞Mn =

S
λ

Moreover, the sequence {Mn} possesses the properties that, for any point x ∈
∂Mn, there exists a number λn(x) ≥ 0 such that for all x, y ∈ ∂Mn, x 9= y, the
line segment

lx = {z(x,λ)|0 ≤ λ ≤ λn(x)}
does not intersect with the line segment ly, moreover, the points in the line
segment lx(x ∈ ∂Mn) satisfy

z(x,λ)∈̄Mn+1, ∀0 ≤ λ < λn(x), as λn(x) > 0; and

z(x,λn(x)) ∈ ∂Mn+1 (if λn(x) = 0, then x ∈ ∂Mn

_
∂Mn+1)

The properties can be ensured by the procedure that letting the smooth mani-
fold M1 ⊂ D0\B1 shrinks along its inward normal direction, then we intercept
the manifold M2, and again, from M2 we get M3 in the same fashion, and so
on.
Thus, ∀x ∈ ∂M1, we can define a curve

Lx =
∞̂

n=1

lxn , x1 = x, xn+1 = z(xn,λn(xn)).

Namely Lx is the union of the line segments lxn , in where the end point xn+1
of lxn is the starting point of lxn+1 . Because

S
λ is a finite simplicial complex,
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the length of Lx is finite for all x ∈ ∂M1, otherwise the number of simpleces inS
λ can not be finite. It is not difficult to see that

Lx
_
Ly = φ,∀x 9= y, x, y ∈ ∂M1

Lx
_[

λ

= φ,∀x ∈ ∂M1

and by (5.3.41), the end point qx of Lx =
V∞
n=1 lxn satisfies

lim
n→∞ yn = qx ∈ Σλ, (yn ∈ lxn).

The property is guaranted by the finite length of Lx. On the other hand, we
can see that

M1 =
[
λ

^
(
^

x∈∂M1

Lx)

Then, we define the mapping H :M1 × [0, 1]→M1 by

H(y, t) =

�
y, y ∈Sλ, ∀0 ≤ t ≤ 1
p(y, t), y ∈ Lx

where p(y, t) is the point p ∈ Lx that the arc length along Lx from y to p is
tr(y), where r(y) is the length of Lx from y to qx the end point. It is clear that
H is continuous, and
H(·, 0) = id :M1 →M1

H(·, 1) :M1 → Σλ, and
H ◦ i = id : Σλ → Σλ,

where i :
S

λ → M1 is an inclusion mapping. Hence,
S

λ is a deformation
retract of M1. The conclusion iii) is proven.
Finally, we show the conclusion iv). By the topological degree theory, we

know that the Brouwer degree of the vector fields in (5.3.1) satisfies

(5.3.42) deg(−(Aλ +G),Ω0, 0) = 1, ∀ − λ1 < λ < λ1

where λ1 > 0 and Ω0 ⊂ Rm are defined as in (5.3.32). Because
S

λ is the
maximum attractor of (5.3.1) in Ω0\{0}, (0 < λ < λ1), all the non-zero singular
points of Aλ +G in Ω0 are in

S
λ, and if which are finite, then we have

deg(−(Aλ +G),Ω0, 0) = ind(−(Aλ +G), 0)+

(5.3.43) +
[

xi∈
S

λ

ind(−(Aλ +G), xi)

289



On the other hand, by (5.3.18) we have

(5.3.44) ind(−(Aλ +G), 0) =

�
1, m = even
−1, m = odd

Consequently, from (5.3.42)-(5.3.44) we infer the conclusion iv).
The proof of Theorem 5.3.4 is complete.

Remark 5.3.7. From the conclusion iv) of Theorem 5.3.4, we see that if
the attractor

S
λ has no singular points of (5.3.1), then the dimension m must

be an even number.

Remark 5.3.8. If the following conclusion holds true

(A)

�
If D ⊂ Rm is a contractible m− dimensional compact
manifold with boundary, then D is a m− disk

then the conclusions ii) and iii) of Theorem 5.3.4 are rewritten as
ii)3
S

λ =
W
τ≥0Mτ ,Mτ2 ⊂Mτ1∀τ2 ≥ τ1,Mτ are the m-annuluses.

iii)3. If
S

λ is a finite simplicial complex, then
S

λ is a deformation retract of
a m-annulus.
When 1 ≤ m ≤ 3, the conclusion (A) obviously holds true. The conclusion

(A) is related to the Poincare Conjecture (which has been proven except the
dimension three), which amounts to saying that if Mm is a closed simply con-
nected manifold with the integral homology of the m-sphere Sm, then Mm is
homeomorphic to Sm.
In fact, for a m-dimensional compact manifold with boundary D ⊂ Rm(∂D

is a (m − 1)-dimensional closed compact manifold), we have the short exact
homological sequence

(5.3.45) 0→ Hm−k−1(D,Z)→ Hk(∂D,Z)→ Hk(D,Z)→ 0

∀0 ≤ k ≤ m. When D is contractible, from (5.3.45) we get

Hk(∂D,Z) =

�
Z, k = m− 1, 0
0, k 9= m− 1, 0,

If we can prove that ∂D is simply connected, then the conclusion (A) is a spe-
cial case of the Poincare Conjecture.

5.3.3. S1-invariant sets

The topolgical structure of the attractors
S

λ in Theorem 5.3.4 may be
very complex. But it is interesting to investigate the problem that under what
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conditions the attractor
S

λ is a S
k-invariant set, or contains a Sk-invariant

set (k ≥ 1). Here, we consider the simplest case of the dimension m = 2 in
Theorem 5.3.4, and an immediate result can be obtained.

Theorem 5.3.9 Under the conditions of Theorem 5.3.4, if m = 2, then we
have the following conclusions.
i).
S

λ contains at least a S
1-invariant set.

ii). If
S

λ has no-singular points of (5.3.1), then
S

λ is either an annulus or a
periodic orbit, therefore,

S
λ contains at least one periodic orbit.

Proof. We know that the boundaries ofMu
λ and R

m\Aλ are in
S

λ, namely
∂Mu

λ

V
∂(Rm\Aλ) ⊂

S
λ, and ∂Mu

λ and ∂(Rm\Aλ) are invariant set. By the
Poincare-Bendixson theorem, if

S
λ is not a finite simplicial complex, then

there must exists some limit set of the orbits in ∂Mu
λ (or in ∂(Rm\Aλ)) which

is one of a focus, a cycle and a k-petal, for instance see Fig.5.11 (a)-(c).

(a) x0 is a focus
(b) Γ is a cycle

(c) Γ is a k-petal
(d) x1 are self-intersections, which are singular points

Fig. 5.11.
Obviously, if the limit sets of orbits in ∂Mu

λ (or in ∂(Rm\Aλ)) contain a
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cycle or a k-petal Γ, then Γ ⊂ Sλ contains a S
1-invariant set, and if all the

limit sets are focuses, then ∂Mu
λ is homeomorphic to a cycle S

1. When
S

λ is
a finite simplicial complex, then ∂Mu

λ is a cycle S
1 with the self-intersection

(see Fig 5.11(d)). It is easy to see that, in this case,
S

λ must contain a S
1-

invariant set, for instance, in Fig 5.11(d) the union of the arcs gxi xi+1 in ∂Mu
λ

is a S1-invariant set. Thus, the conclusion i) is proven.
It is not difficult to see that when

S
λ is not a finite simplicial complex,

or
S

λ is a finite simplicial complex but one of ∂M
u
λ and ∂(Rm\Aλ) is a cy-

cle S1 with a non-empty self-intersection, then
S

λ contains the equilibrum
points of (5.3.1). Hence, if

S
λ has no singular points, then

S
λ must be either

a 2-annulus or a cycle S1, and the conclusion ii) follows. The proof is complete.

In above, we always discuss the bifurcation of attractors, which occurs in the
case that the real parts of some eigenvalues pass through zero from the neiga-
tive to the positive and the others stay on the negative. Naturally we wonder
whether a vector field F (x,λ) will bifurcate from a singular point x0 an invari-
ant set so long as the real parts of some eigenvalues of DF (x0,λ) pass through
zero. When the number m of the real parts of eigenvalues passing through zero
(counting multiplicity) is odd, we know the problem is positive because there
is bifurcation of singular points from x0, by the bifurcation theorem (Theorem
4.1.1). But, when m=even, we know little except the Hopf bifurcation. In
the following, we give a generalized version of the Hopf bifurcation, which is
positive to the above problem for m = 2.
Suppose the eigenvalues (5.3.4) satisfy that

(5.3.46)

 Reβi(λ) =

 < 0( or > 0), λ < λ0
= 0, λ = λ0 (i = 1, 2)
> 0 (or < 0), λ > λ0

Reβj(λ0) 9= 0, ∀3 ≤ j ≤ n
We then have the following theorem

theorem 5.3.10. Under the condition (5.3.46), if the system (5.3.1) has
no bifurcation of the equilibrum points from (x,λ) = (0,λ0), then (5.3.1) must
bifurcate from (0,λ0) a periodic orbit.

Proof. Without loss of generality, we assume that λ0 = 0. Under the
condition (5.3.46), the system (5.3.1), in a proper coordinate system, can be
rewritten as the form (5.3.29) with m = 2, and by the center manifold theorem
(Theorem 5.2.6), the bifurcation of (5.3.1) is completely determined by the
following two dimensional system

(5.3.47)
dx

dt
= Bλx+ g(x,λ),
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where x ∈ R2, and

g(x,λ) = g1(x, h(x,λ),λ) = o(|x|), ∀λ ∈ R.

while
the eigenvalues of Bλ = {β1(λ),β2(λ)}.

where h : Ω→ Rn−2(Ω ⊂ R2) is defined as in Theorem 5.2.6. By the condition
(5.3.46), we know that

ind(Bλ + g(·,λ), 0) = 1, as λ 9= 0

By the assumption, the system (5.3.1) has no bifurcation of the singular points,
therefore we obtain that x = 0 is an isolated singular point of the system
(5.3.47) with λ = 0, and

(5.3.48) ind(B0 + g(·, 0), 0) = 1

On the other hand, by the Poincare formula for a two-dimensional vector
field (see [CH]), we have

ind(B0 + g(·, 0), 0) = 1 + 1
2
(e− h)

where e=number of elliptic regions, and h =number of hyperbolic regions. And
the elliptic, hyperbolic and parabolic regions E,H and P in a neighborhood
U ⊂ R2 of x = 0 are defined as (see Fig 5.12)

E = {x ∈ U |S(t)x ∈ U,∀t ∈ R, and the limit set ω(x) = 0,α(x) = 0}
H = {x ∈ U |ω(x) and α(x)∈̄U}
P = {x ∈ U |ω(x) = 0,α(x)∈̄U ; or α(x) = 0,ω(x)∈̄U ;
or S(t)x ∈ U ∀t ∈ R, and ω(x),α(x) 9= 0};

where S(t) is the operator semi-groups generated by B0 + g(x, 0).

Fig. 5.12.
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By (5.3.48), for the vector field B0 + g(·, 0), we have e = h. Because the
α and ω-limit sets of every orbit in the elliptic regions are x = 0, it is not
difficult to see that e = 0, otherwise, in the some fashion as used in Theorem
5.3.4, we can derive the bifurcation of singular points of (5.3.1). Hence, about
the singular point x = 0 of B0 + g(·, 0) there are only the parabolic regions.
A singular point with the parabolic regions must be one of the following three
types
a) x = 0 is a stable focus or node;
b) x = 0 is an unstable focus or node;
c) x = 0 is a stable but not asymptotically stable singular point.
In the two dimensional system, the case c) implies that there exists a se-

quence of periodic orbits {Γn} ⊂ R2, such that Γn → {0} as n→∞, thus the
sequence {Γn} is the bifurcation of the poriodic orbits of (5.3.47). Obviously,
the case b) for the vector field B0+g(·, 0) is the case a) for −(B0+g(·, 0)). For
the case a) and b), we can derive this theorem in the same manmer as used in
Theorem 5.3.4 and Theorem 5.3.9. The proof is complete.

Remark 5.3.11. In the condition (5.3.46), if the eigenvalues β1(λ) =
a(λ) + ib(λ),β2(λ) = a(λ) − ib(λ), and b(λ0) 9= 0, then Theorem 5.3.10 is
the Hopf bifurcation theorem. In fact, in this case, the matrix (5.3.3) is non-
degenerate:

degA|λ=λ0 9= 0
Hence, by the inverse function theorem, the system (5.3.1) has no bifurcation
of the equilibrum points.

5.3.4. Remarks on bifurcation of invariant manifolds

Now, let us concern the following problems, which are interesting and rela-
tively difficult.
1). Do the attractors

S
λ in Theorem 5.3.4 contain at least a Sm−1-invariant

manifold?
2). What conditions do the vector fields of (5.3.1) satisfy so that the invariant
set

S
λ is a S

m−1-attractor?
3). If

S
λ has no singular points, then does

S
λ contain an invariant manifold?

4). Under the below condition

(5.3.49)

 Reβi(λ) =

 < 0(> 0), λ < λ0
= 0, λ = λ0
> 0(< 0), λ > λ0

(1 ≤ i ≤ m)

Reβj(λ0) 9= 0,∀m+ 1 ≤ j ≤ n
does the system (5.3.1) bifurcate from (x,λ) = (0,λ0) an invariant mani-

fold? If does not, then what additional conditions do we need to imposed in
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order for (5.3.1) to do so?
With the problems in mind, here we present some open quasitions and sug-

gestions as follows.

Problem 5.3.12. Under the conditions of Theorem 5.3.4, if the vector
fields G(x,λ0 in (5.3.1) are analytic, then the bifurcated invariant set

S
λ is a

Sm−1-attractor.

Conjecture 5.3.13. Under the conditions of Theorem 5.3.4, if the bifur-
cated attractor

S
λ of (5.3.1) has no singular points, then

S
λ must contain at

least an invariant manifold.
This conjecture is based on the observation that the boundary ∂Mu

λ of the
unstable manifold Mu

λ ⊂ Rm of (5.3.1) at x = 0 is a (m − 1)-sphere Sm−1
with the self-intersection, which is invariant in

S
λ. If ∂M

λ
u has no singular

points, then the self-intersection in ∂Mλ
u , which is invariant too, either is empty,

thus ∂Mλ
u = Sm−1, or contains some invariant manifolds with dimensions

k(1 ≤ k ≤ m− 2).
We referred the fourth problem to the follow conjecture.

Conjecture 5.3.14. Under the condition (5.3.49), the system (5.3.1)
bifurcates from (x,λ) = (0,λ0) at least a k-dimensional invariant manifoldS
(0 ≤ k ≤ m− 1), and as k = 0,S consists of the singular points of (5.3.1).
When m = 2, this conjecture holds true, which is Theorem 5.3.10. When

m=odd, the conjecture is trivial because there always exists the bifurcation of
singular points.
In order to describe the problem 4), we introduce a definition on the stable,

unstable and neutral sets, which are the analogues of the stable, unstable and
center manifolds. We denote the vector fields of (5.3.1) by

F (x,λ) = Aλx+G(x,λ), x ∈ Rn,λ ∈ R.

Definition 5.3.15. Let Sλ(t) : R
n → Rn be the operator semigroups

generated by F (x,λ), U ⊂ Rn be a neighborhood of x = 0. We respectively
call the sets

Ωsλ(U) = {x ∈ U |Sλ(t)x ∈ U ∀t ≥ 0, and ω(x) = {0}}
Ωuλ(U) = {x ∈ U |Sλ(−t)x ∈ U ∀t ≥ 0, and α(x) = {0}}
Ωnλ(U) = {x ∈ U |Sλ(t)x ∈ U ∀t ∈ R, and α(x),ω(x) 9= {0}},

the stable, unstable and neutral sets of F (x,λ) in U .
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Obviously, we have

dimΩsλ + dimΩ
u
λ + dimΩ

n
λ ≥ n.

And if the sets Ωsλ,Ω
u
λ and Ω

n
λ are manifolds with dimension ≥ 1, then x = 0 is

an interior point of them, and as x = 0 is an isolated singular point of F (x,λ),
we have

ind(F s(·,λ), 0) = deg(F s(·,λ),Ωsλ, 0) = (−1)k
ind(Fu(·,λ), 0) = deg(Fu(·,λ),Ωuλ, 0) = 1
ind(Fn(·,λ), 0) = deg(Fn(·,λ),Ωnλ, 0) = 1

where k = dimΩsλ, and F
s, Fu, Fn are respectively the restrictions of F on

Ωsλ,Ω
u
λ and Ω

n
λ. Furthermore, we have

Theorem 5.3.16. Let x = 0 be an isolated singular point of F (x,λ) at
λ = λ0, and U ⊂ Rn be a neighborhood of x = 0. If all the stable, unstable
and neutral sets in U are manifolds, then

dimΩsλ0 + dimΩ
u
λ0 + dimΩ

n
λ0 = n

ind(F (·,λ), 0) = (−1)k, k = dimΩsλ0 .

We now return to analyse the problem 4). Conjecture 5.3.14 is based on the
following facts. By the center manifold theorem, the bifurcation of invariant
manifolds of F (x,λ) can be reduced to that of the vector fields in Rm defined
as in (5.3.31)

F1(x,λ) = Bλx+ f(x,λ), x ∈ Rm.
By the condition (5.3.49), the neutral set of F1(x,λ0) equals to the neutral set
of F (x,λ0). If the neutral set of F1(x,λ0) has the dimension smaller than m:

dimΩnλ0 < m

then the stable and unstable sets of F1(x,λ0) satisfy

(5.3.50) dimΩsλ0 + dimΩ
u
λ0 ≥ 1

By using lemma 5.3.5, in a similar manner as used in Theorem 5.3.4 and The-
orem 5.3.10, from (5.3.50) we can derive that F1(x,λ) have the bifurcation of
invariant set at (0,λ0). Thus, we summarize to a theorem as follows

Theorem 5.3.17. Under the condition (5.3.49), if the dimension of the
neutral set of F (x,λ) at λ = λ0 is smaller than m, then the system (5.3.1)
bifurcates from (0,λ0) an invariant set.
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Thus, Conjecture 5.3.14 derectly depends on Conjecture 5.3.13 and the con-
jecture that if the neutral set of F (x,λ0) has dimΩ

n
λ0
= m(m=even), then there

is a sequence of invariant manifolds {Γn|n = 1, 2, · · ·} ⊂ Ωnλ0 of F (x,λ0) such
that Γn → {0} as n→∞.

5.3.5. Stability on bifurcation

Let Ω ⊂ Rn be an open set, O ∈ Ω, and λ ∈ R a parameter. We denote the
space of parameterized vector fields by

Ck,10 (Ω×R,Rn) = {F : Ω×R→ Rn|F (0,λ) = 0,∀λ ∈ R}
with the norm

nFnCk,1 = sup
λ∈R

sup
Ω
[
k[
p=0

|Dp
xF |+ |DλF |+ |D2

λxF |].

Obviously, if F ∈ Ck,10 (Ω × R,Rn)(k ≥ 1), then F is k-th differentiable on
x ∈ Ω and differentiable on λ ∈ R. Moreover, F can be expressed as

F (·,λ) = Aλ +G(·,λ)
where G(·,λ) and Aλ satisfy (5.3.2)-(5.3.4), and the simple real and simple com-
plex eigenvalues of Aλ are differentiable on λ(see [Ka]), which can be expanded
by

βi(λ) = αi0 + αi1λ+ o(|λ|), (1 ≤ i ≤ n).

Definition 5.3.18. Let F1, F2 ∈ Ck,10 (Ω×R,Rn),λi ∈ R be a bifurcation
point of invariant set Γiρ of Fi(x, ρ)(i = 1, 2). We say that the both bifurcation
points λ1 and λ2 have the same structure if F1 and F2 are locally topologically
equivalent at Γ1ρ1 and Γ

2
ρ2(ρ1 − λ1 = ρ2 − λ2), i.e. there are neighborhoods

Ui ⊂ Rn of Γiρi(i = 1, 2) and a homeomorphism φ : U1 → U2 such that φ takes
the orbits of F1 in U1 to orbits of F2 in U2, preserving orientation.

Definition 5.3.19. Let F ∈ Ck,10 (Ω×R,Rn),λ0 be a bifurcation point of
F (x,λ). We say that the bifurcation point λ0 is stable in C

k,1
0 (Ω × R,Rn), if

∀� > 0 sufficiently small, there is a neighborhood O ⊂ Ck,10 (Ω × R,Rn) of F
such that ∀F1 ∈ O,F1 has a bifurcation point λ1 with |λ1 − λ0| < �, where λ1
and λ2 have the same structure. If all the bifurcation points of F are stable in
Ck,10 (Ω×R,Rn), then we say that F is stable on bifurcation in Ck,10 (Ω×R,Rn),
or F is a vector field with stable bifurcation.
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Definition 5.3.20. Let F ∈ Ck,10 (Ω×R,Rn)(k ≥ 1),λ0 ∈ R be a parameter
of F .
i). λ0 is called an eigen-parameter with multiplicity m of F , if DF (0,λ0) has
the eigenvalues with zero real parts, the sum of whos multiplicities is m.
ii). λ0 is simple if either the multiplicity m = 1, or m = 2 and the two
eigenvalues passing through zero at λ0 are the conjugate imarginary number
β1(λ0) = β2(λ0) = iβ(β 9= 0).
iii). If the simple eigenvalues passing through zero in (5.3.49) satisfy

∂Reβi(λ0)

∂λ
9= 0, 1 ≤ i ≤ m (m = 1, or = 2)

then λ0 is called to be regular.

The following is a basic theorem on stable bifurcation points

Theorem 5.3.21. Let F ∈ C3,10 (Ω × R,Rn), and λ0 be a simple eigen-
parameter of F (x,λ). There exists a number b(λ0), called the bifurcation num-
ber of F at λ0, which continuously depends on the module nFnC3,1 , such that
the following assertions holds true.
i). λ0 is a stable bifurcation point of F if and only if λ0 is regular and the
bifurcation number b(λ0) 9= 0.

ii). If λ0 has multiplicity m = 1, and b(λ0) 9= 0, then F (x,λ) bifurcates an
unique branch of singular points x∗(λ), which are hyperbolic for λ 9= λ0(i.e.
the eigenvalues of DF (x∗,λ) have the non-zero real parts), and have k
-dimensional stable manifold for λ < λ0(or λ0 < λ), (k + 1)-dimensional
stable manifold for λ0 < λ(or λ < λ0), depending the manner passing
through zero of eigenvalues in (5.3.49), where k=number of the
eigenvalues of Reβj(λ0) < 0.

iii). If λ0 has multiplicity m = 2, F (x,λ) bifurcates an unique branch of
periodic orbits Γλ for λ < λ0
(or λ0 < λ) as b(λ0) > 0, and for λ0 < λ(or λ < λ0) as b(λ0) < 0, which
are hyperbolic for λ 9= λ0.

Proof. First, we consider the case that λ0 has multiplicity m = 1. Thus,
in a neighborhood of (x,λ) = (0,λ0), F (z,λ) can be expressed, in a proper
coordinate system, as

(5.3.51) F (z,λ) =

�
β1(λ) 0
0 Bλ

��
x
y

�
+

�
G1(x, y,λ)
G2(x, y,λ)

�
,

where z = (x, y), x ∈ R1WΩ, y ∈ Rn−1WΩ,G1 : Ω × R → R,G2 : Ω × R →
Rn−1 are C3 functions on x ∈ Ω, and
(5.3.52) Gi(x, y,λ) = o(|x|, |y|), (i = 1, 2)
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while, Bλ is the (n−1) order matrix having the eigenvalues {βj(λ)}|2 ≤ j ≤ n}
defined as in (5.3.49).
By the center manifold theorem, there is a function

(5.3.53) y = h(x,λ), h(0,λ) = 0, h3x(0,λ) = 0

which is C3 on x ∈ R1WΩ, and continuous on λ, such that the bifurcation of
(5.3.51) at λ0 is equivalent to that of the following equation

(5.3.54)
dx

dt
= β1(λ)x+G1(x, h(x,λ),λ)

where

β1(λ) =

 < 0 (or > 0), λ < λ0
= 0, λ = λ0
> 0 (or < 0), λ > λ0

By (5.3.52) and (5.3.53), we have the Taylor’s expansion

(5.3.55) G1(x, h(x,λ),λ) = b(λ)x
2 + c(λ)x3 + o(|x|3)

where

b(λ) =
∂2G1(0, 0,λ)

∂x2

It is clear that b(λ) continuously depends on λ and the module nFnC2 . The
number b(λ0) is the one expected by us.
In fact, when b(λ0) 9= 0, the equation (5.3.54) bifurcates an unique branch

of singular points x0(λ). Therefore, x
∗(λ) = (x0(λ), h(x0,λ)) is a bifurcated

branch of singular points of (5.3.51). We shall show that x∗(λ) are non-
degenerate for all |λ− λ0| > 0 sufficiently small. We see that

DF (x∗,λ) =
�

β1(λ) 0
0 Bλ

�
+

�
DG1(x0, h(x0,λ),λ)
DG2(x0, h(x0,λ),λ)

�

(5.3.56) =

�
β1(λ) + 2b(λ)x0 + o(|x0|) O(|x0|)
O(|x0|) Bλ +O(|x0|)

�
Hence

detDF (x∗,λ) = (β1 + 2bx0)detBλ + o(|x0|)
Because x0(λ) satisfy

β1(λ)x+ b(λ)x
2 + o(|x|2) = 0

one can deduce that

x0(λ) = − 1

b(λ)
β1(λ) + o(|β1|)
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Therefore we obtain

detDF (x∗,λ) = −β1(λ)detBλ + o(|β1|)
9= 0, for all |λ− λ0| > 0 sufficiently small,

and

(5.3.57) sign detDF (x∗,λ) =
�
sign detBλ, λ < λ0 (or λ > λ0)
−sign detBλ, λ > λ0 (or λ < λ0)

Because the eigenvalues β∗i (λ)(1 ≤ i ≤ n) of DF (x∗,λ) continuously depends
on λ, and β∗j (λ0) = βj(λ0)(2 ≤ j ≤ n), and by (5.3.49), Reβj(λ0) 9= 0, conse-
quently the derivative operator DF (x∗,λ) are hyperbolic for all |λ − λ0| > 0
sufficiently small. From (5.3.57) we get that

k1 =

�
k, as λ < λ0 (or λ > λ0)
k + 1, as λ > λ0 (or λ < λ0)

where k1=number of the eigenvalues of DF (x
∗,λ) which have the negative real

parts. Hence, by the stable manifold theorem we obtain the conclusion ii).
We are now in a position to prove the conclusion i) for m = 1. Let λ0

be regular and b(λ0) > 0 (for the case of b(λ0) < 0, the proof is the same).
By the definition of norm n · nC3,1 ,∀� > 0 there exists δ > 0 such that if
F1 ∈ C3,10 (Ω×R,Rn) and

nF1 − Fn < δ

then the eigenvalues of DF1(0,λ) satisfy that hβi ∈ C1(R), and
nhβi − βinC1 < �, ∀1 ≤ i ≤ n

Because λ0 is regular,

β1(λ) = α(λ− λ0) + o(|λ− λ0|), α 9= 0

It means that as � > 0 sufficiently small, the eigenvalues hβ1(λ) of DF1(0,λ)
has the expansion

hβ1(λ) = α1(λ− λ1) + o(|λ− λ1|), α1 9= 0

and
α1 → α, λ1 → λ0 as F1 → F in C3,1 − norm.

Hence, it follows that there is a neighborhood O ⊂ C3,10 (Ω×R,Rn) of F such
that for any F1 ∈ O,F1 has a simple and regular eigen-parameter λ1 with
|λ1 − λ0| < �, and the bifurcation number of F1 at λ1 satisfies b

∗(λ1) > 0.
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We say that a linear vector field A is hyperbolic if all the eigenvalues of A
have the non-zero real parts. The number of eigenvalues of A with negative real
parts is called the index of A. It is well known that if A and B are hyperbolic,
then A and B are topologically conjugate (therefore the flows of A and B are
topologically equivalent) if and only if they have the same index (Cf.[PM]).
Let x∗1(λ) be the bifurcated branch of singular points of F1 from (0,λ1). By

the conclusion ii), DF1(x
∗
1, ρ1) and DF (x

∗, ρ0) are hyperbolic respectively for
ρ1 9= λ1 and ρ0 9= λ0. On the other hand, as (5.3.56) we have that

(5.3.58) DF1(x
∗
1, ρ1) =

#
−hβ1(ρ1) + o(|hβ1) O(|hβ1|)
O(|hβ1|) B∗ρ1

$
where

nB∗λ −Bλn < �, � > 0 sufficiently small.

Hence, from (5.3.56) and (5.3.58) it follows that DF1(x
∗
1, ρ1) and DF (x

∗, ρ0)
with ρ1 − λ1 = ρ0 − λ0 have the same index. By the Hartman-Grobman theo-
rem we derive the sufficient conditions for m = 1 of conclusion i).

The necessary condition.
When b(λ0) = 0 and C(λ0) 9= 0 in (5.3.55), the topological structure of

bifurcation of (5.3.54) is clearly different from the case that b(λ0) 9= 0. If
b(λ0) = C(λ0) = 0, then F can be approximated by F1 and F2 in C

3,1
0 (Ω ×

R,Rn), where the bifurcation numbers of F1 are non-zero, and the numbers as
defined in (5.3.55) of F2 have b(λ2) = 0 and C(λ2) 9= 0,λ2 the eigen-parameter
of F2. Hence λ0 is not stable on bifurcation.
When λ0 is not regular, i.e. β1(λ) = o(|λ − λ0|), then F can be approxi-

mated by FN in C
3,1
0 (Ω×R,Rn), where DFN (0,λ) have the eigenvalues passing

through zero as follows

βN1 (λ) =

�
0, λ ∈ [λ0 − �N ,λ0 + �N ], �N > 0, �N → 0, N →∞
9= 0, λ∈̄[λ0 − �N ,λ0 + �N ].

Obviously, the bifurcation structure of FN is different from that of F at λ = λ0.
Thus, the conclusion i) for m = 1 is proven.

Next, we consider the case that λ0 has multiplicity m = 2.
For the sake of simplicity, let F (z,λ) be expressed as

(5.3.59) F (z,λ) =

 α(λ) −1
1 α(λ)

O Bλ

 x1
x2
y

+
 G1(x, y,λ)
G2(x, y,λ)
G3(x, y,λ)


where z = (x, y) ∈ Ω, x = (x1, x2) ∈ R2

W
Ω, y ∈ Rn−2WΩ,G1,G2 : Ω× R →

R,G3 : Ω×R→ Rn−2 are C3 functions on z ∈ Ω, and
(5.3.60) Gi(x, y,λ) = o(|x|, |y|), (i = 1, 2, 3)
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while Bλ is the (n− 2) order matrix possessing the eigenvalues {βj(λ)|3 ≤ j ≤
n} defined as in (5.3.49)
By the center manifold theorem, the bifurcation of (5.3.59) at λ0 is equiv-

alent to that of the following system

(5.3.61)

�
dx1
dt = α(λ)x1 − x2 + f1(x1, x2,λ)
dx2
dt = x1 + α(λ)x2 + f2(x1, x2,λ)

where

α(λ) =

 < 0 (or > 0), λ < λ0
= 0, λ = λ0
> 0 (or < 0) λ > λ0

and
fi(x1, x2,λ) = Gi(x1, x2, h(x1, x2,λ),λ), i = 1, 2.

The function y = h(x,λ) defined as in the center manifold theorem satisfies
the properties (5.3.53). By the Taylor expansion, from (5.3.53) and (5.3.60) we
have

fi(x,λ) =
[

2≤p+q≤3
aipqx

p
1x
q
2 +

2[
j=1

n−2[
k=1

bijkxjyk + o(|x|3)

(5.3.62) yk = hk(x1, x2,λ), h(x,λ) = {h1(x,λ), · · · , hn−2(x,λ)}

hk(x1, x2,λ) =
[
r+s=2

Ckrsx
r
1x
s
2 + o(|x|2)

where

aipq =
∂p+qGi(0, 0, 0,λ)

∂xp1∂x
q
2

, (0 ≤ p, q ≤ 3, i = 1, 2)

bijk =
∂2Gi(0, 0, 0,λ)

∂xj∂yk

Ckrs =
∂2hk(0, 0,λ)

∂xr1∂x
s
2

, (0 ≤ r, s ≤ 2)

It is clear that the coeficients aipq, b
i
jk and c

k
rs continuously depends on λ and

the module nFnC3,1 .
We adopt the polar coordinate system to discuss the equation (5.3.61). Let

x1 = r cos θ, x2 = r sin θ. Then we have

dr

dt
= cos θ

dx1
dt

+ sin θ
dx2
dt

r
dθ

dt
= cos θ

dx2
dt
− sin θdx1

dt

302



From (5.3.61) and (5.3.62) it follows that

dr

dθ
=

α(λ)r2 + r cos θf1(r cos θ, r sin θ) + r sin θf2(r cos θ, r sin θ)

r + cos θf2(r cos θ, r sin θ)− sin θf1(r cos θ, r sin θ)

(5.3.63) = [αr + u1(θ,λ)r
2 + u2(θ,λ)r

3 + o(r3)]×
×[1 + v1(θ,λ)r + v2(θ,λ)r2 + o(r2)]

= αr + (u1 + αv1)r
2 + (u1v1 + u2 + αv2)r

3 + o(r3)

where ui, vi(i = 1, 2) are the homogeneous functions of degree i+2 on cos θ and
sin θ, and continuously depend on the coeficients aipq, b

i
jk and c

k
rs in (5.3.62). It

is readily to check that

(5.3.64)

] 2π

0

[u1(θ,λ) + α(λ)v1(θ,λ)]dθ = 0

Denote by

b(λ) =

] 2π

0

[u1(θ,λ) · v1(θ,λ) + u2(θ,λ) + α(λ)v2(θ,λ)]dθ

The number b(λ0) is defined as the bifurcation number of F (z,λ) at λ0. We
divide into a few steps to prove the conclusions i) and iii) for m = 2.

Step 1. F (z,λ) bifurcates an unique branch of periodic orbits Γλ for λ < λ0
(or λ > λ0) as b(λ0) > 0, and for λ0 < λ(or λ < λ0) as b(λ0) < 0, depending
the manner that α(λ) passes through zero.
This claim above is well known. But, for the sake of completion, here we

still give a proof. It suffices to only prove the case of b(λ0) > 0. Let r(θ,λ, a)
be the solution of (5.3.63) with the initial value r(0,λ, a) = a. We know, by
the ODE theory, that r(θ,λ, a) is third differentiable on a ≥ 0. Then r(θ,λ, a)
can be expressed near a = 0 as

(5.3.65) r(θ,λ, a) = a+ r0(θ,λ)O(a
2)

In the case without confusion, we denote r(θ,λ, a) by r(θ, a).
On the other hand, by (5.3.63) we get

(5.3.66)
1

r2
dr

dθ
=
1

r
α(λ) + (u1 + αv1) + (u1v1 + u2 + αv2)r + o(r)

Inserting (5.3.65) into the right side of (5.3.66), and then integrating it, by
(5.3.64) and r(0, a) = a, we obtain that

(5.3.67)
r(2π, a)− r(0, a)

r(2π, a)
= c(a,λ)α(λ) + b(λ)a2 + o(a2)
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where �
c(a,λ) =

U 2π
0
[1 + o(a)r0(θ,λ)]dθ

c(0,λ) = 2π

It is easy to see that every positive solution a > 0 of the following algebraic
equation is corresponding to a periodic orbit through the point (x1, x2) = (a, 0)
of (5.3.61):

(5.3.68) c(a,λ)α(λ) + b(λ)a2 + o(a2) = 0

Obviously, when b(λ0) > 0, the equation (5.3.68) uniquely bifurcates from
(a,λ) = (0,λ0) a branch of positive solutions a(λ) for λ < λ0, or λ0 < λ, de-
pending on the signs of α(λ), and there is no bifurcated branch for λ0 < λ(or
λ < λ0).

Step 2. The bifurcated periodic orbits Γλ are hyperbolic
For convenience, here we shall introduce the concepts of the poincare maps

and hyperbolic periodic orbits, which can be found in some textbooks on the
dynamical systems, e.g. see [PM].
Let γ be a periodic orbit of a vector field F, x0 ∈ γ a point. Let

S
be a

section transversal to F through the point x0.
The orbit through x0 returns to intersect

S
at time T > 0, where T is the

period of γ. By the continuity of the flow of F , there exists a neighborhhod
U ⊂S of x0, for each point x ∈ U , the orbit through x returns to intersect

S
at some time t > 0. Thus, we can define a map P : U →S

as that for every
point x ∈ U,P (x) is the first point where the orbit of x returns to intersectS
. This map P is called the Poincare map associated the periodic orbit γ (see

Fig. 5.13).

Fig 5.13.

The Poincare map P : U → P (U) ⊂ S is a homeomorphism, and each fixed
point of P associates a periodic orbit of F .
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We say that γ is a hyperbolic periodic orbit of F , if x0 is a hyperbolic fixed
point of the Poincare map P : U ⊂ S → S

, i.e. DPx0 has no eigenvalues of
modulus 1.
Without loss generality, we assume the center manifold Mλ of the vector

field (5.3.59) is the x-plane, namely

y = h(x,λ) ≡ 0,∀|λ− λ0| ≥ 0 sufficiently small and x ∈ R2.

In fact, in the transformation of coordinate system as� hx = x, hx = (hx1, hx2), x = (x1, x2)hy = y − h(x,λ),
the vector field (5.3.59) is transformed into the below form

hF (hx, hy,λ) =
 α(λ) −1
1 α(λ) 0

0 Bλ

 hx1hx2hy
+

 H1(hx, hy,λ)
H2(hx, hy,λ)
H3(hx, hy,λ)


where

Hi(hx, hy,λ) = Gi(hx, hy + h(hx,λ),λ), i = 1, 2

H3(hx, hy,λ) = Bλh(hx,λ)−∇h · dhx
dt
+G3(hx, hy + h,λ)

dhx
dt
=

�
α −1
1 α

� hx+� H1
H2

�
Therefore

Hi(hx, hy,λ) = o(|hx|, |hy|), 1 ≤ i ≤ 3.
It is clear that the both vector fields hF and F are topologically conjugate, and
the hx-plane is a center manifold of hF .

Fig. 5.14
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Now we give the Poincare map associated the bifurcated periodic orbits
Γλ of F . By the assumption, the x-pland y = 0 is a center manifold of F ,
then Γλ ⊂ R2 the x-plane. Let Γλ be through the point (a(λ), 0) ∈ R2 with
0 < a(λ) < ρ(ρ sufficiently small). Denote by Dρ = {y ∈ Rn−2|nyn < ρ}. We
take the section transversal to F through the point (a(λ), 0) as (see Fig. 5.14)

Σ = {(x1, y) ∈ Rn−1|0 < x1 < ρ, y ∈ Dρ ⊂ Rn−2}
= (0, ρ)×Dρ

The Poincare map P :
S→S

is given by

P (z) = {p1(z),Φ(tz, z)}, z = (x1, y) ∈ Σ = (0, ρ)×Dρ

where p1 :
S→ (0, ρ),Φ(tz, ·) :

S→ Dρ, and

(5.3.69) Φ(t, z) = etBλz +

] t

0

e(t−τ)BλG3(x,Φ)dτ

which is the solution of the equation�
dy
dt = Bλy +G3(x, y,λ)
y(0) = z

and tz is the time that the orbit through z returns to intersect
S
. Because

the x-plane is invariant for the vector field (5.3.59), therefore the line segment
(0, ρ)× {0} ⊂S is invariant for the Poincare map P (z). Thus, we have

(5.3.70) Φ(tz, z)|z=(x1,0) = 0

(5.3.71) p1(x1, 0) = r(2π, x1)

= by (5.3.67)

=
x1

1− c(x1,λ)α(λ)− bx22 + o(x21)
= x1 + c(x1,λ)αx1 + bx

3
1 + o(|α|, |x1|3)

For the fixed point (a(λ), 0) ∈S of p(z), from (5.3.69)-(5.3.71) we derive that

DP (a, 0) =

#
∂p1(a,0)
∂x1

∗
∂Φ(tz,z)
∂x1

|z=(a,0) ∂Φ(tz,z)
∂y |z=(a,0)

$

=

�
1 + cα+ 3ba2 + o(|α|, |a|2) ∗
0 etzBλ |z=(a,0)

�
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Since tz|z=(a,0) = 1, and a(λ) is the positive solution of (5.3.68), we have that

a2(λ) = −1
b
c · α+ o(|α|) = −2π

b
α+ o(|α|)

Hence the eigenvalues of DP (a, 0) are as follow

1− 4πα(λ) + o(|α|), eβj(λ), 3 ≤ j ≤ n.

Because Reβj(λ0) 9= 0(3 ≤ j ≤ n), we can see that DP (a, 0) is hyperbolic for
all |λ− λ0| > 0 sufficiently small. Thus, the conclusion iii) is verified.

Step 3. Finally, we prove the conclusion i) for m = 2.
We only need to prove the sufficientness because the necessity is obvious.

Let b(λ0) > 0 and λ0 be regular, i.e.

α(λ) = σ(λ− λ0) + o(|λ− λ0|), σ 9= 0

When F1 ∈ C3,10 (Ω × R,Rn) and nF1 − FnC3,1 sufficiently small, there exists
an eigen-parameter λ1 of F1, which is close to λ0, and in a neighborhood of λ1,

DF1(0,λ) =

 α1(λ) −β
β α1(λ)

0 B∗λ

 , β * 1

where
α1(λ) = σ1(λ− λ1) + o(|λ− λ1|), σ1 * σ

and B∗λ is close to Bλ. Meanwhile, the bifurcation number b
∗(λ) of F1 is also

close to b(λ0), therefore b
∗(λ1) > 0. By the steps 1-2 above, F1 bifurcates an

unique branch of perioidic orbits Γ1λ for λ < λ1 (if σ1 < 0, then λ1 < λ), and
which are hyperbolic for all |λ−λ1| > 0 sufficiently small. Thus the bifurcated
branchs Γ1λ and Γλ are on the same side of their bifurcation points.
It is knwon that the hyperbolic periodic orbits of vector fields in Cr(Ω, Rn)(r ≥

1) are locally structurally stable. Because the parameterized vector fields
F ∈ C3,10 (Ω × R,Rn) are continuous on λ in the C3-norm, in the bifur-
cated branch of hyperbolic periodic orbits Γλ of F , any two F (λ1, ·) and
F (λ2, ·) are locally topologically equivalent at Γλ1 and Γλ2 . On the other
hand, when F1 is close to F in C3,10 (Ω × R,Rn), for some fixed parameter
ρ, F1(ρ, ·) is close to F (ρ, ·) in C3(Ω, Rn). Therefore there exists a neighbor-
hood U ⊂ C3,10 (Ω× R,Rn) of F such that for any F1 ∈ U,F1(ρ, ·) and F (ρ, ·)
are locally topologically equivalent at Γ1ρ and Γρ, which implies that the bi-
furcation point λ1 and λ0 of F1 and F have the same structure. The proof of
Theorem 5.3.1 is complete.
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It is not difficult to obtain directly from Theorem 5.3.21 the following global
stability theorem on bifurcation

Theorem 5.3.22. A parameterized vector field F ∈ C3,10 (Ω × R,Rn) is
stable on bifurcation, if and only if
1). all the eigen-parameters of F are simple and regular;
2). each of the bifurcation numbers of F at eigen-parameters is nonzero.
Moreover, the set of all vector fields with stable bifurcation is open and dense
in C3,10 (Ω×R,Rn).

Obviously, if all the eigen-parameters of F are regular, then the eigen-
parameters must be discrete.

Remark 5.3.23. It is worth to point that the order k = 3 of Ck,10 (Ω ×
R,Rn) in Theorem 5.3.22 can not be reduced anymore, because in C1,10 (Ω ×
R,Rn) there are no vector fields with stable bifurcation, and in C2,10 (Ω×R,Rn),
the set of all vector fields with stable bifurcation in C2,10 (Ω×R,Rn) are those
whose eigent-parameters regular and simple with multiplicity m = 1.

5.4. Bifurcation of Invariant Sets of Infinite
Dimensional Fields

In this section, we shall generalize the dynamic bifurcation theory of invari-
ant sets of finite dimensional systems in Section 5.3 to the infinite dimensional
fields in Hilbert spaces. These generalizations can be applied to the bifurca-
tion problems of various partial differential equations, for instance, the Navier-
Stokes equations, dissipative wave equations and reaction-diffusion equations,
ets.

5.4.1. Locally invariant manifolds

Let H,H1 be the Hilbert spaces, and H1 /→ H be an dense inclusion em-
bedding. We consider the nonlinear evolution equations given by

(5.4.1)

�
du
dt = Lλu+G(u,λ), u ∈ H1, λ ∈ R
u(0) = φ

where G(·,λ) : H1 → H are the parameterized Cr bounded operators (r ≥ 1)
continuously depending on the parameter λ ∈ R, and
(5.4.2) G(u,λ) = o(nunH1), ∀λ ∈ R
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and Lλ : H1 → H are the parameterized linear completely continuous fields
continuously depending on λ ∈ R, which satisfy

(5.4.3)

 Lλ = −A+Bλ

A : H1 → H a linear homeomorphism
Bλ : H1 → H the parameterized linear compact operators

In this subsection, we give the generalizations of the center manifold the-
orems of finite dimensional systems to the infinite dimensional system (5.4.1),
although these generalizations have been essentially known.
We assume that the operators Lλ are generators of strongly continous semi-

groups of bounded linear operators, and the spaces H1 and H can be decom-
posed into

(5.4.4)

�
H1 = E

λ
1

O
Eλ
2 , dimEλ

1 <∞
H = hEλ

1

O hEλ
2 , hEλ

1 = E
λ
1 , hEλ

2 = closure of Eλ
2 in H

where Eλ
1 and E

λ
2 are the invariant subspaces of Lλ, i.e. Lλ are decomposed

into Lλ = Lλ1
OLλ2 , and

(5.4.5)

+
Lλ1 = Lλ|Eλ1 : Eλ

1 → hEλ
1

Lλ2 = Lλ|Eλ2 : Eλ
2 → hEλ

2

in where the eigenvalues of Lλ1 and Lλ2 respectively possese the non-negative real
parts(this condition is not necessarily required in the center manifold theorem)
and the negative real parts.
Thus, the equations (5.4.1) can be written as to read

(5.4.6)

�
dx
dt = Lλ1x+G1(x, y,λ)
dy
dt = Lλ2y +G2(x, y,λ)

where u = x+ y ∈ H1, x ∈ Eλ
1 , y ∈ Eλ

2 , and�
Gi(x, y,λ) = PiG(u,λ) (i = 1, 2)

PiH → hEi are the projective operators
Let Sλ(t) : E

λ
2 → hEλ

2 be the strongly continuous semigroups generated by
Lλ2 . We have the following theorem on the locally invariant manifolds for the
system (5.4.1).

Theorem 5.4.1. Let G(u,λ) be Cr(r ≥ 1) on u ∈ H1. Under the hypothe-
ses (5.4.2)-(5.4.5), if

(5.4.7) nSλ(t)n ≤ Kλe
−αλt, for some constants Kλ,αλ > 0
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then there exists a number δ > 0 such that as |λ − λ0| < δ, there are neigh-
borhood Ωλ ⊂ Eλ

1 of x = 0 and C
r function h(·,λ) : Ωλ → Eλ

1 , continuously
depending on λ, which satisfy
i). h(0,λ) = 0,Dxh(0,λ) = 0
ii). the sets

Mλ = {(x, y) ∈ H1| x ∈ Ωλ, y = h(x,λ) ∈ Eλ
2 }

called the local center manifolds, are locally invariant for the system (5.4.1),
i.e. ∀φ ∈Mλ,∃tφ > 0 such that

uλ(t,φ) ∈Mλ, ∀0 ≤ t < tφ
where uλ(t,φ) is the solution of (5.4.1);

iii). if (xλ(t), yλ(t)) is a solution of (5.4.6), then there is a βλ > 0 and kλ > 0
with kλ depending on (xλ(0), yλ(0)) such that

nyλ(t)− h(xλ(t),λ)nH ≤ kλe−βλt

Proof. The ideas employed here follows the finite dimensional cases (Cf.[CH]).
For the sake of simplicity, in all satuation without confusion, we drop the λ in
the functions, for example denote Gi(x, y) = Gi(x, y,λ), etc. Let � > 0, and
ρ� : E1 → [0, 1] be C∞ function with

ρ�(x) =

�
1, nxn < �
0, nxn > 2�

We denote

Cr(E1, E2) = {h : E1 → E2| h(0) = 0, h is r − th defferentiable}

We only proceed for the case r = 1, and the proof of r-th differentiable of h(x)
is omitted here. For each h ∈ C1(E1, E2), there is an unique solution x(t, h,φ)
of the inital value problem

(5.4.8)

�
dx
dt = L1x+ ρ�(x)G1(x, h(x))
x(0) = φ,φ ∈ E1

and x(t, h,φ) is differentiable on h and φ. We define a mapping T : [0,∞) ×
R× C1(E1, E2)→ C1(E1, E2) by�

T (�,λ, h) =
U 0
−∞ S(−τ)ρ�(x(τ, h, ·))G2(x(τ, h, ·), h(x(τ, h, ·)))dτ

T (0,λ, h) = 0
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If this definition makes sense and T has a fixed point h ∈ C1(E1, E2)

h(·) =
] 0

−∞
S(−τ)ρ�(x(τ, h, ·))G2(x(τ, h, ·), h(x(τ, h, ·)))dτ

then it is clear that for the solution x(t, h,φ) of (5.4.8), simply denoted by
x(t,φ), the function

y(t, h(φ)) = h(x(t,φ))

=

] 0

−∞
s(−τ)ρ�(x(τ, h, x(t,φ)))G2(x(τ, h, x(t,φ)), h)dτ

=

] 0

−∞
s(−τ)ρ�(x(τ + t, h,φ))G2(x(t+ τ, h,φ), h)dτ

=

] t

−∞
s(t− s)ρ�(x(s,φ))G2(x(s,φ), h(x(s,φ)))dτ

satisfies the equation�
dy
dt = L2y + ρ�(x(t,φ))G2(x(t,φ), y)
y(0) = h(φ)

Thus, {x(t,φ), h(x(t,φ))} is a solution of the below problem
dx
dt = L1x+ ρ�(x)G1(x, y)
dy
dt = L2y + ρ�(x)G2(x, y)
x(0) = φ, y(0) = h(φ)

which means that the set M = {(x, y) ∈ H1|x ∈ B�, y = h(x)} is a locally
invariant manifold of (5.4.1), where B� = {x ∈ E1|nxnH1 < �}.
In the following we divide a few steps to prove this theorem.

Step 1. The mapping T makes sense.
Because G2(x, y), h(x) are C

1 on their arguments, and the solution x(t, h,φ)
of (5.4.8) is C1 on φ ∈ E1, if the integral of T exists, then T (�,λ, h)(φ) is differ-
entiable on φ ∈ H1. On the other hand, by (5.4.2) and h(0) = 0, x(t, h, 0) = 0,
we have that T (�,λ, h)(0) = 0. Hence, we only need to show that the integral
of T makes sense, namely, the following limit exists
(5.4.9)

lim
t→∞

] t

0

s(τ)ρ�(x(−τ, h,φ))G2(x(−τ, h,φ), h(x(−τ, h,φ)))dτ, ∀φ ∈ E1

By the theory of semigroups of linear operators, we know that for any differ-
entiable curve f ∈ C1([0,∞),H) and a strongly continuous semigroup T (t) :
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H → H generated by L : H1 → H, which is invertible, we have] t2

t1

T (τ)f(τ)dτ ∈ H1, ∀t2 > t1 ≥ 0

and

n
] t2

t1

T (τ)f(τ)dτnH1
= nL

] t2

t1

T (τ)f(τ)dτnH

= nT (t2)f(t2)− T (t1)f(t1) +
] t2

t1

T (τ)
df

dt
(τ)dτnH

Thus we obtain

n
] t2

t1

s(τ)ρ�G2dτnH1
≤ ns(t2)ρ�G2nH + ns(t1)ρ�G2nH

+

] t2

t1

ns(τ)n · n d
dt
(ρ�G2)nHdτ

By (5.4.7), from the boundedness of nρ�G2nH and n ddt(ρ�G2)nH we can derive
that

lim
t1→∞t2→∞

n
] t2

t1

s(τ)ρ�(x(−τ, h,φ))G2(x(−τ, h,φ), h)dτnH1
= 0

∀φ ∈ E1. It implies that the limit (5.4.9) exists.

Step 2. The mapping T has a fixed point.
Obviously, T (�,λ, h) is continuous on the arguments � > 0 and λ ∈ R. We

shall prove that

lim
�→0λ→λ0

T (�,λ, h) = 0 in C1(E1, E2)

It suffices to show that

lim
�→0λ→λ0

nDφT (�,λ, h)(φ)n = 0, ∀h ∈ C1(E1, E2) and φ ∈ E1

For a given h ∈ C1(E1, E2), we see that

DφT (�,λ, h) =

] ∞
0

s(τ)[Dxρ� ·DφxG2(xh, h)+

+ρ�DxG2(xh, h)Dφx+ ρ�DyG2(xh, h) ·Dxh ·Dφx]dτ
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where xh = xh(−t,φ) satisfies

(5.4.11)

�
dx
dt = −L1x− ρ�(x)G1(x, h)
x(0) = φ

and z = Dφx(−t) satisfies

(5.4.12)


dx
dt = −L1z − ρ�(xh)DxG1(xh, h)z −Dxρ�(xh)G1(xh, h)z
−ρ�(xh)DyG1(xh, h) ·Dxh · z
z(0) = 1

Due to the action of the cut-off function ρ�, by (5.4.2), for any φ ∈ E1 we can
get the estimates

nGi(xh, h)n ≤ c(�) · �, ∀xh ∈ B2� (i = 1, 2)

nDxG2(xh, h)n+ nDyG2(xh, h)n ≤ c(�), ∀xh ∈ B2�
where c(�)→ 0 as �→ 0. By the definition, we have

nDxρ�(xh)n ≤ c · �−1, c > 0 a constant.

On the other hand, because −Lλ1 has no eigenvalues with the positive real parts
at λ = λ0, by (5.4.2), from (5.4.11) and (5.4.12) we can obtain the estimates

nxh(−t,φ)n ≤ cetθ1(�,λ), θ1(�,λ)→ 0 as �→ 0 and λ→ λ0

nDφx(−t)n ≤ cetθ2(�,λ), θ2(�,λ)→ 0 as �→ 0 and λ→ λ0

By (5.4.7), from the estimates above the equality (5.4.10) follows.
We now consider the mapping

K(�,λ, ·) = id− T (�,λ, ·) : C1(E1, E2)→ C1(E1, E2)

By (5.4.10) we see that K(�,λ, h) is continuous on (�,λ) in a neighborhood of
(�,λ, h) = (0,λ0, 0). We shall use the implicity function theorem to prove this
claim. To this end, we need to show that T is differentiable on h at (0,λ0, 0).
We see that

DhT (�,λ0, 0) =

] ∞
0

S(τ)[Dxρ�(hx)Dhx(−τ)G2(hx, 0)+
+ρ�(hx)DxG2(hx, 0)Dhx+ ρ�(hx)DyG2(hx, 0)]dτ

where hx = hx(−t,φ) satisfies+
dhx
dt = −L1hx− ρ�(hx)G1(hx, 0)hx(0) = φ

313



and Z = Dhx(−t) satisfies�
dz
dt = −L1z − ρ�DxG1(hx, 0)z −Dxρ�G1(hx, 0)z − ρ�DyG1(hx, 0)
z(0) = 0

In the same fashion as above we can derive that the derivative DhT (�,λ0, 0)
exists, and

lim
�→0

DhT (�,λ0, 0) = 0

Hence we obtain

DhK(0,λ0, 0) = id−DhT (0,λ0, 0) = id

By the implicity function theorem we get that there is a number δ > 0 such
that as |λ− λ0| < δ, there exists �λ > 0 and hλ ∈ Cr(E1, E2) which satisfy

hλ = T (�λ,λ, hλ)

moreover, hλ continuously depends on λ. By (5.4.2), it is easy to see that
Dxh(0) = 0. Thus the conclusion i) and ii) are verified.

Step 3. Finally we show the conclusion iii).
Denote by

C1(R+ ×H1, E2) = {J(t, x, y) ∈ E2| t ∈ R+, x ∈ E1, y ∈ E2, J(t, 0, 0) = 0}

We define a mapping

T : R+ × C1(R+ ×H1, E2)→ C1(R+ ×H1, E2)

as that, ∀ hJ ∈ C1(R+ ×H1, E2) and � ∈ H+

T (�, hJ) = ] t

0

S(t− τ)ρ� ·G2dτ

where ρ� : H1 → [0, 1] is the C∞ cut-off function defined on H1, and

ρ� = ρ�(x(τ − t, x0, y0, J), J(τ, x(τ − t, x0, y0, J), y0))
G2 = G2(x(τ − t, x0, y0, J), J(τ, x(τ − t, x0, y0, J), y0))
J(t, x0, y0) = S(t)y0 + hJ(t, x0, y0)

and x(t, x0, y0, J) is the unique solution of the problem�
dx
dt = L1x+ ρ�(x, J(t, x, y0))G1(x, J(t, x, y0))
x(0) = x0
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Consider the mapping
K(�, hJ) = hJ − T (�, hJ)

Obviously, K(0, 0) = 0. In the same manner as above, we can get that

DJK(0, 0) = id−DJT (0, 0) = id

Therefore T has a fixed point hJ as � > 0 sufficiently small, namely for J =hJ + S(t)y0, we have
(5.4.13) J(t, x0, y0) = S(t)y0 +

] t

0

S(t− τ)ρ� ·G2dτ

It is clear that if (x(t), y(t)) is a solution of the equatin

(5.4.14)

�
dx
dt = L1x+ ρ�(x, y)G1(x, y)
dy
dt = L2y + ρ�(x, y)G2(x, y)

then

(5.4.15) y(t) = J(t, x(t), y(0))

From (5.4.2)(5.4.7) and (5.4.13) we can deduce that for any x ∈ E1, y1, y2 ∈ E2
with nxn, ny1n and ny2n sufficiently small, there exist K,β > 0 such that

(5.4.16) nJ(t, x, y1)− J(t, x, y2)nH ≤ Ke−βt

Let {x(t, ξ, η), y(t, ξ, η)} denote the solution of (5.4.14) with x(0) = ξ, y(0) =
η. For {x(t), y(t)} = {x(t, x0, y0), y(t, x0, y0)}, nx0nH1

+ ny0nH1
< �, and any

t0 ≥ 0 we define
ξ1 = x(t0, x0, y0), η1 = h(ξ1)

Let M be the center manifold. For (ξ1, η1) ∈M , there exists (ξ0, η0) ∈M such
that

x(t0, ξ0, η0) = ξ1, y(t0, ξ0, η0) = η1

Hence, by (5.4.15)
y(t0, x0, y0) = J(t0, ξ1, y0)

y(t0, ξ0, η0) = J(t0, x(t0, ξ0, η0), η0)

= J(t0, ξ1, η0)

= by the invariance of center manifold M

= h(x(t0, ξ0, η0))
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By (5.4.16) we get

ny(t0)− y(t0, ξ0, η0)nH = ny(t0)− h(x(t0))nH
≤ Ke−βt0 , for t0 ≥ 0

The proof is complete.

Now, we consider a class of special linear completly continuous fields Lλ =
−A + Bλ in (5.4.1), which are the generators of the analytic semigroups.
Suppose that H1 /→ H is compact, and there exist real eigenvalue sequence
{ρK} ⊂ R and eigenvector sequence {φk} ⊂ H1 of A, with

(5.4.17)

�
Aφk = ρkφk
0 < ρ1 ≤ ρ2 ≤ · · · ; ρk → +∞(k→∞)

such that {φk} is a common orthogonal base of H1 and H. This condition
means that A is symmetric. As defined in Subsection 3.1.3, we can define the
Hilbert spaces as follows
(5.4.18)�

Hα = {x ∈ H| x =
S∞
i=1 xiφi,

S∞
i=1 ρ

2α
i x

2
i <∞}, 0 ≤ α <∞

< x, y >Hα
=< Aαx,Aαy >H=

S∞
k=1 ρ

2α
k xkyk

and Hβ /→ Hα(H0 = H) is compact ∀0 ≤ α < β. We also assume that there is
a constant 0 < θ < 1, such that

(5.4.19) Bλ : Hθ → H bounded.

Theorem 5.4.2. Let G(u,λ) be Cr(r ≥ 1) on u ∈ H1. Under the condi-
tions (5.4.17) and (5.4.19), for the system (5.4.1) the conclusions of Theorem
5.4.1 are valid.

Proof. By Theorem 3.1.4, the eigenvalues of Lλ with nonnegative real
parts are finite. Hence the conditions (5.4.4)-(5.4.6) are valid.
On the other hand, by Theorem 3.1.6, the semigroups Tλ(t) generated

by Lλ are analytic. Hence the semigroups Sλ(t) : hE2 → hE2 generated by
Lλ2 : E2 → hE2 are also analytic. Because the operators Lλ2 have no the eigen-
values with real parts ≥ 0, thus we obtain the condition (5.4.7). By Theorem
5.4.1, this theorem is proven.

If we only consider the existence of the local invariant manifold, then the
condition that the eigenvalues of the operators Lλ1 and Lλ2 in (5.4.5) respectively
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have the nonnegative real parts and negative real parts can be relaxed as follows

(5.4.5)3
+
Lλ1 = Lλ|Eλ1 : Eλ

1 → hEλ
1

Lλ2 = Lλ|Eλ2 : Eλ
2 → hEλ

2

in where Lλ2 has a finite number of eigenvalues possessing positive real parts,
and Eλ

2 , eEλ
2 ,Lλ2 can be decomposed into

Lλ2 = Lλ21
P

Lλ22, Eλ
2 = E

λ
21

P
Eλ
22, hEλ

2 = hEλ
21

P hEλ
22

Lλ2i : Eλ
2i → hEλ

2i (i = 1, 2)

such that dim Eλ
21 < ∞, and Lλ22 has no eigenvalues possessing positive real

parts.
Thus, Theorem 5.4.1 can be rewritten as follows.

Theorem 5.4.1(b): Under the conditions (5.4.2)-(5.4.4) and (5.4.5)3, if the
operator Lλ22 has the semigroup Sλ(t) satisfying (5.4.7), then the conclusions
i) and ii) in Theorem 5.4.1 still hold true.

5.4.2. Equations of the first order in time

We consider the bifurcation of invariant sets of the following nonlinear evo-
lution equations

(5.4.20)

�
du
dt = Lλu+G(u,λ)
u(0) = φ

where G(u,λ) satisfy (5.4.2) and Lλ = −A + Bλ satisfy (5.4.3),(5.4.17) and
(5.4.19). Denote the eigenvalues (counting multiplicities) of Lλ by

β1(λ),β2(λ), · · · ; βk(λ) ∈ C the complex space.
Suppose that

(5.4.21)

 Reβi(λ) =

 < 0, λ < λ0
= 0, λ = λ0
> 0, λ > λ0

(1 ≤ i ≤ m)

Reβj(λ0) < 0,∀m+ 1 ≤ j
As in Section 5.3, for the system (5.4.20), we have the following attractor bi-
furcation theorems.

Theorem 5.4.3. Let m = 1 in (5.4.21), and e0, e
∗
0 ∈ H1 be respectively

the eigenvectors of Lλ0 and L
∗
λ0
corresponding to β1(λ0) = 0. If for given
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u0 ∈ H1(u0 9= 0) and β ∈ R, nG(βu0,λ0)nH ∼ βk(as β → 0) for some k > 1,
and

(5.4.22) < G(xe0,λ0), e
∗
0 >H= α|x|k−1x+ o(|x|k), α < 0

then there exists an neighborhhod U ⊂ H1 of u = 0, such that as λ > λ0 the
system (5.4.20) bifurcates from u = 0 exactly two equilibrum points uλ1 and
uλ2 ∈ U , and the open set U is decomposed into two open sets Uλ

1 and U
λ
2 ,

Ūλ = Ūλ
1 + Ū

λ
2 , Uλ

1

_
Uλ
2 = φ, and 0 ∈ Ūλ

1

_
Ūλ
2 .

with uλi ∈ Uλ
i (i = 1, 2), such that

lim
t→∞ nuλ(t,φ)nH = u

λ
i , as φ ∈ Uλ

i (i = 1, 2)

where uλ(t,φ) are the solutions of (5.4.20).

Proof. Let L∗λ be the conjugate operator of Lλ, and eλ and e
∗
λ ∈ H1 respec-

tively the eigenvectors of Lλ and L
∗
λ corresponding to β1(λ)(e0 = eλ0 , e

∗
0 = e

∗
λ0
).

We know that the system (5.4.20) can be decomposed into�
dx
dt = β1(λ)x+ < G(u,λ), e

∗
λ >h,

dy
dt = Lλy + P2G(u,λ)

where
H1 = E

λ
1

P
Eλ
2

Eλ
1 = span{eλ}, Eλ

2 = {y ∈ H1| < y, e∗λ >= 0}
and u = xeλ + y, x ∈ R1, y ∈ Eλ

2 , P2 : H → hEλ
2 the projective, Lλ : Eλ

2 → hEλ
2

the linear operator possessing the eigenvalues βj(λ)(2 ≤ j). Let hλ : (λ0 −
δ,λ0 + δ)→ Eλ

2 be the function of center manifold, δ > 0. By Theorem 5.4.2,
it suffices to only consider the bifurcation equation of dimension one

dx

dt
= β1(λ)x+ < G(xeλ + h(x,λ)), e

∗
λ >H .

At λ = λ0 and u = xe0, we have the Taylor expansion

< G(xe0 + h(x)), e
∗
0 >H=< G(xe0), e

∗
0 >H +

+
r[
p=1

< DpG(xe0)h
p(x), e∗0 >H +o(|h|r)

Because G(xe0) ∼ xpDpG(xe0) as x → 0, by (5.4.22) and h(x) = o(|x|), we
have

< G(xe0 + h(x)), e
∗
0 >H= α|x|k−1x+ o(|x|k),α < 0.
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The remander proof is the same as that of Theorem 5.3.1. This proof is com-
plete.

Theorem 5.4.4. Under the condition (5.4.21), if u = 0 is asymptotically
stable for (5.4.20) at λ = λ0, then the following assertions hold true for λ−λ0 >
0 sufficiently small.
i). The system (5.4.20) bifurcates an attractor

S
λ with m−1 ≤ dim

S
λ ≤ m,

which is connected as m > 1.
ii).

S
λ is a limit of a family of m-manifolds Mτ (0 ≤ τ <∞) with boundary,

which have the homotopy type of m-annulus:
Σλ =

W
τ≥0Mτ , Mτ2 ⊂Mτ1 as τ2 ≥ τ1.

iii) If
S

λ is a finite simplicial complex, then
S

λ is a deformation retract of
am-manifold with boundary having the homotopy type ofm-annulus, henceS

λ has the homotopy type of S
m−1.

iv). If the mapping G(·,λ) : H1 → H are compact, and the equilibrum points
of (5.4.20) in

S
λ are finite, then we have the index formula[

ui∈
S

λ

ind[−(Lλ +G(·,λ)), ui] =
�
2, m = odd
0, m = even

This theorem can be directly obtained from Theorem 5.4.2 and Theorem
5.3.4. For the more general cases, we have the following results.

Theorem 5.4.5. Under the condition (5.4.21), if u = 0 is unstable for
(5.4.20) at λ = λ0, then (5.4.20) must bifurcate from (0,λ0) an invariant setS

λ with 0 ≤ dim
S

λ ≤ m.

We now replace the condition (5.4.21) by

(5.4.23)

 Reβi(λ) =

 < 0 (or > 0), λ < λ0
= 0, λ = λ0
> 0 (or < 0), λ > λ0

(1 ≤ i ≤ m)

Reβj(λ0) 9= 0,∀m+ 1 ≤ j
Then we have

Theorem 5.4.6. Let m = 2 in (5.4.23). If the system (5.4.20) has no bifur-
cation of the equilibrum points from (0,λ0), then it must bifurcate a periodic
orbit.

Remark 5.4.7. It is interesting to know whether the following conclusion
is valid or not:
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Under the condition (5.4.23), the system (5.4.20) must bifurcate from (0,λ0)
a k-dimensional invariant manifold with 0 ≤ k ≤ m− 1.

Remark 5.4.8. If the conditions (5.4.21) and (5.4.23) are relaxed as to
read

Reβi(λ) =

�
< 0, λ < λ0
= 0, λ = λ0

(1 ≤ i ≤ N)
Reβk(λ) > 0,λ > λ0 for 1 ≤ k ≤ m
Reβl(λ) < 0,λ > λ0 for m+ 1 ≤ l ≤ N
Reβj(λ0) < 0 (or 9= 0),∀N + 1 ≤ j

then the theorems above still hold true.

5.4.3. Equations of the second order in time

This subsection is devoted to the attractor bifurcation for a class of abstract
nonlinear evolution equations of the second order in time with some damping
terms. We first consider the system given by

(5.4.24)

�
d2u
dt2 + 2α

du
dt = Lλu+G(u,λ), α > 0

u(0) = φ, ut(0) = ψ

We always assume that the operators G and Lλ = −A + Bλ satisfy the
conditions (5.4.2)(5.4.3) and (5.4.17).
For the system (5.4.24), when the operators Bλ are symmetric for all λ ∈ R,

namely

(5.4.25) < Bλu, v >H=< u,Bλv >H , ∀u, v ∈ H1
then, by Theorem 3.1.4, the operators Lλ, which are also symmetric, have the
complete real eigenvalues

β1(λ) ≥ β2(λ) ≥ · · · ; βk(λ)→ −∞(k →∞)

and the eigenvector sequences {ek(λ)} ⊂ H1 consist of the orthogonal base of
H.

Theorem 5.4.9. Let the hypotheses (5.4.21) and (5.4.25) hold, and m = 1
in (5.4.21). If for give u0 ∈ H1(u0 9= 0) and β ∈ R, nG(βu0,λ0)nH ∼ βk(as
β → 0) for some k > 1, and

< G(xe1,λ0), e1 >H= −σ|x|k−1x+ o(|x|k, ),σ > 0
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where e1 = e1(λ0), then there exists an open set U ⊂ H1×H 1
2
, (0, 0) ∈ U , such

that when λ > λ0 the system (5.4.24) bifurcates from (u, ut) = (0, 0) exactly
two equilibrum points (uλ1 , 0) and (u

λ
2 , 0) ∈ U , and U is decomposed into two

open sets Uλ
1 , U

λ
2 :

Ū = Ūλ
1 + Ū

λ
2 , Uλ

1

_
Uλ
2 = φ, and (0, 0) ∈ Ūλ

1

_
Ūλ
2

with (uλi , 0) ∈ Uλ
i (i = 1, 2) such that

lim
t→∞ nu(t,λ,φ,ψ)nH 1

2

= uλi as (φ,ψ) ∈ Uλ
i

lim
t→∞ n

d

dt
u(t,λ,φ,ψ)nH = 0,

where u(t,λ,φ,ψ) are the solutions of (5.4.24).

Proof. The system (5.4.24) is equivalent to

(5.4.26)


du
dt = −αu+ v
dv
dt = Lλu+ α2u− αv +G(u,λ)
u(0) = φ0, v(0) = ψ0 (φ0 = φ,ψ0 = ψ + αφ)

In order to applied Theorem 5.4.2 and Theorem 5.3.1 to the system (5.4.24)
we need to reduce the equation (5.4.26) to the form (5.4.1). To this end, we
define the Hilbenrt spaces as follows

H1 = H1 ×H 1
2
, H = H 1

2
×H

respectively with the inner products

< (u1, v1), (u2, v2) >H1
=< u1, u2 >H1

+ < v1, v2 >H 1
2

; ∀(ui, vi) ∈ H1

< (u1, v1), (u2, v2) >H=< u1, u2 >H 1
2

+ < v1, v2 >H ; ∀(ui, vi) ∈ H, i = 1, 2.

Define the mapping hLλ : H1 → H byhLλ = − hA+ hBλhA(u, v) = � αI −I
A αI

��
u
v

�
= (αu− v,Au+ αv)

hBλ(u, v) =

�
0 0
α2I +Bλ 0

��
u
v

�
= (0,α2u+Bλu),

and hG(·,λ) : H1 → H by

hG(u, v,λ) = (0,G(u,λ))
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∀(u, v) ∈ H1. Thus, the equation (5.4.26) is written as to read

(5.4.27)
dv

dt
= hLλv + hG(v,λ), V = (u, v) ∈ H1

It is clear that the operators hLλ and hGλ satisfy (5.4.2) and (5.4.3).
It is known that if the eigenvalues βk(λ) 9= 0(1 ≤ k < ∞) of Lλ, then the

norm nun∗θ = nLθλunH is equivalent to the Hθ-norm defined as in (5.4.18), and
the eigenvectors {ek(λ)} of Lλ are the comon orthogonal base ofHθ(0 ≤ θ <∞)
under the equivalent norms n · n∗θ. If there are some βk(λ) = 0, then we
take Lλ + ρI instead of Lλ, which still remain {ek(λ)} as their eigenvectors,
and the eigenvalues βk(λ) + ρ 9= 0 ∀1 ≤ k < ∞. Thus we can take some
proper equivalent norms of Hθ(0 ≤ θ <∞) such that {ek(λ)} are the common
orthogonal bases of Hθ.
Under the bases {ek(λ)}, the equation (5.4.27) can be decomposed into the

following form
dx

dt
= −αx+ y

(5.4.28)
dy

dt
= β1(λ)x+ α2x− αy+ < G(u,λ), e1(λ) >H

dv1
dt

= hLλV1 + P2 hG(V,λ), V1 = (u1, v1) ∈ E2
where

H1 = Eλ
1

P
Eλ
2 , H = hEλ

1

P hEλ
2

Eλ
1 = {(xe1, ye1)| x, y ∈ R1}
Eλ
2 = {(u1, v1) ∈ H1| < u1, e1(λ) >H= 0, < v1, e1(λ) >H= 0}

Hence, for the system (5.4.27), the conditions (5.4.4) and (5.4.5) are fulfiled,
and the decomposition (5.4.28) is corresponding to (5.4.6). We are now in a

position to show that the operators hLλ : E2 → hE2 generate the semigroups
Sλ(t) which satisfy the condition (5.4.7).
We denote

H∗θ = {
∞[
k=2

xkek(λ)|
∞[
k=2

(−βk(λ))2θx2k <∞}

Then E2 = H
∗
1 ×H∗1

2

, hE2 = H∗1
2

×H∗, and hLλ : E2 → hE2 can be expressed as
hLλ(u, v) =

� −αI I
−A+Bλ + α2I −αI

��
u
v

�
= (−αu+ v, L∗λu+ α2u− αv),∀(u, v) ∈ E2
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where L∗λ = Lλ|H∗1 . By the hypothese (5.4.21), in a neighborhood of λ = λ0,

the eigenvalues βj(λ)(2 ≤ j) of L∗λ are negative, therefore the eigenvalues of hLλ
have the negative real parts, which are as follows

−α±
s
α2 + βk(λ), βk(λ0) < 0, k = 2, 3, · · · .

On the other hand, it is readily to check that the semigroups Sλ(t) : hE2 → hE2
generated by hLλ are as to read

Sλ(t)(φ,ψ) =
e−αt

2

�
Φ1(t) −L−1Φ2(t)
−LΦ2(t) Φ1(t)

� �
φ
ψ

�
= {1

2
e−αt(Φ1φ− L−1Φ2ψ), 1

2
e−αt(−LΦ2φ+Φ1ψ)}

∀(φ,ψ) ∈ hE2, where
L = (L∗λ + α2I)

1
2

Φ1(t) = e
−tL + etL

Φ2(t) = e
−tL − etL

namely, for (φ,ψ) ∈ hE2,φ =S∞k=2 φkek(λ),ψ =S∞k=2 ψkek(λ),
Φ1(t)φ =

∞[
k=2

φk(e
−tL + etL)ek(λ)

=
N[
k=2

φk(e
−t
√
α2−|βk(λ)| + et

√
α2−|βk(λ)|)ek(λ)

+2
∞[

k=N+1

φk cos t
s
|βk(λ)|− α2ek(λ)

Φ2(t)ψ =
∞[
k=2

ψk(e
−tL − etL)ek(λ)

=
N[
k=2

ψk(e
−t
√
α2−|βk(λ)| − et

√
α2−|βk(λ)|)ek(λ)

−2i
∞[

k=N+1

ψk sin t
s
|βk(λ)|− α2ek(λ)

where the natural number N satisfies

α2 + βk(λ) =

� ≥ 0 as k ≤ N
< 0 as k ≥ N + 1
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By a direct caculation we can derive that there exists a constant k > 0 such
that

nSλ(t)n = sup
nφn 1

2
=1,nψn0=1

[
e−αt

2
nΦ1(t)φ− L−1Φ2(t)ψnH 1

2

+
e−αt

2
n − LΦ2φ+Φ1(t)ψnH0

]

≤ Ke−α1t,

where

0 < α1 =

�
α−sα2 − |β2(λ)| as α2 > |β2(λ)|
α, as α2 ≤ |β2(λ0)|

Hence the condition (5.4.7) is checked.
By Theorem 5.4.1, we reduce the bifurcation problem of (5.4.26) to that of

the below equation

(5.4.29)

�
dx
dt = −αx+ y
dy
dt = β1(λ)x+ α2x− αy+ < G(xe1(λ) + h(x,λ)), e1(λ) >H

By (5.4.21), the eigenvalues of (5.4.29) are as follows σ1(λ) = −α+
s
α2 + β1(λ) =

 < 0,λ < λ0
= 0,λ = λ0
> 0,λ > λ0

σ2(λ0) = −2α
In the same fashion as in Theorem 5.4.3, by the hypotheses we can get

< G(xe1 + h(x,λ0),λ0), e1 >H= −σ|x|k−1x+ o(|x|k), σ > 0

If we make the change x = hx, y = hy + αhx, then the equation (5.4.29) with
λ = λ0 is transformed into+

dhx
dt = hy
dhy
dt = −2αhy − σ|hx|k−1hx+ o(|hx|k),σ > 0

Applying Theorem 5.1.2 it is easy to show that (hx, hy) = (0, 0) is asymptotically
stable. Therefore (x, y) = (0, 0) is also asymptotically stable for (5.4.29) at
λ = λ0. Thus, by using Theorem 5.3.1 we can obtain the desired conclusion.
This proof is complete.

Likewise, for the higher dimensional cases m ≥ 1, we have the following
result.

324



Theorem 5.4.10. Under the conditions (5.4.21), if u = 0 is asymptotically
stable for (5.4.24) at λ = λ0, then the system (5.4.24) bifurcates an attractorS

λ with m− 1 ≤ dim
S

λ ≤ m.

Next, we investigate the attractor bifurcation of the system given by

(5.4.30)

�
d2u
dt2 + 2α

d
dt(A

θ − λI)u = −Au+G(u,λ)
u(0) = φ, ut(0) = ψ

where 0 < α and 0 < θ < 1.

Theorem 5.4.11. Let the first eigenvalue ρ1 of A in (5.4.17) have the
multiplicity m ≥ 1, then the following assertions hold.
i). When λ < ρθ1, u = 0 is asymptotically stable for (5.4.30) in H 1

2
×H.

ii). If u = 0 is asymptotically stable for (5.4.30) at λ = ρθ1, then when λ > ρθ1
(5.4.30) bifurcates a attractor

S
λ with 2m−1 ≤ dim

S
λ ≤ 2m, which has

the homotopy type of S2m−1. Especially, if m = 1, then
S

λ is a periodic
orbit.

Proof. The equation (5.4.30) can be decomposed into

(5.4.31)

�
dxi
dt = −α(ρθ1 − λ)xi + yi (1 ≤ i ≤ m)
dyi
dt = −ρ1xi + α2(ρθ1 − λ)2xi − α(ρθ1 − λ)yi+ < G(u,λ),φi >

(5.4.32)

+
dhu
dt = −α(Aθ − λI)hu+ hv
dhv
dt = −Ahu+ α2(Aθ − λI)2hu− α(Aθ − λI)hv + PG(u,λ)

where P : H → hE2 = {S∞k=m+1 xkφk ∈ h|S∞k=m+1 x2k <∞} is the projection,
and hu ∈ H1W hE2, hv ∈ H 1

2

W hE2.
We can find that the equation (5.4.31) has the eigenvalues

βi(λ) = −α(ρθ1 − λ)± i
t
ρ1 − α2(ρθ1 − λ)2, 1 ≤ i ≤ m

and the equation (5.4.32) has

βj(λ) = −α(ρθj − λ)±
t
α2(ρθj − λ)2 − ρj , m+ 1 ≤ j

Obviously the eigenvalues of (5.4.31) and (5.4.32) in a neighborhood of λ0 = ρθ1
satisfy the condition (5.4.21). Thus, by using the same method of proof as the
above theorem, one can derive the desired conclusions. This proof is complete.

325



If the first eigenvalue ρ1 of A has multiplicity m = 1, then we obtain the
Hopf bifurcation for the equation (5.4.30)

Theorem 5.4.12. Let the first eigenvalue ρ1 of A in (5.4.17) have multiplic-
itym = 1, then, at λ = ρθ1 the equation (5.4.30) will occur the Hopf bifurcation.

Remark 5.4.13. In fact, for any eigenvalue ρj of A, if ρj has multiplicity
m = 1, then the equation (5.4.30) will occur the Hopf bifurcation at λ = ρj .

5.5. Dissipative Partial Differential Equations in
Mechanics and Physics

5.5.1. Nonlinear wave equations with a damping term

First, we shall apply Theorem 5.4.9 to discuss the equilibrum attractor
bifurcation of the following nonlinear wave equation

(5.5.1)


∂2u
∂t2 + α∂u

∂t = ∆u+ λu+ g(x, u,∇u,D2u,λ), x ∈ Ω ⊂ Rn
u|∂Ω = 0
u(x, 0) = φ(x)

where α > 0 is a constant, g(x, z, ξ, η,λ) is C1 on its arguments, and

(5.5.2) |g(x, z, ξ, η,λ)| ≤ µ1(z) + µ2(ξ) + c|η|
where

µ1(z) =


µ1 ∈ C1(R1), as 1 ≤ n < 4
c(|z|p + 1), p <∞, as n = 4
c(|z| n

n−4 + 1), as n > 4

µ2(ξ) =


µ2 ∈ C1(R1), as n = 1
c(|ξ|p + 1), p <∞, as n = 2
c(|ξ| n

n−2 + 1), as n > 2

For any given z > 0 and ξ, η,λ 9= 0, we assume that
(5.5.3) g(x,βz,βξ,βη,λ) = −σ|β|k−1β + o(|β|k)
where k > 1 is some constant, δ > 0 depends on z > 0, ξ, η,λ 9= 0.
Let λ1 and u1(x) be respectively the first eigenvalues and eigenfunction of

the Laplace operator: � −∆u1 = λ1u1
u1|∂Ω = 0, u1 > 0 in Ω
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We have the following result.

Theorem 5.5.1. Under the conditions (5.5.2) and (5.5.3), as λ ≤ λ1, u = 0
is an asymptotically stable equilibrum point of (5.5.1), and as λ > λ1, there
exists an open set U ⊂ H2(Ω)

W
H1
0 (Ω)×H1

0 (Ω), o ∈ U , such that the equation
(5.5.1) bifurcates from (u, ut) = 0 exactly two equilibrum point (uλ1 , 0) and
(uλ2 , 0) ∈ U , and U is decomposed into two open sets Uλ

i (i = 1, 2):

Ū = Ūλ
1 + Ū

λ
2 , Uλ

1

_
Uλ
2 = φ, o ∈ Ūλ

1

_
Ūλ
2

with (uλi , 0) ∈ Uλ
i (i = 1, 2) such that

lim
t→∞ nu(t,λ,φ,ψ)nH1(Ω) = u

λ
i , as (φ,ψ) ∈ Uλ

i

lim
t→∞ nut(t,λ,φ,ψ)nL2(Ω) = 0

where u(t,λ,φ,ψ) are the solutions of (5.5.1)

Proof. Let H1 = H2(Ω)
W
H1
0 (Ω),H = L2(Ω), and Lλ = −A + B,G :

H1 → H defined by that

−Au = ∆u ∈ H,u ∈ H1
Bλu = λu ∈ H,u ∈ H1
Gu = g(x, u,Du,D2u,λ) ∈ H,u ∈ H1

Obviously, A and Bλ satisfy (5.4.3)(5.4.17)(5.4.19)(5.4.21) and (5.4.25). By the
conditions (5.5.2) and (5.5.3) it is easy to see that G : H1 → H is continuous
and bounded, which satisfies (5.4.2).
From (5.5.3) if follows that

< G(βu1), u1 >H =

]
Ω

g(x,βu1,βDu1,βD
2u1,λ)u1dx

= −σ1|β|k−1β + o(|β|k)

σ1 =

]
Ω

σ · u1dx > 0 (by u1 > 0 in Ω)

Thus, this theorem follows from Theorem 5.4.9. The proof is complete.

Remark 5.5.2. In Theorem 5.5.1 and the later theorems, the basic con-
dition of the existence of global strong solutions for all small initial values is
required, and which can be ensured by the center manifold theorem provided
that the conditions in Theorem 5.4.1 (or in Theorem 5.4.3-Theorem 5.4.12) are
satisfied.

327



As a corollary of Theorem 5.5.1, we immediately obtain the equilibrum
attractor bifurcation for the following Sine-Gordan equation

(5.5.4)


∂2u
∂t2 + α∂u

∂t = ∆u+ λ sinu, x ∈ Ω ⊂ Rn
u|∂Ω = 0
u(x, 0) = φ, ut(x, 0) = ψ

Corollary 5.5.3. When λ > λ1, the Sine-Gordan equation (5.5.4) will
have the equilibrum attracter bifurcation from (u,λ) = (0,λ1).

Proof. By the Taylor expansion

sinu = u− 1

3!
u3 + o(|u|3)

and g(x, u,λ) = λ sinu − λu satisfies (5.5.2) and (5.5.3). Thus, we obtain the
corollary. The proof is complete.

Next, we consider the Hopf bifurcation for the vibrating equations with
strong damping given by

(5.5.5)


∂2u
∂t2 − α∆ut − λut = −∆2u+ g(x, u,Du,D2u), x ∈ Ω ⊂ Rn
u|∂Ω = 0,∆u|∂Ω = 0
u(x, 0) = φ, ut(x, 0) = ψ

where α > 0, g ∈ C1(Ω×R1 ×Rn ×Rn2), 1 ≤ n ≤ 3, and
(5.5.6) g(x,βz,βξ,βη) = o(|β|)
Applying Theorem 5.4.11 and Remark 5.4.13, we can obtain the following

result.

Theorem 5.5.4. Under the condition (5.5.6), we have the following asser-
tions.
i). For any simple eigenvalue λi of the Laplace operator −∆, the equation
(5.5.5) will occur the Hopf bifurcation from (0,αλi).

ii). If u = 0 is asymptotically stable for (5.5.5) at λ = αλ1, then the
equation (5.5.5) bifurcates a stable periodic orbit for λ > αλ1 from (u,λ) =
(0,αλ1).

Proof. We take the spaces as to read

H1 = {u ∈ H4(Ω)|u|∂Ω = 0,∆u|∂Ω = 0.}
H = L2(Ω)
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Then we have that H 1
2
= H2(Ω)

W
H1
0 (Ω). Let A and G : H1 → H be defined

by

Au = ∆2u ∈ H, u ∈ H1
Gu = g(x, u,Du,D2u) ∈ H, u ∈ H1

Thus, the operator A
1
2 : H 1

2
→ H is as follows

A
1
2u = −∆u ∈ H, u ∈ H 1

2

Obviously, the conditions in Theorem 5.4.11 are satisfied. Thus, this theorem
is proven.

Remark 5.5.5. Under centain restrictions on the exponent growth the
function g(x, u,Du,D2u) in (5.5.5) can be relaxed by g(x,Dαu), 0 ≤ α ≤ 4,
and Ω ⊂ Rn for any n ≥ 1.

5.5.2. Ginzburg-Landau equations

This subsection is devoted to the study of cycle attractor bifurcation and
invariant set bifurcation for the Ginzburg-Landau equation. The Dirichlet and
periodic boundary conditions will be considered. The equation is given by

(5.5.7)
∂u

∂t
− (α+ iβ)∆u+ (σ + iρ)|u|2u− λu = 0

where the unknown u is a complex-valued function defined on Ω × R+,Ω ⊂
Rn, 1 ≤ n ≤ 6. The parameters α,β, ρ,σ,λ are real numbers, for them we
make the following assumption:

(5.5.8) α > 0, σ > 0

The equation will be supplemented with on of the following boundary con-
ditions:
the periodic boundary condition, in which case

(5.5.9) Ω = (0, 2π)n and u is Ω− periodic
the Dirichlet boundary condition

(5.5.10) u|∂Ω = 0
For the equation (5.5.7) we provide the initial value of u:

(5.5.11) u(x, 0) = φ+ iψ
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Let u = u1 + iu2. Then the initial value problem of (5.5.7) is equivalent to
the following form

(5.5.12)


∂u1
∂t = α∆u1 − β∆u2 + λu1σ|u|2u1 + ρ|u|2u2
∂u2
∂t = β∆u1 + α∆u2 + λu2 − σ|u|2u2 − ρ|u|2u1
u1(x, 0) = φ(x), u2(x, 0) = ψ(x)

The following is the S1-attractor bifurcation theorem for the equation (5.5.7)
with the boundary condition (5.5.9), or (5.5.10).

Theorem 5.5.6. Suppose that (5.5.8) holds. Then we have the following
conclusions:
i). As λ ≤ 0, u = 0 is an asymptotically stable equilibrum point of the
problem (5.5.7)(5.5.9), and as λ > 0 the problem (5.5.7)(5.5.9) will bifurcate
from (u,λ) = (0, 0) an unique S1-attractor. If ρ 9= 0, then the S1-attractor
is a periodic orbit.

ii). As λ ≤ αλ1(λ1 is the first eigenvalue of −∆ with the boundary condition
(5.5.10)), u = 0 is asymptotically stable for the problem (5.5.7)(5.5.10),
and as λ > αλ1 the problem (5.5.7)(5.5.10) bifurcates from (u,λ) = (0,αλ1)
an unique S1-attractor. If |ρ|+ |β| 9= 0, then this attractor is a periodic
orbit, especically as β 9= 0, it is the Hopf bifurcation.

Proof. Here, we only prove the conclusion i), because the proof of conclu-
sion ii) proceeds in the same fashion.
Let the spaces be taken as follows

H1 = H
2
per(Ω)×H2

per(Ω); H = L2(Ω)× L2(Ω)
where Ω = (0, 2π)n, and

H2
per(Ω) = {u ∈ H2(Ω)|u(x+ 2kπ) = u(x),K = {k1, · · · , kn}, ki the integers}

The mapping Lλ = −A+Bλ and G : H1 → H are defined by

−Au =
�

α(∆u1 − u1)− β∆u2
β∆u1 + α(∆u2 − u2)

�
Bλu =

�
(λ+ α)u1
(λ+ α)u2

�
,

Gu =

� −σ|u|2u1 + ρ|u|2u2
−σ|u|2u2 − ρ|u|2u1

�
By the Sobolev embedding theorems and 1 ≤ n ≤ 6, the mapping G : H1 →

H is C∞ and bounded. It is clear that the conditions (5.4.2) and (5.4.3) are
satisfied for the operators Lλ and G.
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Let {λk} and {ek} ⊂ H2
per(Ω) be the eigenvalues and eigen-functions of the

Laplacian −∆ with the periodic boundary condition

(5.5.13)

� −∆ek = λkek
ek(x+ 2kπ) = ek(x)

We know that

0 = λ1 < λ2 ≤ · · · ≤ λk ≤ · · · ; λk →∞ as k →∞.
and {ek} constitutes a common orthogonal base of H2

per(Ω) and L
2(Ω). There-

fore {ek} × {ej} is a common orthogonal base of H1 and H. With this bese,
the problem (5.5.12) can be decomposed into the below infinite dimensional
systems

(5.5.14)


dxk
dt = (λ− αλk)xk + βλkyk + PkG1(u)
dyk
dt = −βλkxk + (λ− αλk)yk + PkG2(u)
xk(0) = φk, yk(0) = ψk

where

u1 =
∞[
k=1

xk(t)el; u2 =
∞[
k=1

yk(t)ek

(5.5.15) PkG1(u) =

]
Ω

[−σ|u|2u1 + ρ|u|2u2]ekdx

PkG2(u) =

]
Ω

[−σ|u|2u2 − ρ|u|2u1]ekdx

and φ =
S∞
k=1 φkek,ψ =

S∞
k=1 ψkek.

On the other hand, from (5.5.14) it is easy to see that the eigenvalues of
the operator Lλ = −A+Bλ are as follows

(5.5.16) (λ− αλk)± iβλk, k = 1, 2, · · · .
From (5.5.14)-(5.5.16) it is easy to see that the conditions (5.4.4)-(5.4.6)

are satisfied for the operator Lλ + G. In order to apply the center manifold
theorem (Theorem 5.4.1) to this proof, we need to check the condition (5.4.7).
We see that the first and second eigenvalues of (5.5.13) are

λ1 = 0, λ2 = 1

Hence, the spaces H1 and H can be decomposed into

H1 = E1
P

E2,H = hE1P hE2
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E1 = hE1 = {xe1| x ∈ R1} × {ye1| y ∈ R1}

E2 = {
∞[
k=2

xkek|
∞[
k=2

λ2kx
2
k <∞} × {

∞[
k=2

ykek|
∞[
k=2

λ2ky
2
k <∞}

hE2 = { ∞[
k=2

xkek|
∞[
k=2

x2k <∞} × {
∞[
k=2

ykek|
∞[
k=2

y2k <∞}

(1)

When λ < α, the operator

Lλ2 = Lλ|E2 = −A+Bλ|E2 : E2 → hE2
has the eigenvalues (5.5.6) with k ≥ 2, which possesse the negative real parts.
The semigroup Sλ(t) generated by Lλ2 is as follows

(5.5.17) Sλ(t)v = e
tLλ2 · v

=

� S∞
k=2 e

−(αλk−λ)t(v1k cosβλkt+ v
2
k sinβλkt)ekS∞

k=2 e
−(αλk−λ)t(−v1k sinβλkt+ v2k cosβλkt)ek

where

v =

�
v1
v2

�
=

� S∞
k=2 v

1
kekS∞

k=2 v
2
kek

From (5.5.17) it follows that

nSλ(t)n ≤ Ce−(αλ2−λ) = ce−(α−λ)

Thus, the condition (5.4.7) is verified.
By the center manifold theorem, the bifurcation problem of (5.5.12) from

(u,λ) = (0, 0) is equivalent to that of the bifurcation equation of (5.5.14) as
follows

dx1
dt

= λx1 + P1G1(x1e1 + h1(x1, y1), y1e1 + h2(x1, y1))

dy1
dt

= λy1 + P1G2(x1e1 + h1(x1, y1), y1e1 + h2(x1, y1))

where h = (h1, h2) : E1 → E2 is the center manifold function, and P1Gi(i =
1, 2) defined as in (5.5.15)
We notice that the eigenfunction corresponding to λ1 = 0 is a constant

e1 = constant ( 9= 0)
and

G(x1e1, y1e1) =

� −σ(x21 + y21)x1 + ρ(x21 + y
2
1)y1

−σ(x21 + y21)y1 − ρ(x21 + y
2
1)x1

�
∈ E1
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namely PkG(x1e1, y1e1) = 0,∀k ≥ 2. Hence it follows that the center manifold
function h ≡ 0:

h(x1, y1) = (h1(x1, y1), h2(x1, y1)) ≡ (0, 0)

Thus, the bifurcation equation (5.5.18) reads

(5.5.19)

�
dx1
dt = λx1 − σ(x21 + y

2
1)x1 + ρ(x21 + y

2
1)y1

dy1
dt = λy1 − σ(x21 + y

2
1)y1 − ρ(x21 + y

2
1)x1

Obviously, by (5.5.8) it is clear that as λ ≤ 0, (x1, y1) = 0 is asymptotically
stable for (5.5.19). By Theorem 5.3.9, the equation (5.5.19) bifurcates from
(u,λ) = (0, 0) an attractor for λ > 0. When ρ = 0, it is easy to see that the
attractor is the cycle which is unique, and which consists of equilibrum points
of (5.5.19):

x21 + y
2
1 =

α

σ
λ (λ > 0).

When ρ 9= 0, the equation (5.5.19) has no equilibrum points, otherwise one can
obtain that ρ(x21 + y

2
1)
2 = 0 from the following equation

λx1y1 − σ(x21 + y
2
1)x1y1 + ρ(x21 + y

2
1)y

2
1 = 0

λy1x1 − σ(x21 + y
2
1)y1x1 − ρ(x21 + y

2
1)x

2
1 = 0

Therefore, by the claim ii) of Theorem 5.3.9, the attractor is either a periodic
orbit or an anulus.
In the following, we shall show that the attractor is the periodic orbit. We

take the polar coordinate system

x1 = r cos θ, y1 = r sin θ

Then the equation (5.5.19) is changed to

(5.5.20)

+
dr
dθ =

λ−σr2
ρr (λ > 0)

r(0) = a

From (5.5.20) it follows that

ρ

2
(r2(2π)− r2(0)) =

] 2π

0

(λ− σr2)dθ

Because r2 = r2(θ, a) is C∞ on a ≥ 0, we have the Taylor expansion

r2(θ, a) = a+R(θ) · o(|a|); R(0) = 0
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Thus, we get that

ρ

2
(r2(2π)− r2(0)) = 2πλ− 2πσa+ o(|a|)

Obviously, the initial values a > 0 in (5.5.20) satisfying

(5.5.21) 2πλ− 2πσa+ o(|a|) = 0 (σ,λ > 0)

are corresponding to the periodic orbits of (5.5.20). It is easy to see that the
solution a > 0 of (5.5.21) near a = 0 is unique. Thus we derive this theorem.
The proof is complete.

More generally, for the Ginzburg-Landau equation we have the bifurcation
theorem of the homotopical sphere Sk(k ≥ 1) at any eigenvalue of the Lapla-
cian −∆.

Theorem 5.5.7. Let λm be an eigenvalue of −∆ with the boundary con-
dition (5.5.9)(or (5.5.10)), which has multiplicity m ≥ 1. Then, under the
condition (5.5.8), as λ > αλm the problem (5.5.7)(5.5.9)(or (5.5.7)(5.5.10))
bifurcates from (u,λ) = (0,αλm) an invariant set

S
which has the homo-

topy type of S2m−1. If |β| + |ρ| 9= 0, then there are no equilibrum points of
(5.5.7)(5.5.9)(or (5.5.7) and (5.5.10)) in

S
.

Proof. We still proceed only for the case of periodic boundary condition.
We denote the eigenfunctions corresponding to λm by

{e∗1, · · · , e∗m}
Thus, the spaces H1 and H defined in Theorem 5.5.6 can be decomposed into

H1 = Em
P

E⊥m, H = hEmP hE⊥m
Em = span{e∗1, · · · , e∗m} × span{e∗1, · · · , e∗m}
E⊥m = {u ∈ H1| < u, v >H1

= 0,∀v ∈ Em}hEm = EmhE⊥m = {u ∈ H| < u, v >H= 0,∀v ∈ hEm}
By the center manifold theorem (Theorem 5.4.1 (b)), the bifurcation of

(5.5.12) at λ = λm is equivalent to that of the below equation

(5.5.22)

�
∂v1
∂t = α∆v1 − β∆v2 + λv1 + PG1(v + h(v))
∂v2
∂t = β∆v1 + α∆v2 + λv2 + PG2(v + h(v))

where λ is near λm, v = (v1, v2) ∈ Em, h : Em → E⊥m is the center manifold
function, G = (G1,G2) : H1 → H defined as in Theorem 5.5.6, and P : H →hEm the projection.
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The equation (5.5.22) is a system of ordinary differential equation with
order 2m, and the eigenvalues of whose linearized operator are the same in the
multiplicity, which reads

(λ− αλm)± iβλm.
By Theorem 5.3.4, it suffices to prove that v = 0 is asymptotically stable for
(5.5.22) at λ = αλm. From (5.5.22), for λ = αλm we can obtain that

1

2

d

dt

]
Ω

[|v1|2 + |v2|2]dx =
]
Ω

G(v + h(v))vdx

We notice that
h(v) = o(|v|)

Hence we have

d

dt

]
Ω

|v|2dx = 2

]
Ω

[G(v) · v + o(|G(v) · v|)]dx

= −2σ
]
Ω

[|v|4 + o(|v|4)]dx

which implies that v = 0 is asymptotically stable for the system (5.5.22). The
proof is complete.

Remark 5.5.8. For the periodic boundary condition, the multiplicities m
of eigenvalues λk with k ≥ 2 of −∆ are greater than one, i.e. m > 1. For
example, the multiplicity m of λ2 = 1 is m = 2n, and the eigenfunctions corre-
sponding to λ2 = 1 are as to read:{sinxi, cosxi|1 ≤ i ≤ n, (x1, · · · , xn) ∈ Ω =
(0, 2π)n}. Hence the problem (5.5.7)(5.5.9) will bifurcate from (u,λ) = (0,α)
a (4n− 1)-dimensional homotopy sphere S4n−1.

5.5.3. Pattern formation equations

The equations under study in this subsection are related to various pattern
formation plenomena. First, we shall consider the bifurcation of attractors and
invariant sets of the homotopy sphere Sk for the Cahn-Hilliard equation which
models pattern formation in phase transition. Then we shall investigate the
bifurcation of S1-attractors and periodic orbits for the Kuramoto-Sivashinsky
equation related to turbulence phenomena in chemistry and combustion.
The Cahn-Hilliard equation reads:

(5.5.23)

�
∂u
∂t = ∆K(u), x ∈ Ω ⊂ Rn(1 ≤ n ≤ 3)
K(u) = −α∆u+ f(u), α > 0

where f is a polynomial of order 2k + 1

(5.5.24) f(u) = −λu+
2k+1[
p=2

apu
p
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This equation is added an initial condition

(5.5.25) u(x, 0) = φ(x)

For the sake of convenience, here we only consider the case that Ω is a cube:
Ω = (0, 2π)n.
The equation (5.5.23) is supplemented with one of the below two types of

boundary conditions
The Neumann boundary conditions

(5.5.26)
∂u

∂n
=

∂∆u

∂n
= 0 on ∂Ω

n the unit outward normal on ∂Ω.
The periodic boundary condition

(5.5.27) u(x+ 2kπ, t) = u(x, t)

K = {k1, · · · , kn}, ki the integers.
For the coificients in (5.5.24), we assume that

(5.5.28) a2 = 0, a3 = β > 0

We notice a particular aspect of the problem (5.5.23)(5.5.25) with the
boundary condition (5.5.26) or (5.5.27) is that the average of u is conserved,
which means the non-existence of bifurcation of attractors and invariant sets.
In fact, when we integrate (5.5.23) over Ω, we find

∂

∂t

]
Ω

u(x, t)dx =

]
Ω

∆K(u)dx =

]
∂Ω

∂

∂n
K(u)dx = 0

]
Ω

u(x, t)dx =

]
Ω

φ(x)dx, ∀t ≥ 0

On the other hand, when the initial value φ in (5.5.25) satisfies]
Ω

φ(x)dx = 0

then the solution u(x, t,φ) of (5.5.23) has]
Ω

u(x, t,φ)dx = 0, ∀t ≥ 0

Thus, it makes sense for us to discuss the bifurcation problem for the equa-
tion (5.5.23) with the initial value and boundary condition (5.5.25)(5.5.26), or
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(5.5.25)(5.5.27) in the spaces introduced by

H1 = {u ∈ H4(Ω)|∂u
∂n
|∂Ω = ∂∆u

∂n
|∂Ω = 0,

]
Ω

udx = 0}; for (5.5.26)

H1 = {u ∈ H4(Ω)|u(x+ 2kπ) = u(x),
]
Ω

udx = 0}; for (5.5.27)

H = {u ∈ L2(Ω)|
]
Ω

udx = 0}

When we say that the problem (5.5.23)(5.5.26)(or (5.5.23)(5.5.27)) bifur-
cates an invariant set

S
λ from (u,λ) = (0,λ0), it means that

S
λ ⊂ H1, andS

λ → 0 in H as λ→ λ0.
We denote by {λk} and {ek} the eigenvalues and eigenfunctions in H1 of

the Laplace operator −∆ with the boundary condition (5.5.26), or (5.5.27)

(5.5.29)

� −∆ek = λkek
0 < λ1 ≤ λ2 ≤ · · · ,λk →∞, k →∞

It is known that the eigenfunction {ek} of (5.5.29) constitute the common
orthogonal base of H1 and H.
Then we have the following results.

Theorem 5.5.8. Under the condition (5.5.28), the following assertions
hold true:
i). As λ > αλ1, the equation (5.5.23) bifurcates from (u,λ) = (0,αλ1) an
attractor of homotopy sphere Sn−1 for the boundary condition (5.5.26)(as
n = 1, which is the equilibrum attractor), and an attractor of homotopy
sphere S2n−1 for (5.5.27).

ii). For any eigenvalue λk of (5.5.29) having multiplicity m, as λ > αλk
the problem (5.5.23)(5.5.26)(or (5.5.23)(5.5.27)) will bifurcate from (u,λ) =
(0,αλk) an invariant set of homotopy sphere S

m−1.

Proof. We define the mappings Lλ = −A+Bλ and G : H1 → H by

Au = α∆2u

Bλu = −λ∆u

Gu = ∆(
2k+1[
p=2

apu
p)

It is readily to check that the conditions (5.4.2)-(5.4.7) and (5.4.5)3 in the center
manifold theorems are satisfied.
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Hence, for an eigenvalue λk of (5.5.29) having multiplicitym the bifurcation
equation of (5.5.23) can be written as

(5.5.30)
dxi
dt

= λk(λ− αλk)xi − λk

]
Ω

2k+1[
p=2

ap(v + h(v))
pe∗i dx

1 ≤ i ≤ m, where v =Sm
j=1 xje

∗
j , {e∗j |1 ≤ j ≤ m} the eigenfunctions of (5.5.29)

corresponding to λk, and

h(v) ∈ H⊥k = {u ∈ H1| < u, e∗i >H1
= 0, ∀1 ≤ i ≤ m}

the center manifold function, which satisfies

h(v) = o(|x|), |x| =
yxxw m[

i=1

x2i

By (5.5.28), from (5.5.30) we can obtain

d

dt
|x|2 = λk(λ− αλk)|x|2 − 2λkβ

]
Ω

|v|4dx+ o(|x|4)

It means that when λ = αλk, x = 0 is asymptotically stable for (5.5.30). Hence,
by Theorem 5.3.4, the conclusion ii) is proved.
Because the first eigenvalue λ1 of (5.5.29) has multiplicity m = n for the

boundary condition (5.5.26), and m = 2n for the boundary condition (5.5.27),
the conclusion i) follows. Indeed, the eigenfunctions corresponding to λ1 are

cosxi(1 ≤ i ≤ n) for b.c. (5.5.26)
sinxi, cosxi(1 ≤ i ≤ n) for b.c. (5.5.27)

where x = (x1, · · · , xn) ∈ Ω = (0, 2π)n. Thus, the proof is complete.
Now, we consider the Kuramoto-Sivashinsky equation in space dimension

one, which is given by

(5.5.31)


∂u
∂t + µ

∂4u
∂x4 +

∂2u
∂x2 +

1
2(

∂u
∂x )

2 = 0, 0 < x < 2π
u(x+ 2π, t) = u(x, t)
u(x, 0) = φ(x)

where µ > 0, the boundary condition is space periodic
Alternative, we consider the equation obtained by differentiation of (5.5.31)

with respect to x:

(5.5.32)


∂v
∂t = −µ∂

4v
∂x4 − ∂2v

∂x2 − v ∂v∂x , 0 < x < 2π

v(x+ 2π, t) = v(x, t);
U 2π
0
v(x, t)dx = 0,∀t ≥ 0

v(x, 0) = ψ
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For the problem (5.5.32) we introduce

H1 = {u ∈ H4(0, 2π)| u(x+ 2π) = u(x),

] 2π

0

udx = 0}

H = {u ∈ L2(0, 2π)|
] 2π

0

udx = 0}

Then we have the below results.

Theorem 5.5.9. When µ ≥ 1, v = 0 is a global asymptotically stable equi-
librum point of (5.5.32) in H, and for each integer k(k = 1, 2, · · ·) the problem
(5.5.32) will bifurcate from (v, µ) = (0, k−2) a periodic orbit. Especially, from
(v, µ) = (0, 1) it bifurcates the S1-attractor.

Proof. We define the mapping Lµ = −A+ µ−1B and G : H1 → H by

Au = −d
4u

dx4
; Bu = −d

2u

dx2
; Gu = −udu

dx

The problem (5.5.32) can be written as the abstract form

(5.5.33)

�
du
dt = µLµu+Gu, u ∈ H1, µ > 0
u(0) = φ,φ ∈ H1

We know that the eigen-problem�
−d2ekdx2 = λkek
ek(x+ 2π) = ek(x)

has the following eigenvalues and eigenfunctions

λk = k
2, k = 1, 2, · · ·

ek(x) = sin kx; cos kx

Hence the operator Lµ has the eigenvalues and eigenvectors

(5.5.34)

�
βk(µ) = µ

−1k2 − k4, k = 1, 2, · · ·
{sin kx, cos kx| k = 1, 2, · · ·}

Each eigenvalue of Lµ has the multiplicity m = 2, and the eigenvectors of Lµ
constitute the common orthogonal base of H1 and H. It is readily to check
that for the equation (5.5.33) the conditions in the center manifold theorem
(Theorem 5.4.1 (b)) are fulfilled. Hence, near every eigenvalue µ−1k2 − k4 =
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0, the bifurcation equation of (5.5.33) is a 2-dimensional system of ordinary
differential equation, which reads

(5.5.35)
dy1
dt

= (k2 − µk4)y1 −
] 2π

0

u
du

dx
sin kxdx

dy2
dt

= (k2 − µk4)y2 −
] 2π

0

u
du

dx
cos kxdx

where u = y1 sin kx+ y2 cos kx+ h(y1, y2), and

h(y1, y2) ∈ {v ∈ H1|
] 2π

0

v sin kxdx =

] 2π

0

v cos kxdx = 0}

is the center manifold function. By Theorem 5.3.9, from (5.5.35) it follows
that the equation (5.5.33) bifurcates from (u, µ) = (0, k−2) a S1-invariant set.
Meanwhile, the equation (5.5.32) has no nonzero equilibrum points. Indeed, if
(5.5.32) has a nonzero equilibrum point v 9= 0 in H1, then u =

U
vdx 9= 0 in

H1 is an equilibrum point of (5.5.31), thus it satisfies

0 =

] 2π

0

[µ
d4u

dx4
+
d2u

dx2
+
1

2
(
du

dx
)2]dx

=
1

2

] 2π

0

(
du

dx
)2dx

It is a contradiction to that u 9= 0 in H1. Hence the bifurcated S
1-invariant

sets of (5.5.32) at µ = k−2(k = 1, 2, · · ·) are the periodic orbits.
Now, we return to prove that v = 0 is a global asymptotically stable equi-

librum point of (5.5.32) for µ ≥ 1 by using Theorem 3.2.8. In fact, we see that
G : H1 → H is an orthogonal operator

< Gu, u >= −
] 2π

0

u2
du

dx
dx = −1

3

] 2π

0

du3

dx
dx = 0

On the other hand, the eigenvalues (5.5.34) of Lµ are negative for all µ > 1:

βk(µ) = k
2(µ−1 − k2) < 0, ∀k = 1, 2, · · · , and µ > 1.

When µ = 1,β1(1) = 0 and its eigenvectors are {sinx, cosx}. We see that for
any α1 sinx+ α2 cosx, |α1|+ |α2| 9= 0,

G(α1 sinx+ α2 cosx) = (α1 sinx+ α2 cosx)(α1 cosx− α2 sinx)

=
1

2
(α21 − α22) sin 2x+ α1α2 cos 2x
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Namely, ∀u ∈ E0 = span{sinx, cosx}, u 9= 0
Gu ∈ E⊥0 = {u ∈ H| < u, v >H= 0,∀v ∈ E0}, and

Gu 9= 0
Thus, the desired conclusion follows from Theorem 3.2.8. The proof is complete.

5.5.4. Reaction-diffusion equations

In this subsection we study the bifurcation of invariant sets associated with
reaction-diffusion equations. We consider a boundary value problem involving
a vector function u = (u1, · · · , um) which satisfies the equation

(5.5.36)


∂u
∂t = A∆u+Bλu+G(x, u), x ∈ Ω ⊂ Rn(1 ≤ n ≤ 3)
u|∂Ω = 0 (or ∂u

∂n |∂Ω = 0)
u(x, 0) = φ

where A is a positive diagnal matrix of diffusion coeficients

(5.5.37) A =

 µ1 0
. . .

0 µm


and Bλ is a m×m parameterized constant matrix

(5.5.38) Bλ =

 b11(λ) · · · b1m(λ)
...

. . .
...

bm1(λ) · · · bmm(λ)


and G = {G1, · · · ,Gm} is continuous on Ω̄×Rm, and
(5.5.39) G(x, ξ) = o(|ξ|), ξ ∈ Rm

Let ρk ≥ 0(k = 1, 2, · · ·) be the k-th eigenvalue of the Laplacian

(5.5.40)

� −∆u = ρku
u|∂Ω = 0 (or ∂u

∂n |∂Ω = 0)
For the mathematical setting we introduce

H1 = H
2(Ω, Rm)

_
H1
0 (Ω, R

m)

(or H1 = {u ∈ H2(Ω, Rm)| ∂u

∂n
|∂Ω = 0})

H = L2(Ω, Rm)
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Obviously, the operator A + Bλ + G : H1 → H defined by (5.5.37)-(5.5.39)
satisfies the conditions in (5.4.20). In view of Theorem 5.4.3-Theorem 5.4.6 we
have the following results

Theorem 5.5.10. Assume that the eigenvalues βj(λ)(1 ≤ j ≤ m) of the
matrix−ρ1A+Bλ = (bij(λ)−δijρ1µj) satisfy that (here ρ1 is the first eigenvalue
of (5.5.40))

Reβl(λ) =

 < 0, λ < λ0 (or λ > λ0)
= 0, λ = λ0
> 0, λ > λ0 (or λ < λ0)

Reβj(λ0) < 0, l + 1 ≤ j ≤ m
and as λ = λ0, u = 0 is locally asymptotically stable for (5.5.36), then the prob-
lem (5.5.36) must bifurcate from (u,λ) = (0,λ0) an attractor with dimension
d ≤ l − 1.

Theorem 5.5.11. Assume that the eigenvalues βj(λ)(1 ≤ λ ≤ m) of the
matrix −ρkA+Bλ = (bij(λ)− δijρkµj) satisfy that

Reβ1(λ) = Reβ2(λ) =

 < 0, λ < λ0 (or λ > λ0)
= 0, λ = λ0
> 0, λ > λ0 (or λ > λ0)

Reβj(λ0) 9= 0, ∀3 ≤ j ≤ m
then the problem (5.5.36) will bifurcate from (u,λ) = (0,λ0) an S

1-invariant
set.
In the following, we give some examples of reaction-diffusion equations sat-

isfying the conditions in Theorem 5.5.10-5.5.11.

Example 5.5.12. These equations arise in the study of super-conductivity
of liquids (see [Te]). We have m = n, and u = (u1, · · · , un) is a solution of the
equations

(5.5.41)

�
∂u
∂t = A∆u+ u− |u|2u
u|∂Ω = 0

where the parameters taken are µi in the diagnal matrix A. The eigenvalues
βj of the matrix

−ρ1A+ I =

 1− ρ1µ1 0
. . .

0 1− ρ1µn


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are as βj = 1 − ρ1µj , ρ1 the first eigenvalue of (5.5.40). If µ1 = · · · = µl <
µl+1, · · · , µn(1 ≤ l ≤ n), then by Theorem 5.5.10, the system (5.5.41) will
bifurcate from (u, µ1) = (0, ρ−11 ) a S

l−1-attractor. In fact, the behaviors of
solutions of (5.5.41) are alike to that of the Landau-Ginzburg equation discussed
in Subsection 5.5.2. If the multiplicity ρk of (5.5.40) is r, and

µi1 = · · · = µil = ρ−1k (1 ≤ l ≤ m)
then it is not difficult to show that the system (5.5.4) will bifurcate from
(u, µ) = (0, ρ−1k ) a S

rl−1-invariant set.

Example 5.5.13. These equations arise in ecology which discribe the
ecological balance (for instance the predator-prey systems, the colony growth
atc.), which read

(5.5.42)

+
∂u
∂t = ∆u+ λ1u+ uG1(u, v) +

U t
0
G2(u(s), v(s))ds

∂v
∂t = ∆v + λ2v + vF1(u, v) +

U t
0
F2(u(s), v(s))ds

where
G1(0, 0) = 0, G2(z1, z2) = o(|z1|+ |z2|)
F1(0, 0) = 0, F2(z1, z2) = o(|z1|+ |z2|)

when the parameters λ1 = λ2, or the multiplicity of the eigenvalue ρk of (5.5.40)
is two, the system (5.5.42) will bifurcate from (u,λ) = (0, ρ1)(or from (0, ρk))
a S1-invariant set. Furthermore if (5.5.42) has no nonzero stationary solution
near u = 0, then the S1-invariant set is a periodic orbit.

Example 5.5.14. The final example is the equations which serve as a
model for the Belousov-Zhabotinsky reactions in chemical dynamics (see [Te]).
Here m = 3 and u = (u1, u2, u3) satisfies

∂u1
∂t

= µ1∆u1 + λu1 + λu2 − λu1u2 − λβu21

(5.5.43)
∂u2
∂t

= µ2∆u2 − 1
λ
u2 +

γ

λ
u3 − 1

λ
u1u2

∂u3
∂t

= µ3∆u3 − δu3 + δu1

ui|∂Ω = 0, i = 1, 2, 3.

where λ,β, γ, δ > 0. For the domain Ω, we here take Ω = (0, 2π)2 ⊂ R2. In
this case, we know that the eigenvalues of (5.5.40) are

ρnm = m
2 + n2, n,m ≥ 1 are integers,
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and when m = n, the multiplicity of ρnm is one, when m 9= n, the multiplicity
is > 1(generally = 2). On the other hand, if the multiplicity of ρk equals 2,
and λ0 > 0 is a solution of the algebraic equation

det

 λ− µ1ρk λ 0
0 −(λ−1 + µ2ρk) λ−1γ
δ 0 −(δ + µ3ρk)

 = 0

namely λ0 > 0 satisfies

(λ− µ1ρk)(µ2ρkλ1)(µ3ρ3 + δ) + γδλ = 0

then the system (5.5.43) will bifurcate from (u,λ) = (0,λ0) a S
1-invariant.

5.6. Navier-Stokes Equations (n = 2)

We shall conclude this chapter by consider the 2D Navier-Stokes equations
with the perioidic boundary condition, the free boundary condition, and the
Dirichlet boundary condition. The equations are given by

(5.6.1)

�
∂u
∂t + (u ·∇)u = µ∆u−∇ρ+ f(x,λ), x ∈ Ω ⊂ R2
divu = 0

which are the same as in Subsection 3.3.1. Here λ ∈ R1 is a parameter, and
Ω̄ ⊂ R2 is a compact manifold with boundary.
The equations (5.6.1) is supplemented with the initial value condition

u(x, 0) = u0(x)

Three cases of the boundary conditions will be considered.
The periodic boundary condition: in which case Ω = (0, 2π)2, and

(5.6.3) u(x+ 2Kπ, t) = u(x, t), ∀t ≥ 0
K = (k1, k2), ki the integers.
The free boundary condition:

(5.6.4) un|∂Ω = 0, ∂uτ
∂n

|∂Ω = 0

where un = u · n, uτ = u · τ, n and τ respectively the unit normal and tangent
vectors on the boundary ∂Ω.
The Dirichlet boundary condition

(5.6.5) u|∂Ω = 0

344



For the periodic boundary condition, we also impose the condition that the
unknown function u has the zero average

(5.6.6)

]
Ω

u(x, t)dt = 0, ∀t ≥ 0

We shall latter see that the condition (5.6.6) means that u does not contain
the harmonic fields.

5.6.1. The Hodge decomposition

We say that a vector field u ∈ Hk(Ω, R2)(k ≥ 0) is a Hamiltonian if there
is a function ψ ∈ Hk+1(Ω) such that

u = (u1, u2) = curlψ, u1 =
∂ψ

∂x2
, u2 = − ∂ψ

∂x1

In this case, ψ is called the Hamiltonian function, or in some time it is also
called the stream function. We set

Dk(Ω, R2) = {u ∈ Hk(Ω, R2)| divu = 0, un|∂Ω = 0}
Hk(Ω, R2) = {u ∈ Dk(Ω, R2)| u is a Hamiltonian}
Gk(Ω, R2) = {∇p| p ∈ Hk+1(Ω),

∂p

∂τ
|∂Ω = 0}

For a general domain Ω ⊂ R2, it is known that there is a decomposition
Hk(Ω, R2) = Dk(Ω, R2)

P
Gk(Ω, R2)

But, if Ω̄ ⊂ R2 is a compact manifold with boundary, then we have the Hodge
decomposition theorem as follows, which is very useful for our discussion on the
2D Navier-Stokes equations. The following version of the Hodge decomposi-
tion theorem on a compact manifold with boundary is due to G. Schwartz [Sw].

Theorem 5.6.1(Hodge decomposition). Let Ω̄ ⊂ R2 be a compact man-
ifold with boundary. Then, for any u ∈ Hk(Ω, R2)(k ≥ 1), u can be uniquely
written as

u = curlψ +∇φ+ v
∂ψ

∂τ
|∂Ω = 0, ∂φ

∂τ
|∂Ω = 0, ψ,φ ∈ Hk+1(Ω)

v ∈ Ek(Ω, R2) = {v ∈ Dk(Ω, R2)| curlv = 0}
Moreover, Ek(Ω, R2) is finite dimensional and

dimEk(Ω, R2) = β1(Ω), the first Betti number of Ω.
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The vectors in Ek(Ω, R2) are called the harmonic fields.

Proof. For convenience, we prove this theorem in the k-th differentiable
space Ck(Ω, R2)(k ≥ 1). Let F k(Ω) be the space of all Ck differential one form
on Ω. By the Hodge decomposition theorem (see [Sw]), any ω ∈ F k(Ω) can be
uniquely decomposed into

ω = dψ + δβ + v∗

∂ψ

∂τ
|∂Ω = 0, ψ ∈ Ck+1(Ω)

(5.6.7) δβ · n|∂Ω = ∂φ

∂τ
|∂Ω = 0, φ ∈ Ck+1(Ω)

v∗ ∈ Eh(Ω)
where

β = φdx1
a
dx2

δβ = − ∂φ

∂x2
dx1 +

∂φ

∂x1
dx2

v∗ = v∗1dx1 + v
∗
2dx2

and EH(Ω) is the space of C
k harmonic 1-forms:

EH(Ω) = {v∗ ∈ F k(Ω)|δv∗ = 0, dv∗ = 0, and
v∗1 cos(τ, x1) + v

∗
2 cos(τ, x2)|∂Ω = 0}

Under the symplectic homeomorphism J : F k(Ω) → Ck(Ω, R2) given by
the area form ω0 = dx1

Y
dx2 of Ω, we infer from (5.6.7) that

u = Jω = curlψ −∇φ+ v

(5.6.8)
∂ψ

∂τ
|∂Ω = 0, ∂φ

∂τ
|∂Ω = 0

divv = 0, curlv =
∂v2
∂x1
− ∂v1

∂x2
= 0

where v = Jv∗. In fact, the symplectic homeomorphism J can be expressed as
that for any ω = v1dx1 + v2dx2,

Jω =

�
0 −1
1 0

��
v1
v2

�
=

� −v2
v1

�
∈ Ck(Ω, R2)
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Hence, for any u ∈ Ck(Ω, R2) we deduce from (5.6.8) that

u = curlψ +∇φ+ v
divv = 0, curlv = 0

∂ψ

∂τ
|∂Ω = 0, ∂φ

∂τ
|∂Ω = 0, v · n|∂Ω = 0

This is the first conclusion of this theorem.

By Theorem 2.2.2 in [Sw], it is easy to see that Ek(Ω, R2) = JEH(Ω), and

dimEk(Ω, R2) = dimEH(Ω) = β1(Ω)

This proof is complete.
By the Hodge decomposition theorem, we see that a vector field on a two

dimensional manifold is a direct sum of a Hamiltionian, a gradient field and
a harmonic field. On the general manifolds of dimention two, the harmonic
fields are not the Hamiltonian, however, on Ω ⊂ R2 the harmonic fields are the
Hamiltonian, which are characterized by the following theorem

Theorem 5.6.2. Let Ω̄ ⊂ R2 be a compact manifold with boundary and
β1(Ω) 9= 0. Then for any v ∈ Ek(Ω, R2), there is a function ψ ∈ Hk+1(Ω) such
that 

v = curlψ
∆ψ = 0

ψ|∂Ω 9= 0, ∂ψ∂τ |∂Ω = 0

Proof. We know that the first Betti number β1 represent that there are
β1 holes in the interior of Ω. Hence, the boundary ∂Ω has β1 + 1 components,
each of which is homeomorphic to S1:

∂Ω =

β1̂

k=0

Γk

It is well known that each of the below boundary value problems has an
unique solution

(5.6.9)

 ∆ψk = 0
ψk|Γk = 1, for some one k (0 ≤ k ≤ β1)
ψk|Γj = 0,∀j 9= k

Thus, we obtain β1 + 1 functions ψ0, · · · ,ψβ1 . Obviously, there are only β1
functions in {ψk|0 ≤ k ≤ β1} which are linear independent up to a constant.
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For instance

ψ0 − 1 = −
β1[
k=1

ψk

Hence, the vector field vj = curlψj(1 ≤ j ≤ β1) are linear independent, and
vj ∈ Ek(Ω, R2) are the β1 harmonic fields. Thus, this theorem follows from
theorem 5.6.1. The proof is complete.

It is easy to see that the harmonic fields enjoy the properties

(5.6.10) ∆v = 0, and

]
Ω

vdx 9= 0, ∀v ∈ Ek(Ω, R2)

For the periodic boundary condition (5.6.3), the equations (5.6.1) can be
regarded as defined on the torus T 2. Thus the space of the harmonic fields on
T 2 is as follows

Ek(T 2, R2) = {u = (a, b)| a, b ∈ R1} = R2

Hence, the vector fields u ∈ Hk(Ω, R2) with the periodic boundary condition
if and only if u satisfy the condition (5.6.6).

5.6.2. Mathematical setting

According to the above subsection, it is sufficient for us to discuss the
problems ((5.6.1)-(5.6.6)) only in the spaces Hk(Ω, R2)

O
Gk(Ω, R2)(k ≥ 0).

For any f ∈ Hk(Ω, R2)
O
Gk(Ω, R2), we have

f = curlψ +∇φ, ψ,φ ∈ Hk+1(Ω)

Then the equation (5.6.1) can be written as
∂u
∂t + (u ·∇)u = µ∆u−∇p1 + curlψ
divu = 0
p1 = p− φ

Hence, the gradient term ∇φ in the given function f does not influence the
behaviors of solutions of (5.6.1). Thus, we only need to consider the given
functions f in the spaces Hk(Ω, R2).
For the given parameterized terms f(x,λ) in (5.6.1), we introduce the fol-

lowing space

C(R1,Hk) = {f(·,λ) ∈ Hk(Ω, R2)|λ ∈ R1, f(x, 0) = 0,
and f(x,λ) is continuous on λ}
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endowed with the topology that Br(f) ⊂ C(R1,Hk) is an open disk with center
f and radius r defined by

Br(f) = {g ∈ C(R1,Hk)| sup
λ
ng − fnHk < r}

Obviously, C(R1,Hk) is a linear topological space, but not a Banach space.
For the vector field with the boundary condition, we set

Hk
p(Ω, R

2) = {u ∈ Hk(Ω, R2)| u is Ω− periodic}
Hk
F (Ω, R

2) = {u ∈ Hk(Ω, R2)| un =
∂uτ
∂n

= 0 on ∂Ω}
Hk
D(Ω, R

2) = {u ∈ Hk(Ω, R2)| u|∂Ω = 0}
The spaces of the associated Hamiltonian function are given by

Hk
p (Ω) = {ψ ∈ Hk(Ω)|ψ is Ω− periodic}

Hk
F (Ω) = {ψ ∈ Hk(Ω)|∂ψ

∂τ
= 0,

∂2ψ

∂n2
= 0 on ∂Ω}

Hk
D(Ω) = {ψ ∈ Hk(Ω)|Dψ = 0 on ∂Ω}

Usually, we uniformly denote the above spaces by Hk
B(Ω, R

2) and Hk
B(Ω).

It is readily to check that

∆u 9= 0, ∀u ∈ Hk
B(Ω, R

2) and u 9= 0 (k ≥ 2)
Otherwise we can get that]

Ω

∆u · udx = −
]
Ω

|∇u|2dx = 0

which is a contradiction with that u 9= 0. Hence, by (5.6.10) the spaces
Hk
B(Ω, R

2) have no the harmonic fields.
When Ω = (0, 2π)2, there are three cases of the boundary conditions in

which cases the vector fields can be expressed by the Fourier series.
The periodic case, u ∈ Hk

p(Ω, R
2) has the Fourier expansion:

u = (u1, u2) ∈ Hk
p(Ω, R

2)

u1 =
∞[

n,m=−∞
anme

i(nx+my)

(5.6.11) u2 =
∞[

n,m=−∞
bnme

i(nx+my)
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anm = ā−n−m, bnm = b̄−n−m

nanm = −mbnm, a00 = b00 = 0

The associated Homiltomian function is given by

(5.6.12) ψ = −i
∞[

m,n=−∞n9=0,m9=0

1

m
anme

i(nx+my) − i
∞[

m=−∞m9=0

1

m
a0me

imy

−i
∞[

n=−∞n9=0

1

n
bn0e

inx

The free boundary condition, u ∈ Hk
F (Ω, R

2) satisfies

u1(0, y) = u1(2π, y) = 0, 0 ≤ y ≤ 2π
u2(x, 0) = u2(x, 2π) = 0, 0 ≤ x ≤ 2π
∂u1(x, 0)

∂y
=

∂u1(x, 2π)

∂y
= 0, 0 ≤ x ≤ 2π

∂u2(0, y)

∂x
=

∂u2(2π, y)

∂x
= 0, 0 ≤ y ≤ 2π

Therefore, u ∈ Hk
F (Ω, R

2) has the Fourier expansion

u = (u1, u2) ∈ Hk
F (Ω, R

2)

u1 =
∞[

n,m=1

anm sinnx cosmy

(5.6.13) u2 =
∞[

n,m=1

bnm cosnx sinmy

nanm +mbnm = 0

The associated Hamilton function is given by

(5.6.14) ψ =
∞[

n,m=1

1

m
anm sinnx sinmy

The semi-periodic boundary condition, in this case it can be regarded as
the free boundary condition defined on an annulus. This condition is given by

u1(x+ 2kπ, y) = u1(x, y)
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(5.6.15)
∂u1
∂y
(x, 0) =

∂u1
∂y
(x, 2π) = 0

u2(x, 0) = u2(x, 2π) = 0

Under the condition, u = (u1, u2) has the Fourier expansion

u1 =
∞[
m=1

∞[
n=−∞

anm cosmye
inx

(5.6.16) u2 =
∞[
m=1

∞[
n=−∞

bnm sinmye
inx

anm = ā−nm, bnm = b̄−nm

inanm +mbnm = 0, a00 = 0

The associated Hamiltonian function reads

(5.6.17) ψ =
∞[
m=1

∞[
n=−∞

1

m
anm sinmye

inx

5.6.3. Invariance of the eigen-spaces

Let {ρk} ⊂ R1 and {ek} ⊂ H∞B (Ω, R2) be the eigenvalues and eigen-
functions of the following system

(5.6.18)

� −∆ek = ρkek (ρk > 0)
divek = 0

A special property of 2D Navier-Stokes equations is the invariance of the
eigen-spaces of (5.6.18), which is given by the following theorem.
We investigate the equations

(5.6.19)


∂u
∂t = µ∆u− (u ·∇)u−∇ρ+ ek
divu = 0
u(x, 0) = u0(x)

where ek is the eigenfunction of (5.6.11) corresponding to ρk.

Theorem 5.6.3. For the problem (5.6.19) with the periodic boundary
condition (5.6.3), or with the Dirichlet boundary condition (5.6.5), the following
assertions hold:
1). vk = µ

−1ρ−1k ek is a stationary solution of (5.6.19), and the eigen-space
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Ek ⊂ H∞B (Ω, R2) corresponding to ρk is invariant, namely if the initial
value u0 ∈ Ek, then the solution of (5.6.19) satisfies that u(x, t, u0) ∈
Ek,∀t ≥ 0.

2). The stationary solution vk is stable in Ek, i.e1 the solution u(x, t, u0)→ vk
provided u0 ∈ Ek.

Proof. Let Hk
1(Ω, R

2) be the space of all the Hamiltonian which are not
the harmonic fields. Then, by Theorem 5.6.1 and Theorem 5.6.2 we have

Hk(Ω, R2) = Hk1(Ω, R2)
P

Ek(Ω, R2)
P

Gk(Ω, R2)

Denote by

P1 : H
k(Ω, R2)→ Hk

1(Ω, R
2)

P2 : H
k(Ω, R2)→ Ek(Ω, R2)

P3 : H
k(Ω, R2)→ Gk(Ω, R2)

the projection operators. Then the stationary equation of (5.6.19) can be de-
composed into

P1[µ∆u− (u ·∇)u] + ek = 0

(5.6.20) P2[µ∆u− (u ·∇)u] = 0

P3[(u ·∇)u]−∇p = 0
In order to prove the conclusion 1), it is necessary to show that.

(5.6.21) P1[(u ·∇)u] = 0, ∀u ∈ Ek ⊂ H∞B (Ω, R2)

(5.6.22) P2[(u ·∇)u] = 0, ∀u ∈ Ek
Because u ∈ Ek is a Hamiltonian,

u = curlh =

�
∂h

∂x2
,− ∂h

∂x1

�
, h ∈ H∞(Ω)

Noting that u satisfies (5.6.18), we have

(5.6.23) −∆h = ρkh

We see that

(5.6.24)
∂

∂x2
(u ·∇)u1 − ∂

∂x1
(u ·∇)u2
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=
∂

∂x2

�
∂h

∂x2

∂2h

∂x1∂x2
− ∂h

∂x1

∂2h

∂x22

�
− ∂

∂x1

�
− ∂h

∂x2

∂2h

∂x21
+

∂h

∂x1

∂2h

∂x1∂x2

�
=

∂h

∂x2

∂

∂x1
∆h− ∂h

∂x1

∂

∂x2
∆h

= 0, (by (5.6.23))

From (5.6.24) we obtain the equality (5.6.21).
The equality (5.6.22) is equivalent to that

(5.6.25)

]
Ω

(u ·∇)u · vdx = 0, ∀u ∈ Ek, v ∈ Ek(Ω, R2)

For the periodic boundary condition, v=constant in Ek(Ω, R2), the equality
(5.6.25) obviously holds. For the Dirichlet boundary condition, by Theorem
5.6.2, there is a ψ ∈ Hk+1(Ω) such that

v = curlψ =

�
∂ψ

∂x2
− ∂ψ

∂x1

�
Hence we have (by u|∂Ω = 0)]

Ω

(u ·∇)u · vdx = −
]
Ω

ψ

�
∂

∂x2
((u ·∇)u1)− ∂

∂x1
((u ·∇)u2)

�
dx

= 0, (by (5.6.24))

Thus, we derive the equality (5.6.22)
In view of (5.6.21)(5.6.22), the equations (5.6.20) restricted on Ek is equiv-

alent to the following equation

µ∆u+ ek = 0, ∀u ∈ Ek
Thus, the conclusion 1) is proven.
Because the eigen-space Ek is invariant, the equation (5.6.19) restricted on

Ek can be written as

(5.6.26)

�
∂u
∂t = µ∆u+ ek, u ∈ Ek
u(x, 0) = u0, u0 ∈ Ek

Let Ek = span{ek1 , · · · , ekm}, u =
Sm
i=1 xi(t)eki , u0 =

Sm
i=1 αieki , and ek =

ek1 . Then the equation (5.6.26) is equivalent to the ordinary differential equa-
tions

(5.6.27)


dx1
dt = −µρkx1 + 1,
dxj
dt = −µρkxj ; 2 ≤ j ≤ m
xi(0) = αi
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The solutions of (5.6.27) read

x1(t) = α1e
−µρkt + µ−1ρ−1k (1− e−µρkt)

xj(t) = αje
−µρkt, 2 ≤ j ≤ m

It is clear that

u(x, t) =
m[
i=1

xi(t)eki → µ−1ρ−1k ek1 = µ
−1ρkek, as t→∞

The proof is complete.

Remark 5.6.4. When the Betti number β1(Ω) > 0, in general the theorem
of invariant eigen-spaces does not hold for the free boundary condition. The
reasion is that the equality (5.6.22) is not true. Indeed, we find that]

Ω

(u ·∇)u · vdx =
]
Ω

(u ·∇)u · curlψdx

=

]
∂Ω

(u ·∇)u · τψds (by (5.6.24))

∀u ∈ Ek, v ∈ Ek(Ω, R2). By Theorem 5.6.2,

ψ|Γi = Ci, 0 ≤ i ≤ β1, (∂Ω =

β1̂

j=1

Γj)

where Ci(0 ≤ i ≤ β1) are constant, and there is a Cj 9= 0. Thus]
∂Ω

(u ·∇)u · τψds =

β1[
i=0

Ci

]
Γi

(u ·∇)u · τds

=

β1[
i=0

Ci

]
Γi

|u| ∂
∂τ
u · τds (by un|∂Ω = 0)

=

β1[
i=0

Ci

]
Γi

[|u|∂uτ
∂τ
− |u|k(x)un]ds

=

β1[
i=0

Ci

]
Γi

|u|∂uτ
dτ
ds

where k(x) is the carvature of ∂Ω at x. Usually ∂uτ
∂τ |∂Ω 9= 0, it means that the

eigen-space Ek is not invariant for the free boundary condition in general.
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But, if the Betti number β1(Ω) = 0, i.e. Ω is homeomorphic to an open
disk, or the equations (5.6.19) are defined on anulus, i.e. supplemented with
the semi-periodic boundary condition (5.6.15), then the theorem of invariant
eigen-spaces still holds true.

Theorem 5.6.5. For the free boundary condition, if β1(Ω) = 0, or the
condition (5.6.15) is imposed, then the conclusions of Theorem 5.6.3 hold true.

Proof. If β1(Ω) = 0, then E
k(Ω, R2) = {0}. Hence the projections (5.6.21)

and (5.6.22) are valid. When the boundary condition is (5.6.15) the harmonic
space reads

Ek(Ω, R2) = {u = (a, 0)|a ∈ R1} = R1
In this case, it is obviously that the equalities (5.6.21)(5.6.22) hold. Thus, this
theorem is derived.

5.6.4. Global stability

This subsection is devoted to the study of global stability for the following
problems

(5.6.28)


∂u
∂t = µ∆u− (u ·∇)u−∇p+ λe1, x ∈ Ω = (0, 2π)2
divu = 0
u(x, 0) = u0

where e1 is an eigenfunction of (5.6.18) corresponding to the first eigenvalue ρ1,
and the associated boundary condition is one of the conditions ((5.6.3),(5.6.4)
and (5.6.15)).
In view of ((5.6.11)-(5.6.17)) it is clear that the eigen-spaces E1 of (5.6.18)

corresponding to ρ1 are respectively as follows

E1 = span{(sinx2, 0), (cosx2, 0), (0, sinx1), (0, cosx1)}; for (5.6.3)
E1 = span{(sinx1 cosx2,− cosx1 sinx2)}, for (5.6.4)
E1 = span{(cosx2, 0)}, for (5.6.15)

and the eigenvalue ρ1 = 1 for (5.6.3) and (5.6.15), ρ1 = 2 for (5.6.4).
We know from Theorem 5.6.3 and Theorem 5.6.5 that vλ = λµ−1ρ−11 e1 ∈ E1

is a stationary solution of (5.6.28). In the following, we shall prove that for any
λ ∈ R1, the stationary solution vλ is globally asymptotically stable for (5.6.28),
i.e. for any initial value u0 ∈ Hk

B(Ω, R
2)(k ≥ 3), the solution of (5.6.28) satisfies

lim
t→∞ nu(x, t, u0)− vλnH1 = 0.
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Theorem 5.6.6. For any λ ∈ R1 the stationary solution vλ = λµ−1ρ−11 e1
is global asymptotically stable in the H1-norm for (5.6.28) provided the initial
value u0 ∈ H3

B(Ω, R
2), and locally asymptotically stable in the Hk-norm for

any k ≥ 1.

Proof. Let the eigenfucntions {ek} ⊂ H∞B (Ω, R2) of (5.6.18) be as follows

ek = curlhk = {∂hk
∂x2

,− ∂h

∂x1
}

Obviously, the functions hk satisfy

(5.6.29) −∆hk = ρkhk

For the boundary conditions ((5.6.3),(5.6.4) and (5.6.15)) from ((5.6.11)-
(5.6.17)) we can see that {ek} and {hk} respectively constitutes the orthogonal
base of Hk

B(Ω, R
2) and Hk+1

B (Ω),∀k ≥ 0. Moreover, the Hamiltonian function
ψ ∈ Hk+1

B (Ω) satisfy the boundary condition

(5.6.30)

 ψ is Ω− periodic, for (5.6.3)
ψ|∂Ω = 0,∆ψ|∂Ω = 0, for (5.6.4)
ψ is x1 − periodic, and ψ = ∆ψ = 0 on y = 0, 2π, for (5.6.15)

Let

u = curlψ = { ∂ψ
∂x2

,− ∂ψ

∂x1
}

From (5.6.28) and (5.6.29) it follows that the Hamiltonian function ψ satisfies

(5.6.31)

�
∂∆ψ
∂t = µ∆2ψ + [ψ,∆ψ]− λρ1h1

ψ(x, 0) = ψ0

where

[ψ,φ] =
∂ψ

∂x1

∂φ

∂x2
− ∂ψ

∂x2

∂φ

∂x1

In order to prove this theorem, we only need to investigate the problems
(5.6.31) with the boundary conditions (5.6.30). Let

φ = ψ − λµ−1ρ−11 h1

where λµ−1ρ−11 h1 is the stationary solution of (5.6.31). Then we get

(5.6.32)
∂∆φ

∂t
= µ∆2φ+ λµ−1ρ−11 ([h1,∆φ] + [φ,∆h1]) + [φ,∆φ]

= µ∆2φ+ λµ−1ρ−11 [h1,∆φ+ ρ1φ] + [φ,∆φ]
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(5.6.33) φ(x, 0) = φ0 = ψ0 − λµ−1ρ1h1

Multiplying the equation (5.6.32) by ∆φ+ρ1φ and integrating it, we can derive
that

(5.6.34)
d

dt

]
Ω

[|∆φ|2 + ρ1∆φ · φ]dx = µ
]
Ω

[∆2φ ·∆φ+ ρ1|∆φ|2]dx

In the above equality, we have employed the boundary condition (5.6.30) and
the following fact]

Ω

[f, g]fdx = −
]
[g, f ]fdx = 0, ∀f, g ∈ Hk

B(Ω), k ≥ 1.

Because {hj} is a common orthogonal base of all the spaces Hk
B(Ω)(k ≥ 0), as

φ ∈ Hk
B(Ω),φ =

S∞
j=1 φjhj , and

nφnHk =

]
Ω

(−1)k∆kφ · φdx =
∞[
j=1

φ2jρ
k
j , (k ≥ 0)

here we have made the normalization]
Ω

|hj |2dx = 1, ∀j = 1, 2, · · · .

Noting that ρj > ρ1 ≥ 1,∀j ≥ m+ 1,m the multiplicity of ρ1, from (5.6.34) it
follows that

d

dt

∞[
j=m+1

ρj(ρj − ρ1)φ
2
j = −µ

∞[
j=m+1

ρ2j(ρj − ρ1)φ
2
j

(5.6.35) ≤ −ρm+1µ
∞[

j=m+1

ρj(ρj − ρ1)φ
2
j

By the Gromwell inequality, we infer from (5.6.35) that the solution of (5.6.32)(5.6.33)
satisfies ∞[

j=m+1

ρj(ρj − ρ1)φ
2
j ≤ Ce−µρm+1t

where C = n(∆2+ρ1∆)φ0nL2 is a constant. Thus, for the solutions of (5.6.32)(5.6.33)
we obtain that

(5.6.36) nφ− PφnH2 ≤ Ce− 1
2µρm+1t, C > 0 a constant.
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where
P : Hk

B(Ω)→ hE1 the projection.hE1 the eigen-space of (5.6.29) corresponding to ρ1. We denote by
hφ = φ− Pφ

Then, from (5.6.32) it follows that Pφ satisfies

ρ1
d

dt
Pφ = −µ1ρ21Pφ− P [Pφ,∆hφ+ ρ1hφ]−

−P [hφ,∆hφ]− λµ−1ρ−11 P [h1,∆hφ+ ρ1hφ]
Thus, we get that

Pφ = Pφ0e
−µρ1t − ρ−11 e

−µρ1t
] t

0

eµρ1τ [P [Pφ,∆hφ+ ρ1hφ]+
(5.6.37) +P [hφ,∆hφ] + λµ−1ρ−11 P [h1,∆hφ+ ρ1hφ]]dτ
From (5.6.36) we can derive the estimates

|P [hφ,∆hφ]| =

�����
]
Ω

%
∂hφ
∂x1

∂∆hφ
∂x2

− ∂hφ
∂x2

∂hφ
∂x1

&
hidx

�����
=

�����
]
Ω

%
∂hφ
∂x1
∆hφ ∂hi

∂x2
− ∂hφ

∂x2
∆hφ ∂hi

∂x1

&
dx

�����
≤ C

]
Ω

|∆hφ| · |∇hφ|dx
≤ Cnhφn2H2

≤ Ce−µρm+1t

where hi ∈ hE1, (1 ≤ i ≤ m), C > 0 the constant dependent on the moduli of
the first eigen-functions hi.

|P [h1,∆hφ+ ρ1hφ]| ≤ Ce− 1
2µρm+1t

|P [Pφ,∆hφ+ ρ1hφ]| ≤ Ce− 1
2µρm+1tnPφn

By the estimates above, from (5.6.37) we obtain (noting that ρm+1 ≥ 2ρ1)

(5.6.38) nPφn ≤ Ce−µρ1t + Ce−µρ1t
] t

0

nPφndτ

358



Let

(5.6.39) nPφn = e−µρ1tz(t) (z(t) ≥ 0)

From (5.6.38) we get

(5.6.40) z ≤ C + C
] t

0

e−µρ1τz(τ)dτ

By the Gromwell inequality, from (5.6.40) we obtain

z(t) ≤ Ce− 1
µρ1

(e−µρ1t−1) ≤ const.

Thus, we infer from (5.6.39) that Pφ → 0 in hE1. Therefore we deduce from
(5.6.36) that

lim
t→∞ nψ − λµ−1ρ−11 h1nH2 = lim

t→∞ nφnH2 = 0

The first conclusion of this theorem is proven.
It is know that the solutions of (5.6.31)(5.6.30) are C∞ provided the initial

value ψ0 ∈ C∞, and the eigenvalue of

∆2hk = ρ2khk

have the asymptotical property

ρ2k ∼ ck2

On the other hand, the eigen-problem

(5.6.41)

� −µ∆2φ− λµ−1ρ−11 [h1,∆φ+ ρ1φ] = β(λ)φ
φ ∈ Hk

B(Ω), k ≥ 4

has no the eigenvalues possessing the nonnegative real parts for all λ ∈ R1,
otherwise, there must exist a λ0 ∈ R1 such that β(λ0) = 0(because each eigen-
value of (5.6.41) is isolated, it is continuously dependent on λ(see [Ka]), and
β(0) = −ρ2k, k = 1, 2, · · ·), then the eigenfunction ψ0 9= 0 of (5.6.4) satisfies

(5.6.42) µ∆2ψ0 + λ0ρ
−1
1 µ

−1[h1,∆ψ0 + ρ1ψ0] = 0

In the same fashion as above one can deduce from (5.6.42) that ψ0 ∈ hE1, and
it means that ψ0 = 0, a contradiction.
Hence, for the equation (5.6.32) the conditions in Theorem 3.2.6 are satis-

fied. Thus, the second conclusion is proven. This proof is complete.
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From Theorem 5.6.6, we can deduce the local stability of (5.6.1) in a neigh-
borhhod of λe1,∀λ ∈ R1.

Theorem 5.6.7. For any λ ∈ R1, there is a neighborhhodO ⊂ Hk
B(Ω, R

2)(k ≥
1) of λe1 such that for any f ∈ O the equations (5.6.1) are locally stable, i.e.
the stationary solution of (5.6.1) for f ∈ O is locally asymptotically stable.

Proof. For any f ∈ O, f = λe1 + g(x), and

(5.6.43) ngnHk < �, for some � > 0

Let g = curlβ,β ∈ Hk+1(Ω), and u = curlψ. Then we have

(5.6.44)

�
∂∆ψ
∂t = µ∆2ψ + [ψ,∆ψ]− λρ1h1 +∆β

ψ ∈ Hk+3
B (Ω),ψ(x, 0) = ψ0

We consider the stationary equation of (5.6.44)

(5.6.45) µ∆2ψ + [ψ,∆ψ] = λρ1h1 −∆β
We define the mapping A+G : Hk+3

B (Ω)→ Hk+1(Ω)(k ≥ 1) by
Aψ = µ∆2ψ, Gψ = [ψ,∆ψ]

By Theorem 5.6.6 we can derive that ∀λ ∈ R1 the solution vλ = λµ−1ρ−11 h1 of
Aψ +Gψ = λρ1h1 is unique, and the derivative operator

(5.6.46) A+DG(vλ) : H
k+3
B (Ω)→ Hk−1(Ω)

which is a linear completely continuous field, is a homeomorphism because
it has no zero eigenvalues. Indeed, (5.6.41) and (5.6.42) are the eigenvalue
equations of (5.6.46).
By the inverse function theorem, for any � > 0 sufficiently small there is a

δ > 0 such that the equation (5.6.45) has unique solution hψ = λ1ρ
−1
1 µ

−1h1+ hφ
with

(5.6.47) nhφnHk+3 < δ (δ → 0 as �→ 0)

provided the condition (5.6.43) satisfied.

Let φ = ψ − hψ. Then the stability problem of (5.6.44) on the stationary

solution hψ is equivalent to that of the below equation on the stationary solution
φ = 0

−∂∆φ
∂t

= −µ∆2φ+ λρ−11 µ−1[∆φ+ ρ1φ, h1]+

+[∆φ, hφ] + [∆hφ,φ] + [∆φ,φ]
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Because the eigenvalues of (5.6.41) have the negative real parts for all λ ∈
R1. Hence, ∀λ ∈ R1 there exists δ > 0 such that if (5.6.47) is fulfilled the
eigenvalue problem

−µ∆2φ− λρ−11 µ
−1[h1,∆φ+ ρ1φ] + [∆hφ,φ]

−[hφ,∆φ] = βφ, φ ∈ Hk
B(Ω), k ≥ 4

has no the eigenvalues having the nonnegative real parts. Therefore, by Theo-
rem 3.2.2 we can derive this theorem. This proof is complete.

5.6.5. Taylor vortex type of the periodic structure

The invariance of eigen-spaces is related with the phenomena of the Taylor
vortices. The Taylor vortices appear in the case of fluid flows contained between
two rotating cylinders, which is studied originally in Taylor’s 1923[Ty]. In fact,
such periodic structure appears in many problems of mathematics and physics,
for instance see [FP] and [BLP].
Let the domain Ω = (0, 2π)2. In this subsection, we shall restrict our atten-

tion to the boundary conditions ((5.6.3),(5.6.4) and (5.6.15)). The Taylor fields
on Ω with the boundary conditions considered are referred to the Hamiltonian
defined by

v = curlψ,ψ satisfy the boundary conditions (5.6.30),

(5.6.48) ψ take the functions below

{cosnx1 sinmx2, cosnx1 cosmx2, sinnx1 sinmx2}
The Taylor vortices are referred to the periodic structure of phase diagram of
the Taylor field (5.6.48) as shown in Fig 5.15 below
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Fig. 5.15. The phase diagram of v = (cos 2x1 cos 2x2, sin 2x1 sin 2x2)

In the following, we hsall illustrate the applications of the previous theorems
in Subsections 5.6.3-5.6.4 to the Taylor vortex type of periodic structure by
some examples.
The problem is given by

(5.6.49)


∂u
∂t + (u ·∇)u = µ∆u−∇P + f(x)
divu = 0
u(x, 0) = u0

Example 5.6.8. Let the periodic boundary condition be imposed, the
initial value u0 = 0, and the function f in (5.6.49) be taken by

(5.6.50) f = (sinx1 cosx2,− cosx1 sinx2)
By Theorem 5.6.3, the solution of (5.6.49) reads as

(5.6.51) u =
1

2µ
(1− e−2µt){sinx1 cosx2,− cosx1 sinx2}

When the periodic eternal force (5.6.50) is exerted, the fluid motion is
governed by the Taylor field (5.6.51) whose topological structure is illustrated
by Fig. 5.16(a)

Fig. 5.16.

In [MW,1], the structure evolution of the Taylor vortices is studied. A ba-
sic result (Theorem 4.3 in [MW,1] says that there is an open and dense set
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O ⊂ Hk
P (Ω, R

2) such that for any g ∈ O, under the small perturbation f + �g,
the topological structure of the perturbated solution u� of (5.6.49) in a time
inteval 0 < t < t0 is topologically equivalent to that as shown in Fig.5.16(b).

Example 5.6.9. We still consider the periodic boundary condition. The
function f in (5.6.49) is given by

(5.6.52)

�
f = e1 + �g, |�| ≥ 0 sufficiently small
e1 = (sinx2, cosx1)

The function e1 is the first eigenfunction of (5.6.18) in Hk
P (Ω, R

2). By Theorem
5.6.7, the stationary solution v�(x) of (5.6.49) is locally asymptotically stable.
In [MW,1], a theorem (Theorem 6.2) says that there is an open and dense

set O ⊂ Hk
P (Ω, R

2), such that if g ∈ O, the stationary solution v�(x)(� 9=
0) of (5.6.49) with (5.6.52) is structure stable whose topological structure is
topologically equivalent to that as shown in Fig. 5.17(b). Thus, we infer that
there is a neighborhood U ⊂ Hk

P (Ω, R
2)(k ≥ 2) of v�(x), for any the initial

value u0 ∈ U , there exists a T0 ≥ 0 such that the solution u(x, t, u0) of (5.6.49)
is topologically equivalent to v�(x)(� 9= 0) for any t > T0.
The topological structures of v� at � = 0 and � 9= 0 are illustrated by

Fig.5.17(a) and (b)

(a) structure of v� with � = 0 (b) structure of v� with � 9= 0
Fig. 5.17.

Example 5.6.10. We consider the free boundary condition (5.6.4). The
function in (5.6.49) is given by

(5.6.53)

�
f = e1 + �g, |�| ≥ 0 sufficiently small
e1 = (sinx1 cosx2,− cosx1 sinx2)
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The function e1 is the first eigenfunction of (5.6.18) inHk
F (Ω, R

2)(k ≥ 2), there-
fore the stationary solution v�(x) of (5.6.49) is locally asymptotically stable.
The generic Theorem of structure stability on stationary solution for the

Navier-Stokes equations with the free boundary condition is also valid (see
[MW,2]). Hence there is an open and dense set O ⊂ Hk

F (Ω, R
2) as well a

neighborhhod U ⊂ Hk
F (Ω, R

2)(k ≥ 2) of e1, such that for any g ∈ O and the
initial value u0 ∈ U , there exists a T0 ≥ 0, at each moment t > T0 the solu-
tion u(x, t, u0) of (5.6.49)(5.6.53) with |�| > 0 sufficiently small is topologically
equivalent to the vector field which has the topological structure as shown in
Fig.5.16.(b).

5.6.6. Asymptotically time-periodic solutions

We consider the Navier-Stokes equations where the given functions f are
time dependent

(5.6.54)


∂u
∂t + (u ·∇)u = µ∆u−∇p+ f(x, t), x ∈ Ω ⊂ R2
divu = 0
u(x, 0) = u0

which are supplemented with one of the boundary conditions ((5.6.3)-(5.6.5)).
When the eternal forces f are given to be the time-periodic functions, in

general the solutions of (5.6.54) are not time-periodic. However, we now con-
cern this problem whether or when the solutions are the asymptotically time-
periodic. To this end, we first introduce

Definition 5.6.11. Let the given function f(x, t) in (5.6.54) be time-
periodic. We say that a solution u(x, t, u0) of (5.6.54) is asymptotically time-
periodic if there exists a time periodic function v(x, t) ∈ H2

B(Ω, R
2) such that

lim
t→∞ nu(x, t, u0)− v(x, t)nH2 = 0

Ofcourse, in general, for the arbitrary time-periodic functions and the ini-
tial values u0 the solutions u(x, t, u0) of (5.6.54) may be not asymptotically
time-periodic. But under some appropriate conditions they will be. By apply-
ing the invariance theorem of eigen-spaces, we can give some examples on the
existence of asymptotically time-periodic solutions. The conditions that make
the invariance of eigen-spaces hold are imposed in this subsection.

Theorem 5.6.12. Let f ∈ L2((0, 2π), Ek) be a time-periodic function,
Ek ⊂ H2

B(Ω, R
2) an eigen-space of (5.6.18). Then, for any initial value u0 ∈ Ek,

the solution of (5.6.54) is asymptotically time-periodic.
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Proof. By Theorems (5.6.3 and 5.6.5), the eigen-spaces of (5.6.18) are in-
variant for the system (5.6.54). By the projections (5.6.21)-(5.6.22), the system
(5.6.54) restricted on Ek is equivalent to

(5.6.55)

�
dxi
dt = −µρkxi + fi(t), 1 ≤ i ≤ m = dimEk
xi(0) = αi

where m is the multiplicity of the eigenvalue ρk,

f(x, t) =
m[
i=1

fi(t)eki

u0(x) =
m[
i=1

αieki

u(x, t) =
m[
i=1

xi(t)eki

{ek1 , · · · , ekm} is the orthogonal base of Ek.
From (5.6.55) we can obtain

xi(t) = αie
−µρkt + e−µρkt

] t

0

eµρkτfi(τ)dτ

Because f(x, t) is t-periodic, we have the below Fourier expansion:

fi(t) = Ci +
∞[
m=1

[aim cosmt+ bim sinmt]

∞[
m=1

[a2im + b
2
im] <∞

We see that

e−µρkt
] t

0

eµρkτ sinmτdτ

=
1

m
(1 +

µ2ρ2k
m2

)−1[e−µρkt − cosmt+ µρk
m

sinmt]

e−µρkt
] t

0

eµρkτ cosmτdτ

=
1

m
(1 +

µ2ρ2k
m2

)−1[−µρk
m
e−µρkt + sinmt+

µρk
m

cosmt]

From the equalities above it is easy to see that the solution of (5.6.55) is asymp-
totically time-periodic. The proof is complete.
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5.6.7. Open problems on the stability and bifurcation

We wonder whether the following two theorems are true or not.

Theorem 5.6.13. For any f ∈ C(R1,Hk)(k ≥ 1), there two parameter
values −∞ ≤ λ1 <∞ and 0 < λ2 ≤ ∞, such that the following assertions hold.
1). For any λ1 < λ < λ2, the stationary solution vλ ∈ Hk+2

B (Ω, R2) of (5.6.1)
is locally asymptotically stable in H1-norm.

2). If |λi| <∞(i = 1,or = 2), then the system (5.6.1) must bifurcate from
(vλi ,λi) an invariant set.

Theorem 5.6.14. There exists an open and dense set F ⊂ C(R1,Hk)(k ≥
1), for any f ∈ F , there are two parameter values −∞ < λ1 < 0 and 0 < λ2 ≤
∞, such that the following assertions hold.
1). For any λ1 < λ < λ2, the stationary solution vλ ∈ Hk+2

B (Ω, R2) of (5.6.1)
is locally asymptotically stable in H1-norm.

2). For the free and the Dirichlet boundary conditions, if |λi| <∞(i = 1, or
= 2), then the system (5.6.1) must bifurcate from (vλi ,λi) either a
stationary solution or a periodic orbit.

3). For the periodic and the semi-periodic boundary conditions, if |λi| <∞,
then the system (5.6.1) bifurcates from (vλi ,λi) a S

1-invariant set.
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Bibliographical Notes and Remarks

This book is a summary of the author’s works(partly with Q. Yu) on the
subjects of nonlinear operator theory, bifurcation theory and partial differen-
tial equations. Most of the results were completed recently by the author, part
results, which are collected in Section 1.5-1.6 and Section 4.3-4.4, are referred
to T. Ma and Q. Yu[MY,1-4], T. Ma[Ma,1-2], Q. Yu and T. Ma[YM,1-2], and
the contents in Section 4.5 are referred to T. Ma[Ma, 3-4], Q. Yu, Q. Yu and
T. Ma[YM, 3-5]. Especially, the author would like to mention that the results
on the local uniqueness of bifurcated branch of positive solutions for the non-
linear second order elliptic equations in Subsection 4.5.1-4.5.2([Ma,3-4]) were
completed under the supervision by Prof. P. L. Lions during the author visited
CEREMADA, University Paris 9, in 1990-1991.
We believe that some results in this book may be covered by the other works

which we don’t know, and thus they are not mentioned here. We would like to
give some references closely related with the material presented.

Chapter I. The results introduced in Section 1.1 are classical, they can
be found in many books and Texts. The remarkable references are partly the
books of R. Temam [Te], S. Chow and J. K. Hale[CH], D. Gilbarg and N. S.
Trudinger[GT], T. Aubin[Au] etc.
There are plentiful studies on the theories of abstract operatos on Banach

spaces(e.g. the fixed point theory, the monotone operator theory, the varia-
tional methods, the operator semigroups etc.) and their applications to the
partial differential equations. Some good references related with the material
given in Section 1.2 are referred to E. Zeidler[Ze], M. A. Krasnoselskii[Kr], F.
E. Browder[Bd,1,2], H. Brezis[Bz], M. Struwe[St], A. Pazy[Pa].
Some works related with the material in Section 1.5 are referred to O. A.

Ladyzenskaja and N. N. Uralceva[LU], M. Giaquinta[Ma,1,2].
On the Keldys-Fichera boundary value problem for the linear equations with

nonnegative characteristic form of second order, we refer to G. Fichera[Fi], M.
V. Keldys[Ke], O. A. Cleinik and E. V. Radkevich[OR], J. Kohn and L. Niren-
berg[KN].

Chapter II. There are lots of works on the global existence and regularity
of the initial boundary value problems of quasi-linear and semilinear parabolic
equations and systems, we briefly refer to O. A. Ladyzenskaja, V. A. Solonnikov
and N. N. Uralceva[LSU], J. L. Lions[Li], A. Haraux[Ha], A. Friedman[Fr]. On
the initial boundary value problems of nonlinear wave equations we refer to K.
Jorgens[Jr], D. H. Sattinger[Sa,1,2], R. Temam[Te].

Chapter III. On the eigenvalue problem of linearized operators we refer to
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the excellent monographs of T. Kato[Ka], N. Dunford and J. T. Schwartz[DS].

Chapter IV. A detail introduction on the Liapnov-Schmidt method is
given by S. Chow and J. K. Hale[CH], W. Cheng[Ch]. The global bifurcation
theorem(Theorem 4.1.2) can be found in P. Rabinowitz[Ra]. Theorem 4.1.5 is
due to M. A. Krasnoselskii[Kr].

Chapter V. The Kaldor’s model on the business cycle can be found in G.
Gabisch and H. Lorenz[GL]. On the Hopf bifurcation and the center manifold
theorem of nonlinear operator defined on Hilbert spaces we refer to G. Iooss and
D. D. Joseph[IJ]. In addition, we would like to mention the works of M. Golu-
bitsky and D. G. Schaeffer[GS], D. H. Sattinger[Sa, 3-4], V. I. Iudovich[Iu,1-2].
We need to point that the results in Section 5.3-5.4 follow the idea of T.

Ma and C. Zhong[MZ], although there some errors in the note.
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