Chapter V
Dynamic Bifurcation of Nonlinear
Evolution Equations

In this chapter, we mainly discuss the bifurcation of invariant sets the at-
tractors and invariant manifolds for the finite and infinite dimensional dynam-
ical systems. In section 5.3-5.4, we present a set of theory to deal with this
problem which generalizes the Hopf bifurcation to the more general cases. We
have known that the Hopf bifurcation will occur when the real parts of a pair
of complex eigenvalues pass through zero. In fact, the dynamic bifurcation
theory set in this chapter tells us that under some conditions the bifurcation of
invariant sets likewise appears provided the real parts of some eigenvalues pass
through zero. In addition, in Section 5.3 we also give a stability theorem on
the bifurcation for the finite dimensional dynamical systems, which amounts
to saying that there is an open and dense set F in the space 03 Q% R, R") of
the parameterized vector fields, for any vector field v € F there exists a neigh-
borhhod O C C3'' (2 x R, R™) of v such that all the vector fields in O have the
same bifurcation structure, i.e. the same number of the bifurcation points and
the same topological structure near the bifurcated invariant manifolds.

In section 5.5, we apply the theories and methods developed in section 5.3-
5.4 to investigate the bifurcation of invariant manifolds for the nonlinear partial
differential equations with the dissipative structure related with the mechanical
and physical problems.

In the final section (section 5.6), we study the dynamical properties of 2D
Navier-Stokes equations with the free, the Dirichlet, and the periodic boundary
conditions. We find that the eigen-spaces of the Laplacian are invariant for the
2D Navier-Stokes equations with the Dirichlet boundary condition and the
periodic boundary condition, and they are also invariant for all the considered
boundary conditions in the domain having the genus zero. By virtue of this
property, the problems of the global stability of the stationary solutions, the
Taylor vortex type of periodic structure, and the existence of asymptotically
time-periodic solution are discussed.
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5.1. Examples and Introduction
5.1.1. Pendulum in a symmetric magnetic field

A famous example of the dynamic bifurcation is given by the Hopf’s bi-
furcation. In fact, the dynamic bifurcation is very general in the nonlinear
evolution equations. In order to illustrate this point, we shall in this subsec-
tion investigate the pendulum in a vertical plane with a symmetric magnetic
field, which is a typical example of the dynamic attractor bifurcation.

We consider a pendulum in a verticalplane, see Fig. 5.1 below.
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Fig. 5.1

Suppose that the length of this pendulum [ = 1, and the one end of motion
is tied a small iron ball of mass m = 1. The small ball moves with friction on
a vertical unite circle. On the both sides of the small ball there symmetric are
two magnetized plates attracting it, which have the same magnetic magnitude.
The distances r from the magnetized plates to the downward vertical of the
pendulum are equal, and r > 1.

From the intuition, we can see that as the magnitude A\ of the magnetic
fields on the both laterals is smaller to some critical value Ag, i.e. A < Mg,
under the action of friction and gravity, the pendulum will gradually stop at
the position § = 0, where 0 is the angle of the pendulum with the downward
vertical. But, as the magnitude A exceeds the critical value Ay, on the both
sides of the center position § = 0 two equilibrum positions £y # 0(A > Ao)
will symmetrically appear, at where the small ball under the action of friction
will gradually stop. And that the small ball will stop at which one of the two
positions 46, entirely depends on the initial state of the small ball.

In the following, we shall discuss in detail the problem. The motion equation
of the pendulum in a vertical plane with symmetric magnetic field is as follows

d?o do

= —ka —gsinf + fcosf
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with the initial condition

do
9(0) = g, $|t:0 = Q2

where k > 0 is the damping coeficient, g the gravity, and f the magnetic force.
By the Coulomb lows

A A

- R-F = -
! 2T T (r=sinf)?  (r+sinf)?

4rA sin 0 .
= m’:/\sme, (by r>1)

where A\ = %, A is propotional to the magnitude of the magnetic field. Thus,
the motion equation can be approxitively expressed by

d?0 df . .
o —kE — gsinf + Asinf cos .

Letting 21 = 0,25 = df/dt, then the motion equation is transformed into the
following system

d_a? =14
1.1
(5.1.1) { S = —kxa — gsinwy + Asinw cos 1y

with the initial condition
(512) $1(0) = Oq,iEQ(O) = Q9

By the Taylor expansion

1
Asinz cosxy — gsinay = (A — g)axg — 6()\ - 9)95?

1
—52ad +ofaa )

then the system (5.1.1) near z = 0 can be expressed as

doy — o
5.1.3 i
( ) { % =(A—g)x1 — kxa + 3(g — Nt — 3} + o(|z1?)
It is clear that as A < g, the eigenvalues of(5.1.3) is as follows

—k+ /K —4(g— N
Ay = 5

whose real parts are negative. In this case the equilibrum point = 0 of(5.1.1)
is asymptotically stable.

258



As A = g, the equation (5.1.1) near z = 0 is as follows
doy _

5.1.4 ¢
(14 { dj% = —kzy = 3927 + o(|21[*)

The eigenvalues of (5.1.4) are Ay = 0, \s = —k, namely the system (5.1.4) is
on the critical state. By using Theorem 5.1.2 in Subsection 5.1.4, it is easy to
derive that = 0 is asymptotically stable.

As \ > g, two stationary solutions (zi,z5) = (£6y,0) of (5.1.1) bifurcate
from x = 0, which are as follows

Oy = cos g/

And it is easy to verify that (£60y,0) are two asymptotically stable equilibrum
points.
The discussion above can be summarized as the following theorem.

—
N

Fig. 5.2. When A < g,x = 0 is an attractor

¥

N

X
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Fig 5.3. When X\ > g, two attracted basins U; and Us
bifurcate from the attracted basin U.
Theorem 5.1.1. There exists an open set U C R2,0 € U, such that when
A < g, for all the initial values (a1, 2) € U, the solutions of (5.1.1)(5.1.2)

]
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satisfy that
lim z(t,a) =0, a=(a,az) €U

t—oo
and when A > g with A — g sufficiently small, two stationary solutions (£6y,0)
of (5.1.1) bifurcate from = = 0, and the open set U is decomposed into two
open subsets Uy, Us (U1 NUs = ¢, U = Uy +Us) with (6y,0) € Uy, (—6x,0) € Uy
and 0 € 9U; N AUy, such that the solutions of (5.1.1)(5.1.2) satisfy

tlim (x1(t, @), x2(t, @) = (02,0), asa=(a1,a2) €Uy

tlim (z1(t, @), z2(t, @) = (—=0x,0), as a = (a1,a2) € Us.

This theorem describes the dynamic attractor bifurcation of a pendulum in a
symmetric magnetic field, which can be shown by Fig 5.2-5.3.

5.1.2. Business cycles for the Kaldor’s model

In this subsection, we shall use the Hopf bifurcation theorem to discuss the
business cycle problems for the Kaldor’s model, which is also a typical example
of the dynamic attractor bifurcation. The Kaldor’s model is given by

e — I(z,y,\) — S(x,y,\)
(5.1.5) { % =I(z,y,)).

where z is the total social income, y the total socal captal, A the industrial
technique parameter, I(z,y, A) the investing function and S(z,y, A) the savings
function.

For each technique parameter A, the social business has an equilibrum state
(z0,Y0), 2o > 0,yo > 0, which is the function of A. For the sack of simplicity,
we assume that (zg,yo) is independent of A. According to the ecnomic laws, in
neighbor-hood of (zg,10) € R?,I and S satisfy that

ol ol oS oS

%>0, 8—y§0, %>0, 8_y>0
By the basic conditions, in a neighborhood of (zg, y0), I and S are taken as the
following forms

I =ax(x —x0) — az(y —yo)°
S = ba(z — z0) + ex(y — yo) + By(z — 20)* + vz (y — yo)®.
where ay, by, cy > 0 are the continuous function of A\, and a, 3,7y > 0 are the
constants.
Thus the Kaldor’s model reads as
3

Y

4e — kx(z — o) — ea(y — yo) — 6x(y — y0)* — By(x — z0)
(516) { dy :a)\($—.’170>—a$(y_y0)3
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where k) = a) — by, 6 = a + ~. The eigenvalues of the matrix

_( kx —cx
n=(n ™)

2 k/\i\/ki—lla)\C)\
j::
2

Near kyx = ay — by = 0, the eigenvalues of A, are complex number, and
Rex\i = %k)\.

As k) < 0, the equilibrum point (zg,yo) of (5.1.6) is asymptotically stable.
As ky = 0, the eigenvalues Ay = +i\/4aycy. By Theorem 5.1.4 in Subsection
5.1.4, we can infer that (zg,yo) is also asymptotically stable. To see this, we
notice that the divergence of the nonlinear term of (5.1.6) is negative in a
neighborhood of (zg, yo):

are as follows

S l=ba(y = y0)® = Byl — 20)") + 3l — )’

= —[38y(x — 20)* + 3az(y — y0)*) = 6(y — vo)°
<0; Y(r—20)*+ (y—y0)? < eand (z,y) # (20, y0)

where € > 0 is sufficiently small.
Suppose that there exists a Ag € R, such that

<0, as A<
(5.1.7) k’)\:a,\—b)\z :O, as/\:/\o
>0, asA>)\

v vk

(5. 70) @

v
v

(a) as A S )\o, (l’o,yo)
(b) as A > Ay, a cycleis asymptotically stable attractor T' bifurcates from (xg, yo)
Fig. 5.4.
Then, under the condition (5.1.7), by the Hopf bifurcation theorem we know
that as A > Ag the equation (5.1.6) bifurcates from (zg,yo) a cycle attractor,
see Fig. 5.4 (a) and (b) above.
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The economic explanation of this cycle attractor bifurcation of (5.1.6) is
given by the following.

When the industral technique level A < Ag, the investing interest and the
social income are lower, therefore the investment intention is weaker than that
of the social savings, namely a) < by. Thus, k) = a) — by < 0. In this case,
the social economy develops slowly on the stable equilibrum state.

When the technique level is promoted to exceed the critical state Ag, i.e.
A > Ao, the new industrial technology brings the higher investing interest, in
this time the investing intention is stronger than that of the social savings,
therefore k) = ay — by > 0. In this case, the devolopment of social economy is
transferred from the stable equilibrum state to the periodic fluctutation form,
which is that we have seen today.

5.1.3. Basic idea of the dynamic attractor bifurcation

The above two examples show that the dynamic attractor bifurcation of a
dynamical system always occurs in this case that the real parts of some eigen-
values of the dynamical system at an equilibrum point pass through from the
neigative to the positive, and the other eigenvalues remain to stay in the nega-
tive. In the following, we shall illustrate the basic idea of the dynamic attractor
bifurcation by considering the below equation

(a) ()

(a) the flows of (5.1.8)(5.1.9) in R" are squeezed to ),
(b) 2o\ = {(2,y) € R"|z € R™,y = h(z,A)}

Fig. 5.5.
d
(5.1.8) & X+ Gi(,y)
dt
dy
1. Y .
(5.19) Yyt Galany)
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where © € R™,y € R"~"™(0 < m < n), and
Gz(xay> = 0(|$|a |y|>7Z =1,2.

It is known that as A < 0, the steady state z = (x,y) = 0 of (5.1.8) (5.1.9)
is asymptotically stable. And when A passes through from the negative to
the positive, the flows of (5.1.8) (5.1.9) in a neighborhood of z = 0 in R™ are
squeezed to a m-dimensional surface ), (A > 0), and the surface ), is tangent
to R™ at x = 0, which can be expressed by a function y = h(x, ),z € R™,y €
R ™ see Fig 5.5. (a) and (b) above(in fact thus surface )", exists for all
AER):

Obviously, the m-dimensional surface ) , is an local invariant surface, and the
flows of (5.1.8)(5.1.9) in >, are topologically equivalent to the flows of the
below equation in a neighborhood of x = 0 in R™,

d
(5.1.10) d—f = Az + G1(z, h(z, N)).
where G (z, h(x,\)) = o(|z|)VA > 0, and the function y = h(x, \) is continuous
on A. Suppose that as A = 0,z = 0 is asymptotically stable for the equation
(5.1.8)(5.1.9), then = = 0 is also asymptotically stable for the below equation

d
(5.1.11) &~ Gy, h(z,0))
dt
When A > 0 sufficiently small, the equation (5.1.10) is a small perturbation
of (5.1.11), namely

ili_f = Gy(z,h(x,0)) + Az + K(z, A).
where K(x,\) = o(]z|), and
K(z,\) = Gy(z,h(z,\) — Gy(x, h(x,0)) = 0as A — 0.

Near = 0, the linear term Az of the perturbation plays the key role, thereofre
the flows of (5.1.10) near x = 0 are "outward”. But, in the place for from
2 = 0, the nonlinear term G;(x, h(x,0)) plays the key role, which implies that
the flows far from = = 0 are ”inward”. Thus the outward flows and inward
flows in R™ squeeze an attractor, as shown in Fig. 5.6. below.
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Fig. 5.6.
Because the surface ), is attracting, thus we infer that as A > 0 the

equation (5.1.8)(5.1.9) bifurcates from z = 0 an attractor. In many cases, the
attractor is homeomorphic to a (m — 1)—dimensional sphere.

5.1.4. Appendix: Lyapunov stability on the critical states

From the previous discussion we can see that the determination of the
asymptotical stability of steady solutions on the critical states is very impor-
tant for the dynamic attractor bifurcation. Here we shall give some simple
methods to treat this problem.

First, we consider the 2D system given by

dx

L = Gy(x1,22)
5.1.12 t
( ) { 2 = Ga(xy, 1)

where G(0,0) = 0,G = {G1,G2}. Suppose that

G=f+yg
and
.. O0fi  Ofs
(5.1.13) divf = Dt + Dy 0
We denote

T2 1
V(z1,z2) = / fi(wy, z2)dre — / fa(w1,0)dxy
0 0
Then we have the following theorem.

Theorem 5.1.2. Under the condition (5.1.13), if there exists an open set
Q C R?,0 € Q such that G(z) has only one zero point = 0 in 2, and
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i). V() >0forall x € Q,x #0;

ii). figo — f291 <0 Vo e

iii). divg < 0,Vx € Q and z # 0;

then z = 0 is asymptotically stable for the equation (5.1.12).

Proof. From (5.1.13) it follows that

ov ov
a—xg = f1; 3—1’1 =—fo

Hence, by (ii) we deduce that for the equation (5.1.12),

dV(x) oV oV
= —G —0G
dt 8:1:1 ! + 8%2 2
= —fag1 + f192
< 0, VreQ

which implies, by the condition i), that V(z) is the Lyapnov function. Hence
x = 0 is stable. On the other hand, by (5.1.13) and (iii) we know that (5.1.12)
has no limit cycle in Q. Thus, from the Poincare-Bendixson theorem and the
fact that = 0 is an isolated singular point of G, this theorem follows. The
proof is complete.

The method to seek the Lyapnov function as above can be generalized to
the higher dimensional systems as follows

(5.1.14) Z—f =G(z),r € R n>1

where . = {x1, -+, Tpn, Y1, , Yn}, and G(0) = 0. Suppose that
G =JVH + g(x)

where H is a Hamilton function, with H(0) = 0, and

0 —-I
=(70")
In the same fashion as using in Theorem 5.12; we can obtain the following result.

Theorem 5.1.3. If there is an open set U C R?" 0 € U, such that G(z)
has only one zero point x = 0 in U, and
i). H(x) > 0 for all x € U and z # 0;

i). >, g—ﬁf “gi + g_Zgn+ii| <0; VeeQax#0
then H(z) is a Lyapunov function of (5.1.14), and = = 0 is asymptotically

265



stable.

By applying Theorem 5.1.2, we can deduce that for the equation (5.1.4)
in Subsection 5.1.1, x = 0 is asymptotically stable. In fact, for the equation
(5.1.4) we have

Gi(z1,22) = 2
Ga(z1,m2) = —kwy — L1923 + o(|z1[?)

Obviously, 2 = 0 is an isolated zero point of G = {G1,G2}. Let
L 3 3
fi=x2, fa= —59%1 + o(|z1]”)

g1 =0,92 = ka2
then divf = 0, and

1, 1
V(z1,a2) = 525 + gat + of|a|!)

2 8
fig2 — fogr = —ka3 <0
divg = —k < 0.

It is easy to see that the conditions i)-iii) in Theorem 5.1.2 are satisfied, hence
x = 0 is asymptotically stable for (5.1.4).
Next, we discuss the system as follows

dx o « T
(5.1.15) = = < oo am > ( v >+G(:v)-
where G(z) = o(|z|), and
(5.1.16) o1+ a2 =0
o Q1100 — 201 > 0

By (5.1.16), the eigenvalues of (5.1.15) are as follows
Bx = £ivanaz — apag

On this critical state, the equilibrum point = 0 of (5.1.15) must be one of the
three cases: a center, a stable focus and an unstable focus. In the following,
we give a determining theorem.

Theorem 5.1.4. Let U C R? be a neighborhood of z = 0. Under the

condition (5.1.16), the following assertions hold:
i). if divG =0 in U, then = 0 is a center of (5.1.15);
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ii). if divG < 0(£ 0) in U, then 2 = 0 is a stable focus;
iii). if divG > 0(£ 0) in U, then z = 0 is an unstable focus.

Proof. Because the orbits of (5.1.15) are winding in U around z = 0, for
xg € U(zg # 0), take T the winding period of the point xo defined by (see
Fig.5.7)

T = min{t > 0|z(¢, zo) intersects with the ray emitted

from x = 0 passing through point xg}.

where z(t, zo) denotes the solution of (5.1.15) with the initial condition z(0) =
Xg.

#0=%(0,%q)

f i
r #(T,%0) f
Ac e
C c

(a) 4]

¥

Fig. 5.7.

Let C be the closed curve enclosed by {z(t,20)|0 <t < T} and the segment
connecting xg and z(T, xg), i.e.

C={x(t,z0)|0 <t <T}U{rxo+ (1 —1)a(T,z0)|0 <7 <1}
For any ¢t > 0, we consider a homeomorphism:
O, : U — d,(U)
Dy(2) =x(t,2), VzeU

Let Ac be the closed region enclosed by C, and A; = ®;(A¢). Obviously we
have that Ag = ®o(A¢c) = Ac, and for ¢t > 0,

> |Ac|, if © =0 is an unstable focus;
|Ai| =< =1Acl, if © =01s a center
< |A¢|, if v =0 1is a stable focus.

On the other hand, we have

|At| = / d.’EldiCQ
Ay
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d
E‘Ad :/ divGdxr1dxs
Ay

Hence we infer that

>0(2£0)inU = x=0an unstable focuse
divG =< =0inU = 2 =0 a center
<0(Z0)inU =z =0 a stable focuse.

This theorem is proven.

5.2. Some Related Concepts and Lemmas
5.2.1. Invariant sets and attractors

Let H, H; be the Hilbert spaces, and H; — H be a compact and dense
embedding. Hereafter, we always concern the dynamical properties of the below
abstract nonlinear evolution equations.

du — [y U
(5.2.1) { 520)—52) + G(u, )

where A € R is a parameter, and

Ly : Hy — H is a linear completely continuous field

G(-,\) : Hy — H is a continuous operator with
G(xa)‘>:0(”m”H1)a VAER

When Hy = H = R"(n > 1), the equation (5.2.1) is the usual system of
ordinary differential equations.

Definition 5.2.1. A set > C H; is called an invariant set of (5.2.1), if
w(t,>) =3,Vt > 0, here u(t, ¢) is the solution of (5.2.1).

We know that the system (5.2.1) generates an operator semigroup S(t),t >
0, which enjoys the properties (Cf.[Te]):

S(t) : H1 — Hj a continuous mapping, vVt > 0
S(0) = I (identity inH;)
St+s)=S()-S(s), Vs, t>0

The solution of (5.2.1) can be expressed as

u(t,¢) = S(t)¢, t=>0
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Thus, an invariant set > of (5.2.1) can be equivalently stated as

S(HS =,Vt >0

Definition 5.2.2. A set )~ C H; is termed an attractor of(5.2.1), if ) is
a compact invariant set of (5.2.1), and there exists a neighborhood U C H; of
>, such that for any ¢ € U we have

(5.2.2) dist(u(t,$),X) — 0 in H — norm,as t — oo.
The largest open set U satistying (5.2.2) is called the attracted basin of .

If > C H; is an invariant set (or an attractor) of (5.2.1) which is homeo-
morphic to a m-dimensional sphere S™, then we say that »_ is a S™-invariant
set (or a S™-attractor).

For ¢ € Hy(or for Y C Hy), we define the w-limit of ¢ (or >_) by

(@)= N UsW®)e

s>0t>s

or

w®@ = Jsox

s>0t>s

where the closures are taken in H;. Likewise, when it exists, the a-limit set of
¢ € Hy and Y C Hj are defined by

a(¢) = JS(te

s>0t>s

and

a@) = JsEnHz

s>0t>s

The following lemmas can be found in [Te].

Lemma 5.2.3. Suppose that for some subset Y C Hy, > # ¢, and for
some to > 0, the set J;~, S(t) Y. is relatively compact in H. Then w(}_) is
nonempty, compact, and invariant. Similarly, if the sets S(—t)> ,t > 0 are
nonempty and for some ¢g > 0, U>¢,S(—t) > is relatively compact, then (")
is nonempty, compact, and invariant.
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The following lemma shows how to obtain the existence of an attractor. To
this end, we introduce a related concept of absorbing set.

Definition 5.2.4. Let > C H; be a subset and U an open set containing
Y. We say that > is absorbing in U if the orbit of any bounded set of U enter
into Y after a certain time (which may depend on the set):

VBy C U, By bounded
E'to(B()) such that S(t)Bo - Z,Vt > t()(Bo)

Lemma 5.2.5. Suppose that the operators S(t) are uniformly compact
for t larg, i.e. for any bounded set B there exists ¢o such that Up>y,S(t)B is
relatively compact in H;. We also assume that there exists an open set U and
a bounded set B of U such that B is absorbing in U. Then the w-limit set
of B,y = w(B) is an attractor which attracts the bounded sets of U, and it
is the maximum attractor in U. Furthermore, if U is connected, then ) is
connected too.

5.2.2. Center manifolds

Let us consider the system of ordinary differential equations as follows

d—’t” = Az + G1(z,y, )
&

5.2.3
( ) dt :By+G2($7y7)‘>

where z € R™,y € R"™(0 < m < n), A and B are respectively the m x m
and (m—m) X (n —m) matrices, G;(x,y, A)(i = 1,2) are continuous on A, and
C™(r>1) on (z,y) € R™ x R"~™, moreover

(5.2.4) Gi(z,y,A) = o(|lz[l, lyl), VA e R, (i=1,2)

The following are the well known center manifold theorems, which can be
be found in [CH].

Theorem 5.2.6. Suppose that all the eigenvalues of A have non-negative
real parts, and all the eigenvalues of B have negative (or positive) real parts.
Then, for the system (5.2.3) with the condition (5.2.4), there exists a C" func-
tion

h(,A): Q= R"™™; QC R™ aneighborhood of x =0
such that h(z, \) is continuous on A, and
i). h(0,A) = 0,h.(0,\) = 0;
ii). the set
My ={(z,y)] 2€QCR" y=h(x,\)}
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called the local center manifold, is a local invariant manifold of (5.2.3);
iii). if M) is positive invariant (or negative invariant), namely z (¢, ¢) € My (z(—t, ¢)
€ M,),Vt > 0 provided ¢ € M, then M) is an attracting set of (5.2.3)(or
a repelling set) , i.e. there is a neighborhood U C R™ of M), as ¢ € U, we
have
lim dist(z(t,¢), M) =0

t—oo
or

1klim dist(z(—t,$), Mx) =0

where z(t, ) = {z(t, $),y(t, @)} is the solution of (5.2.3) with the initial
condition z(0, ¢) = ¢.

The center manifold theorem amounts to saying that there is a m-dimensional
surface M C R tangent to the eigenspace R of A at x = 0, which is invariant
and attracting under the orbits of (5.2.3), see Fig. 5.5 (a) and (b).

Although, as we know, the local center manifold may not be unique, we
have the following result, see [CH].

Theorem 5.2.7. There is a neighborhood U C R"™ of zero such that every
invariant set (5.2.3) in U belong to the intersection of all local center manifolds
in U.

This theorem ensure us to apply Theorem 5.2.6 to the bifurcation of invari-
ant sets without the trouble of non-uniqueness

5.2.3. Global stable manifolds

We continue to consider the system (5.2.3) with the condition (5.2.4). In
the following, we give the global stable manifold theorem (see [HPS]) which
plays an important role on the investigation of the structure of attractor in
bifurcation.

Definition 5.2.8. Let M, N be two differentiable manifolds. A C'!' mapping
h: M — N is an immersion if for every point x € M, the rank of the tangent

mapping
Dh(z) : T, M — Ty N

equals to the dimension of M
rankDh(z) = dimM, Yz € M.

The image h(M) C N is called an immersion submanifold.

271



Theorem 5.2.9. Let all the eigenvalues of A have positive real parts, and
all the eigenvalues of B have neigative real parts. Then, there uniquely exist
the injective immersions

hi:R™ — R"
ho: R*»~™ — R"

which satisfy:

i). h1(0) =0, h2(0) = 0;

ii). h1(R™) and hy(R™) are respectively the unstable and stable manifolds of
(5.2.3) at the singular point (z,y) = 0:

W" =hi(R") ={x € R"| tlim s(—t)x =0}

W?e =ho(R"™™) = {z € R"| tlim s(t)z = 0}

where S(t) is the semigroup generated by (5.2.3);
iii). W* and W* are respectively tangent to the eigenspace of A and B at
z=(x,y) =0:
Tz:(]Wu — R™
{ Tz:OWS — R’llfm

5.3. Bifurcation of Attractors and Invariant

Manifolds of the Finite Dimensional Vector
Fields

In this section, we shall discuss the dynamic bifurcation of attractors and
s™-invariant manifold for the following finite dimensional systems
dx n
(5.3.1) pr = Az +G(z,)\), A€RzeR" (n>2)
where G : R* X R — R"™ is ¢"(r > 1) on the argument x € R™ and continuous
on A € R with

(5.3.2) G(z,\) =o(|z]), VAER
and
ain(A) o ain(N)
(5.3.3) A= : :
an1(A) o apn(A)

272



is a n X n matrix, a;; are the continuous function of A. Let all the eigenvalues
(counting the multiplicities) of (5.3.3) are given by

(5.3.4) Br(A), -+, Bu(N)

We know that the eigenvalues 3;(A)(1 <14 < n) are continuous on A.
5.3.1. Equilibrium attractor bifurcation

The example of pendulum in a symmetric magnetic field in Subsection 5.1.1
well describes the phenomena of equilibrum attractor bifurcation. Now, we
investigate more generally the equilibrum attractor bifurcation for the systems
(5.3.1).

Suppose that the eigenvalues (5.3.4) satisfy

<0, A<Xo
BN =4 =0, A=)
(5.3.5) S0 A A

Reﬁi<)\0) <0,vV2<i<n

The following is the equilibrum attractor bifurcation theorem.

Theorem 5.3.1. Under the condition (5.3.5), we also assume that G(x, \)
is analytic at = 0, and « = 0 is asymptotically stable for the system (5.3.1)
with A = Ag. Then there exists an open set U C R" with 0 € U, such that as
A > Ag the system (5.3.1) bifurcates from & = 0 exactly two equilibrum points
x1,22 € U, and the open set U is decomposed into two open sets U; and Us,

U=U,+Us, UiNUs; = ¢, and 0 € U; N U,
with x; € U;(i = 1,2), such that
tlir&x(t,¢) =ux;, as p € Us(i = 1,2).
where x(t, ¢) is the solution of (5.3.1) with z(0, ¢) = ¢.

Proof. Under an appropriate coordinate transformation, the system (5.3.1)
can be rewritten as the following form

L2 = 31 (N2 + g1(2,5,\)

where z € R',y € R"™!, and by (5.3.2)

(5:3.7) 9i(2,y,A) = o(lz], lyl),i = 1,2,V A € R
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and By a (n — 1) x (n — 1) matrix whose eigenvalues are 3;(\)(2 < j < n).
By the center manifold theorem (Theorem 5.2.6) there is an one dimensional
manifold

Z:{(z,h(z,)\)ﬂ z€R', h(z,\) € R" ' \c R}

A
where
h(-,A) : I — R"! is artitrary order dif ferentiable,
dh(0, \
(5.3.8) h(0,\) =0, SZ ) =0, I=(-a,a) for somea>0

and ), is local invariant for the system (5.3.1).
It is not difficult to see that the topological stracture of the orbits of (5.3.6)
in ), is equivalent to that of the below equation in I C R for all A € R

(5.3.9) % =061(Nz+ f(z,\), ze€l=(—a,a).

where f(z,\) = g1(z,h(z, ), A). By (5.3.7) and (5.3.8), we have

9f(0,\)
5.3.10 =0, VAER
(5.3.10) 5, , VAe
By the assumptions, x = 0 is asymptotically stable for (5.3.6) at A = Ao,
therefore z = 0 is also asymptotically stable for the following equation (note

B1(Xo) =0),

d
(5.3.11) d—i = f(z,20), z€(—a,a), a>0
We need to show that there is a K > 2, such that
(5.3.12) f(z,X0) = az* +o(]z]%), a#0

By the hypothese, G(x, \o) is analytic at = 0, and so is the vector field
{91(2,9,X0), g2(z,y, Ao)}, for the sake of simplicity, we drop the sign A\g. Be-
cause = 0 is asymptotically stable for (5.3.6) at A = Ao, in a neighborhood
of z =0, we have

dy _ By+gs(2,9)
dz 91(2,9)
If (5.3.12) is not valid, then

d*g1(z, h(2))
dzk

(5.3.13) #0  for (z,y) = (2,h(2))

‘Z:OZO, Vi<k<
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We denote N(z) the class of functions that

OFN(0)
0zk

From (5.3.13) it follows that

=0, V1I<Ek<oo.

Bh(z) 4 g2(2z,h(2)) = 0 mod(N(z))
Because g2(z,y) is analytic, from (5.3.13) we can infer that
h(z) = hi(2) + N(2)
where hi(z) is an analytic function which satisfies
(5.3.14) hi(2) + B ga(2,h1(2)) =0
((5.3.14) can be ensured by the implicity theorem). On the other hand we have
91(z,h(2)) = g1(z,h(2) + N(2))

) z
= 91(2,1(2)), mod(N(z))
= 0, mod(N(2))

Since g1(z,y) and y = hi(z) are analytic, the function g¢;(z,hi1(2)) is also
analytic. Hence we have

(5.3.15) g1(z,h1(2)) =0

The analytic function satisfying (5.3.14) and (5.3.15) does not exist. Otherwise
(2(t),y(t)) = (20, h1(20)) satisfies

? = gl(z,y)
T =By +92(z2y)
2(0) = 20,  y(0) = hi(z0)

Vzo € (—a,a). It is a contradiction with that (z,y) = (0,0) is asymptotically
stable for (5.3.6). Thus we obtain the equality (5.3.12).

By the asymptotic stability of z = 0 for (5.3.11), from (5.3.12) it follows
that

k = an add number
a<0

which implies that the equation (5.3.9) bifurcates from z = 0 exactly two
asymptotically stable equilibrum point 21,20 € I = (—a,a) for A\ — Ao > 0
sufficiently small, and z = 0 is unstable. Hence, by Theorem 5.2.7, the two
points x; = {z;,h(z;, A)}(i = 1,2) are asymptotically stable singular points
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of (5.3.6) because ), are positive invariant for all A\ — A¢ sufficiently small,
therefore are attracting.

It is easy to see, by the stable manifold theorem that as A < A9,z = 0 has
a (n — 1)-dimensional stable manifold M?~! and an one-dimensional unstable
manifold M}. Obviously, M1 divides the open set U into two parts U; and

Us with z; € U;, and z; are attracting in U;(i = 1, 2), for instance see Fig. 5.3.
The proof is complete.

If the vector field G(z, \) is not analytic, in general Theorem 5.3.1 is not
valid. But, we can still obtain some criterion for the equilibrum attractor
bifurcation of (5.3.1).

First of all, we recall some simple properties of matrix. Let A be a n-
order matrix, A* its conjugate matrix. We know that A* and A have the
same eigenvalues. Let 5;(1 < j < n) be all the eigenvalues of A(counting
multiplicities). We say the vectors {; € R™(1 < j < n) are eigenvectors of A,
if they satisfy

(A-— ﬂjI)kf ¢ =0, asp; are real numbers

(A= 81" (& +i&41) =0

(A— B D) (& —i&j41) =0 as Bj11 = B; are complex numbers
for some 1 < k; < m;, m; the multiplicity of 3;.

Let & = {¢&,, -, &, tand & = {f};l, e ,f,jn} be respectively the eigenvec-
tors of A and A*, and

gll £21 T gnl gfl 5;2 T glkn

§12 &2 0 a2 . &1 &2 0 &
= . . . Pl P = . .
fm 5271 te gnn g;l 5:12 e g;km
Then we have the properties as follows
P* = Pfl
P*AP=J

where J is the Jordan form of A, and &7, §; are corresponding to the same
eigenvalue g;. If

Bi+1=Bjr2=""-=Bjtm, =P

then the eigenvectors §;4; and £7,,(1 <1 < m;) satisfy
(A=BI)&j11 =&,  asl<my, and (A— BI)Ej1m; =0

(A" - 51)5;-1-1 = f;+l—1a asl>1, and (A" — 51)5;4-1 =0
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The properties are in fact the anather expression of the Jordan theorem
and the Fredholm’s alternative theorem.
Now we return to continue our discusion on the bifurcation of (5.3.1). Let
§; and &7 (1 < j <n) be respectively the eigenvectors of Ay and AJ at A = Ao.
We take the coordinate transformation
{ x=Px, T={z,",%n}
r=2181 4+ + 20én

Under the transformation above, the equation (5.3.1) at A = A\ can be written
as to read

dz ~

T = Gl(zay)
5.3.16 qat =
(53.10) { H =Ly +Ga(zy)

where {z,y} = Z,2 = 21,y = {22, -+, 20}, L is the (n — 1)-order submatrix of
the Jordon form of Ay, corresponding to the eigenvalues 3;(Ao)(2 < j < n),
and B

Grlz,y) =< Clalzy)). & >

62(zvy) =< G(x(z,y)),{* >, g* = (55’ T ’é.:;)

Suppose that the functions él and éz have the expansions

Gi(z,y) = pi2" +o(|2[M) +ygi(2,y), p1 #0
(5317) ~ k k. n—1
Ga(2,y) = p22™ + o(|2|") + yga(2,y), p2 € R

where 1 < k1 < 00,1 < kg < co(as ky = 00, it means that Gy = yg2(z,y)mod(N(z))),
and ¢;(0,0) = 0(¢i = 1,2). Then we have

Theorem 5.3.2. Under the conditions (5.3.5) and (5.3.17), if k1 < ko in
(5.3.17),and « = 0 is asymptotically stable for (5.3.1) at A = Ag, then the
conclusion of Theorem 5.3.1 holds true.

Proof. We only need to show that the function f(z) = G1(z, h(z)) has the
expansion (5.3.12). By (5.3.16), in a neighborhood of z = 0 we have

dy _ Ly+Ga(zy)
dZ Gl(Z,y)
Ly + paz* + yga(2,y) + o(|2]"2)

P12 +yg1(2,y) + o(|2]*1)
where y = h(z). By the fact that
dy

_|z:0 =

dz

dh(0)

=0
dz
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as k1 < ka(p1 #0), we can infer that
h(z) ~ 2% as 2 — 0
By k1 > 1, it implies that
f(2) = Gi(z,h(2)) = p12" +o(|2]*),  p1 #0

Thus the expansion (5.3.12) is derived. The proof is complete.
5.3.2. Bifurcation of the higher dimensional attractors

Naturally, the bifurcation theorem of equilibrum attractors(Theorem 5.3.1)
suggests us to investigate further the dynamic bifurcation of the higher dimen-
sional attractors. To this end, we here give the difinition of bifurcation of the
invariant sets.

Definition 5.3.3. We say that the system (5.3.1) bifurcates from (z,\) =
(0, Ag) an invariant set ), if there exists a sequence {_, } of invariant sets of
(5.3.1), 0 ¢ >, with 37, homeomorphic to ), such that

limnﬂoo )\n = )\0
limy, oo d(}2y, 5 0) = limy, oo Maxgex,, [2| =0

Suppose that the eigenvalues (5.3.4) satisfy

<0, A<X
ReB;(\) = =0, A=A\ 1<i<m
(5.3.18) Bi(A) -0, >\>)\2. ( )

ReBj(Xo) <0, Vm+1<j<n (ifn>m)

where 1 < m <n.
The following is the main theorem in this section.

Theorem 5.3.4. Under the condition (5.3.18), if = 0 is asymptotically
stable for (5.3.1) at A = A, then the following assertions hold true for A—Xg > 0
sufficiently small.

i). The system (5.3.1) bifurcates from = = 0 an attractor >, with m — 1 <

dim ZA < m, which is connected as m > 1.

ii). >, is the limit of a family of manifolds M, (0 < 7 < 00):

Z:mMT’ M;, C M;,, Vm22>m
A 7>0

where M., possesses the hometopy type of m-annulus for all 7 > 0.
iii). If >, is a finit simplicial complex, then ), is a deformation retract
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of a manifold having the homotopy type of m-annulus. Therefore, )", have
the homotopy type of S~ 1 (if m =1, » is homotopicaly equivalent to
two distinct points).

iv). If the equilibrum points of (5.3.1) in ), are finite, then the following
index formula is valid

Z ind[—(Ax + G), x;) :{ ga m = odd

wiez/\

In order to prove this theorem, we need the following technical lemmas, the
first one of which is also useful in the orbit analysis of vector fields for the other
purposes.

Let F(-,A\) € C"(Q, R™)(r > 1) be a family of vector fields, 2 C R™ an open
set, and F(z,\) continuously depends on A\ € R.

We say that I' C R" is an orbit curve of a vector field F' if I" is an union
of the orbits v;(i = 1,2,---) of F, i.e. T' = |J,; %, and they are connected in
order each other (see Fig. 5.8 below) in this way that the end point of ~; is the
starting point of v,4+1. Each of «; or consists of all singular points of F', which
is called the singular orbit, or an orbit connected by the singular points of F
which is called the non-singular orbit.

m = even

Fig. 5.8. an orbit curve I'
According to the definition, in an orbit curve I, if v; and ;41 are the
non-singular orbits, then the limit sets of ; and ;41 satisfy that

w(7i) = a(yit1)-
The starting point p; of I' need not a singular point.
Lemma 5.3.5. Let Iy be an orbit curve of F(z,\) with the starting point

pa- If px — po(A — 0), then T’y converge to an orbit curve I'g of F(x,0) with
the starting point pg.
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Proof. Because F(x,)\) is continuous on ), it is easy to see that if the
singular points z) of F(z,\) converge to zp as A — 0, then zy must be a
singular point of F(z,0). Hence it sufficies to prove this lemma only for the
case that {I'"y} is a sequence of the non-singular orbits with bounded length (if
') are the orbits possessing infinite length, then we can divid I'y into countable
segments with finite length l;\ (i=1,2,---), and then proceed for each l;\ in the
same fashion).

Let T'y = 7, be a closure of a non-singular orbit vy of F(x,\), with the
starting point p) and the end point gy, where {g\} C R" is bounded. By
the definition, gy is a singular point of F'(x,\). Without loss of generality, we
assume that the starting points py of I'y are the singular points, then I'y is a
complete orbit ) (¢) of F(x, \) satisfiying

ddx_; = F(I’)\,)\)
(5.3.19) zA(t) — pa,t — —0
2\ (t) = gx,t — +00

If we define
IEA(—OO) = DX, CEA(OO) =qx

the the closed segment I'y is parameterized by
Ty ={zx(t)|t € [—00, 0]}
In order to avoid the infinity interval, let
t=tgr
Then in new variable 7, (5.3.19) becomes

dyx(7)
dr

dtgr T
EZE )

= F(yx, A

yA(T) =pn, T— D)

™
y/\(T):(D\a T—>§

(5.3.20) yA(T) = 2\ (tgT)
Obviously, the solution of (5.3.20) satisfies

T dtgr

(5.3.21) yA(T) = pa +/J F(yz\7>‘)? T

2
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By (5.3.21) we have

2 dtgt
ya(m) —ua(m)l = | [ Flyx, A)=—dr]

T1 T
= (ti = thi)

tg~ 'ts
S

tg=lty
< Cltg™ s —tg™ 't
< Clm -1l
Namely yx : [, 5] — R" are equicontinuous. By the Arzela-Ascoli theorem,

{z(tg)} has a convergent subsequence for A — 0, still denote it by {zx(tg)}:

xA(tgT) — wo(tgT) inC’[—g, g} as A —0
xo(tg) € C[-5, 5]
xo(tg(=3)) = po

20(t9(5)) = o

Tt is then easy to see that xo(t) can be consided as a continuous curve in R"
connecting pg and ¢g, and defined on (—oo, o) such that

xo(t) — po, as t — —o0
xo(t) — qo, ast — oo

In fact, zo(t) is an union of complete orbits of F(x,0). To see this we infer
from (5.3.19) that

$)\(t):$,\(t1)+/ F(:E)\,)\)dt

Passing to the limit A — 0, we obtain

$0(t) = $0(t1) +/ F(l‘o,O)dt

t1
Hence
dl‘o
dt
Consequently, T'g = {xo(t)|t € [—00, 0]} is an orbit curve of F(x,0), which is
the limit of {I"y} for A — 0. The proof is complete.

= F(x0,0), ¥te (—o00,00).
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Lemma 5.3.6. Suppose that z = 0 is an asymptotically stable singular
point of F(z,0), then there is an open set Q& C R™,0 € €, such that the w-limit
sets of () satisfy

limy 0 d(wx(92),0) =0
(5.3.22) d(wA(€),0) = sup,e,, () 1|
wA(Q) = ;50 Upsr SA(H)S

where S (t) is the operator semigroup generated by F'(x, \).

Proof. Because S)(t) : R™ — R" is a homeomorphism for all t € R, S, ()
is an open set and 0[Sy (¢)2] = [Sx(t)0f?]. Hence

o[l S$r®)9] | Sa(t)on
t>7 t>1
Therefore, to prove (5.3.22) it is sufficient to verify that

(5.3.23) lim d(wx(99),0) =0

Assuming that the equality is false, we shall deduce a contradiction. We divide
this proof into two cases.

Case a). The distances between wy (02) and = = 0 satisfy

5.2.24 lim dist(wy(09),0) = lim  inf =0
( ) lim dist(wx(052), 0) fim b ||

By (5.2.24), there is a sequence of py € wy(99) such that py — 0(as A — 0).
Because (5.3.23) is not true, and wy(9€2) is a connected and invariant set of
F(xz,)\)(by Lemma 5.2.3), there is a number § > 0 and an orbit curve I'y C
wx(09Q) of F(x, \) with the starting point py, such that

IyN0B5(0) # ¢, YA#O,
(5.3.25) { B:\s(O) :6{33 € R"||z| < 6}

On the other hand, by Lemma 5.3.5, we have
T'y—Tg, as A—0

where I'y is an orbit curve of F'(z,0) with the starting point = 0, and from
(5.3.25) it follows that
Lo [)0Bs(0) # ¢

Thus, we read a contradiction with the assumption that x = 0 is an asymptot-
ically stable singular point of F(z,0).
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Case b) There is a number § > 0, such that
(5.3.26) dist(wx(09),0) > 6 >0, VYA#0

If wA(OQ) N # ¢, we take a point py € w(9Q) (N and an orbit curve
'y C wr(09) with the starting point px. By (5.3.25) we have

(5.3.27) dist(T'x,0) > 6 > 0

Because {py} is bounded, let py — po € Q(A — 0), then the orbit curves Ty,
by Lemma 5.3.5, converge to I'g, an orbit curve of F(x,0), with the starting
point pg € Q. From (5.3.27) it follows

dist(To,0) > 6§ >0

which is a contradiction with that the solution u(t, po) of F'(x,0) satisfies that
limy o u(t, po) = 0,Vpy € Q (we take 2 C R™ in the attracted basin of x = 0).
If wy(02) N2 = ¢, then we take

d
Ty = {2:(t)] %%:F@M A),2x(0) = €09, 0<t< oo}
Hence, the w-limit sets

(5.3.28) wT)[2=1v

On the other hand, I'y — T'o(A — 0), an orbit curve of F(x,0) with the end
point of Ty is = 0, a contradiction with (5.3.28). Thus, this lemma is proven.

Now, we return to prove Theorem 5.3.4.
The Proof of Theorem 5.3.4. Under a proper coordinate transformation,
the system (5.3.1) can be rewritten as

= Bz + g1(z,y, \)

dx
5.3.29 ‘
( ) { % :C)\$+92($7ya)‘>

where x € R™,y € R" ™, B, is the m X m matrix with the eigenvalues
B1(A)y -+, Bn(N),Cy is the (n — m) x (n — m) matrix with the eigenvalues
ﬁerl()‘)a T aﬁn()‘>a and

(5.3.30) gi(z,y,A) = o(|z[,[y]), VAE€R,(i=1,2)

For the sake of simplicity, we assume that \g = 0, i.e.

<0, A<O
BiAN)=¢ =0, A=0 (1<i<m)
>0, A>0
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Bi(0) <0, ¥Ym+1<j<m.

Let h(x,\) be the function defined as in the center manifold theorem (The-
orem 5.2.6), and My = {(z,y)ly = h(z,A),z € 2 C R™} be a center manifold
of (5.3.29). It is known that the topological structure of the orbits of (5.3.29)
in M) is equivalent to that of the below system in Q2 C R™

(5.3.31) (fl—a; =Bz + f(z,\), z€QCR"

where
f(l‘, A) = g1z, h(l‘, /\)’ /\>
While, by (5.3.30) and the property i) in Theorem 5.2.5, we have

f(z,A) =o(z|), VA€R.

By the assumption, z = 0(z = (x,y)) is asymptotically stable for (5.3.29)
at A = 0, therefore, z = 0 is also asymptotically stable for the following system

Ccll_f =Bz + f(x,0), z€QCR™

Let F(x,A\) = Baxx + f(z,A). Then F(z,\) is continuous on A, and = = 0
is an asymptotically stable singular point of F'(x,0). By Lemma 5.3.6, there
exist an open set Qg C R™,0 € Qy C 2, and constants r, \; > 0, such that
B, = {x € R™||z| < r} is an obsorbing set of F(xz,\) in Qq for all || < A;.
Therefore, from Lemma 5.2.5 it follows that

(5.3.32) Ay = w)\(Br) - Br, V|)\| <M

is an attractor of (5.3.31) in Qo C R™.

In addition, by the global stable manifold theorem (Theorem 5.2.9) we have
the global unstable manifold M} at = 0 of (5.3.31) in R™ for all 0 < A < Ay,
and

My =I(R™,\) CR™
where
I(x; ) :R™— R™ (I1(0,A)=0)
is an injective immersion. From (5.3.32) we can see that

MY CANCB,, YO<A<X\

which implies that M} is homeomorphic to a m-dimensional open disk(notice
that the closure of M} may not be homeomorphic to a m-dimensional closed
disk, because My C R™ is an immersion. Hence we can claim that

Yoy = AN/MY is an attractor of (5.3.29) for 0 < A < Ay,
m—1<dim) , <m; and
limy g+ d(3,,0) =0,  (by (5.3.22))
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Thus, we obtain the conclusion i).
In the following, we prove the conclusion ii). We denote

D, =JS\®B, (r>0)
t>7
It is clear that D, is shrunk for 7 > 0, or
(5.3.33) D, CD;as1 >71>0
By the semigroup properties of Sy (t), it is easy to see that

D, = S\(r)D >
(5.3.34) { Sa(r) Do =0

Dy = Utzo Sx(t) B

Obviously, D, is homeomorphic to Dy,¥7 > 0, and B, C Dy. We divide the
proof into the following several steps.

Claim 1. Dy is a closure of an open set.
This is easily seen by that

Do = Sa(t)B, = Sxr(t)B,

>0 t>0

and ;> Sx(¢)B; is an open set because S)(t)B, are open sets for all ¢ > 0.

Claim 2. Dy is a m-dimensional manifold with boundary.

Suppose that the claim is false, then there exists a point x € 90Dy such
that, for any neighborhood O of z in R™, Dy (O is not homeomorphic to
R7 = {(x1, -+, 2m) € R™|xy, > 0}, or

(3.3.35) Dy ﬂO_ =04 + 0o, B O1 qnd O- are open sets,and
- 0:1N02=9¢, €00

which can be shown as in Fig. 5.9 below
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Fig. 5.9.
From (5.3.35) we can see that

5336 O/Dqy # ¢ is an open set,01 (02 # ¢, and
( o ) OlﬂégC@(O/Do):aDoﬂO

Because S)(7) : R™ — R™ is a homeomorphism Vr € R, the case that
S\(1)01 C O; and Sy(7)Os C O, for some 7 € R does not occur, see Fig
5.10(a). Hence, from (5.3.33) and (5.3.34) we can deduce that there is at least
a point xg € O1 () Oz such that

(5.3.37) Sx(r)zo € 01 )02, V7 >0
Otherwise, from (5.3.36) we can see that there are 79 > 0 and points y € O (or

y € O2), such that
S)\(T())y S O/Do

see Fig. 5.10(b), which is a contradiction with (5.3.33).

5404102

Fig 5.10.
Because O ) O2€B,, from (5.3.37) we can get that
d(Sx(7)(01()02),0) =7 >0, VA,7>0
Thus, we read a contradiction with that

lim  d(Sx(r)Dp,0) =0 (by (5.3.22))

T—00A—0

Claim 3. D is homotopically equivalent to a disk.
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We know that B, is a m-~disk, and B, ¢ Dy. We shall show that Dy and B,
have the same homotopy type. By (5.3.32), there is a T' > 0 such that

Dt = S\(T)Dy C B,
For the two mappings
h: Dy — B, defined as h(z) = Sx(T)x
i: B, — Dgy an inclusion mapping
we define the homotopies
H:Dyx[0,T] — Dy
Hoi:B, x[0,T] — B,
where the homotopy H is defined by
H(z,t) = S\(t)x, Vx € Dy,t€[0,T].
It is easy to see that the two homotopies H and H o give that
id~ioh:Dy— Dy
id~hoi: B, — B,

Hence, Dy and B, are homotopy equivalence.

Claim 4. ), is the limit of a family of manifolds having the homotopy
type of a m-annulus.
By (5.3.33), we have

(5.3.38) { littr o0 Dr = A

M} Cc AxCD;,V72>0

Because M} = I(R™, \) is bounded, I(-,\) : R™ — R™ is an injective immer-
sion, for any B, = {x € R"||z| < p}(0 < p),

B,=1(B,,)\), 0<p<oo
is an embedding open m-disk, and

(5.3.39) { B, C B,, as p2 < p1

d(0B,,0M}) = max,cop, dist(x,0My) — 0, (p — 00).
From (5.3.8) and (5.3.39) we can obtain

(
{ Z)\CDTQ\BM CDTl\BPU VTQZTlvaZpl

(5.3.40) DAB, = ¥, = AA\MY, 7 —00,p— 00
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Obviously, D, \B, is homotopically equivalent to a m-annulus for all 7 > 0, p >
0. The conclusion ii) is verified.

We are now in a position to prove the conclusion iii). We need to show that
>, is a deformation retract of Do\B1, (B, = I(By, \)).

It is easy to see that any embedding submanifold M C Dy\Bj, which is
homeomorphic to Do\ By, is a deformation retract of Do\ By provided >, C M.

Let M be a smooth manifold with boundary. For each point z € OM we
denote

Z(x,\) = the point Z € M, which lies on the inward

normal line starting from x, and the arc length
from z to x is A(A > 0).

Obviously, z(z,0) = x.
By (5.3.40), we can take a sequence of smooth submanifolds {M,,} of Do\ B,
such that

Z)\ C Mn+1 c M, C Do\Bl,V’n, >1
(5.3.41) M,, homeomorphic to Do\By, and
limy, oo My, =37,

Moreover, the sequence {M,,} possesses the properties that, for any point x €
OM,,, there exists a number \,(z) > 0 such that for all z,y € IM,,,x # y, the
line segment

I, = {z(z, V)]0 < XA < A\ (2)}
does not intersect with the line segment /,, moreover, the points in the line
segment [, (x € OM,,) satisfy
2(x, N)EMp11, VO <A< Au(x), as Ap(z) > 0; and

z(z, Ap(2)) € OMyy1 (if Ap(x) =0, then x € OM, ﬂaMnH)

The properties can be ensured by the procedure that letting the smooth mani-
fold My C Do\ By shrinks along its inward normal direction, then we intercept
the manifold M, and again, from My we get M3 in the same fashion, and so
on.

Thus, Vo € M7, we can define a curve

LI - U lrn,y xl = I', anrl = Z(xn;)\n(zn))

n=1

Namely L, is the union of the line segments [, , in where the end point z,4;

of l,,, is the starting point of I, . . Because ), is a finite simplicial complex,

288



the length of L, is finite for all € JM;, otherwise the number of simpleces in
>, can not be finite. It is not difficult to see that

LacﬂLy:(;S,Vx;éy,z,yGaMl

Lxﬂzqu,VxeaMl
A

and by (5.3.41), the end point g, of L, = |J.—, I, satisfies

n=1"ZTn
lim Yn = 4z S EAy (yn S an)
n—oo

The property is guaranted by the finite length of L,. On the other hand, we

can see that
M= UCU L)
A

€M,

Then, we define the mapping H : My x [0,1] — M; by

_Jy, o yedl, Y0<t<l1
H(y’t)_{p(yi), ye L,

where p(y,t) is the point p € L, that the arc length along L, from y to p is
tr(y), where r(y) is the length of L, from y to ¢, the end point. It is clear that
H is continuous, and

H(70) =1id: M1 — M1

H(-,1): My — Xy, and

HOZ‘:Z‘d:Z)\HEA,
where i : ), — M, is an inclusion mapping. Hence, ), is a deformation
retract of M;. The conclusion iii) is proven.

Finally, we show the conclusion iv). By the topological degree theory, we
know that the Brouwer degree of the vector fields in (5.3.1) satisfies

(5342) deg(—(AA + G), Qo, 0) =1, VoA <A<\

where A\; > 0 and Qg C R™ are defined as in (5.3.32). Because ), is the
maximum attractor of (5.3.1) in Qo\{0}, (0 < A < A1), all the non-zero singular
points of Ay + G in Qg are in ) _,, and if which are finite, then we have

deg(—(Ax + G),Q0,0) = ind(—(A\ + G),0)+

(5.3.43) + ) ind(—(Ax+ @), )
Iier
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On the other hand, by (5.3.18) we have

. 1, m = even
(5.3.44) ind(—(Ax + G),0) = { 1 m= odd
Consequently, from (5.3.42)-(5.3.44) we infer the conclusion iv).
The proof of Theorem 5.3.4 is complete.

Remark 5.3.7. From the conclusion iv) of Theorem 5.3.4, we see that if
the attractor ), has no singular points of (5.3.1), then the dimension m must
be an even number.

Remark 5.3.8. If the following conclusion holds true

(4) If D C R™ is a contractible m — dimensional compact
mani fold with boundary, then D is a m — disk

then the conclusions ii) and iii) of Theorem 5.3.4 are rewritten as
i)' >\ =Nr>o Mr, My, C M, N72 > 71, M; are the m-annuluses.
iii)’. If ), is a finite simplicial complex, then ), is a deformation retract of

a m-annulus.

When 1 < m < 3, the conclusion (A) obviously holds true. The conclusion
(A) is related to the Poincare Conjecture (which has been proven except the
dimension three), which amounts to saying that if M™ is a closed simply con-
nected manifold with the integral homology of the m-sphere S™, then M™ is
homeomorphic to S™.

In fact, for a m-dimensional compact manifold with boundary D C R™ (0D
is a (m — 1)-dimensional closed compact manifold), we have the short exact
homological sequence

(5.3.45) 0— Hy_—1(D,Z) — H,(0D,Z) — Hy(D,Z) — 0
V0 < k < m. When D is contractible, from (5.3.45) we get

Z, k=m-—1,0

Hk(aD’Z):{ 0, k#m—1.0

If we can prove that 9D is simply connected, then the conclusion (A) is a spe-
cial case of the Poincare Conjecture.

5.3.3. Sl-invariant sets

The topolgical structure of the attractors ), in Theorem 5.3.4 may be
very complex. But it is interesting to investigate the problem that under what
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conditions the attractor ), is a Sk_invariant set, or contains a S*-invariant
set (k > 1). Here, we consider the simplest case of the dimension m = 2 in
Theorem 5.3.4, and an immediate result can be obtained.

Theorem 5.3.9 Under the conditions of Theorem 5.3.4, if m = 2, then we
have the following conclusions.
i). 3", contains at least a S'-invariant set.
ii). If ), has no-singular points of (5.3.1), then ), is either an annulus or a
periodic orbit, therefore, ), contains at least one periodic orbit.

Proof. We know that the boundaries of M} and R™\ Ay arein ) ,, namely
OMYJO(R™\Ay) C >, and OM} and O(R™\Ay) are invariant set. By the
Poincare-Bendixson theorem, if )", is not a finite simplicial complex, then
there must exists some limit set of the orbits in OM} (or in J(R™\.Ay)) which
is one of a focus, a cycle and a k-petal, for instance see Fig.5.11 (a)-(c).

Al aus

(a) xo is a focus
(b) T" is a cycle

(c¢) I is a k-petal
(d) z1 are self-intersections, which are singular points
Fig. 5.11.
Obviously, if the limit sets of orbits in M} (or in I(R™\Ay)) contain a
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cycle or a k-petal I', then I' C )", contains a S Linvariant set, and if all the
limit sets are focuses, then M} is homeomorphic to a cycle S*. When Y 5\ is
a finite simplicial complex, then M} is a cycle S' with the self-intersection
(see Fig 5.11(d)). It is easy to see that, in this case, ), must contain a S*-
invariant set, for instance, in Fig 5.11(d) the union of the arcs x; z; 41 in OM}
is a Sl-invariant set. Thus, the conclusion i) is proven.

It is not difficult to see that when ), is not a finite simplicial complex,
or ), is a finite simplicial complex but one of OM} and O(R™\Ax) is a cy-
cle S' with a non-empty self-intersection, then ), contains the equilibrum
points of (5.3.1). Hence, if ), has no singular points, then ), must be either
a 2-annulus or a cycle S, and the conclusion ii) follows. The proof is complete.

In above, we always discuss the bifurcation of attractors, which occurs in the
case that the real parts of some eigenvalues pass through zero from the neiga-
tive to the positive and the others stay on the negative. Naturally we wonder
whether a vector field F'(z, A) will bifurcate from a singular point xy an invari-
ant set so long as the real parts of some eigenvalues of DF(x, \) pass through
zero. When the number m of the real parts of eigenvalues passing through zero
(counting multiplicity) is odd, we know the problem is positive because there
is bifurcation of singular points from xg, by the bifurcation theorem (Theorem
4.1.1). But, when m=even, we know little except the Hopf bifurcation. In
the following, we give a generalized version of the Hopf bifurcation, which is
positive to the above problem for m = 2.

Suppose the eigenvalues (5.3.4) satisfy that

<0(or >0), A<Xo
ReBi(\) ={ =0, A=X (i=1,2)

>0 (or <0), A> Ao
ReBj(Mo) #0, ¥3<j<n

(5.3.46)

We then have the following theorem

theorem 5.3.10. Under the condition (5.3.46), if the system (5.3.1) has
no bifurcation of the equilibrum points from (z, A) = (0, Ag), then (5.3.1) must
bifurcate from (0, \g) a periodic orbit.

Proof. Without loss of generality, we assume that A\g = 0. Under the
condition (5.3.46), the system (5.3.1), in a proper coordinate system, can be
rewritten as the form (5.3.29) with m = 2, and by the center manifold theorem
(Theorem 5.2.6), the bifurcation of (5.3.1) is completely determined by the
following two dimensional system

(5.3.47) i—i = Bz + g(z, A),
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where = € R?, and
g(z,\) = gi(x, h(z,\),\) = o(|z]), VAER.
while

the eigenvalues of By = {B1(\), B2(A)}.
where h: Q — R""2(Q C R?) is defined as in Theorem 5.2.6. By the condition
(5.3.46), we know that
ind(Bx +g(-,A),0)=1, asA#0

By the assumption, the system (5.3.1) has no bifurcation of the singular points,
therefore we obtain that x = 0 is an isolated singular point of the system
(5.3.47) with A =0, and

(5.3.48) ind(By +¢(-,0),0) =1

On the other hand, by the Poincare formula for a two-dimensional vector
field (see [CH]), we have

ind(By + ¢(-,0),0) =1+ %(e —h)

where e=number of elliptic regions, and h =number of hyperbolic regions. And
the elliptic, hyperbolic and parabolic regions F, H and P in a neighborhood
U C R? of x = 0 are defined as (see Fig 5.12)

E={xcU|S(t)r € UVt € R, and the limit set w(x) = 0,a(z) =0}
H={z e Ulw(z) and a(x)EU}

P ={z e Ulw(z) =0,a(x)EU; or a(z) = 0,w(x)eU;

or St)xeU VteR, and w(z),a(x) #£0};

where S(t) is the operator semi-groups generated by By + g(z, 0).

Fig. 5.12.
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By (5.3.48), for the vector field By + g(-,0), we have e = h. Because the
«a and w-limit sets of every orbit in the elliptic regions are x = 0, it is not
difficult to see that e = 0, otherwise, in the some fashion as used in Theorem
5.3.4, we can derive the bifurcation of singular points of (5.3.1). Hence, about
the singular point = 0 of By + ¢(+,0) there are only the parabolic regions.
A singular point with the parabolic regions must be one of the following three
types

a) x = 0 is a stable focus or node;

b) z = 0 is an unstable focus or node;

¢) x = 0 is a stable but not asymptotically stable singular point.

In the two dimensional system, the case ¢) implies that there exists a se-
quence of periodic orbits {T',,} C R?, such that I',, — {0} as n — oo, thus the
sequence {I',,} is the bifurcation of the poriodic orbits of (5.3.47). Obviously,
the case b) for the vector field By+ ¢(+,0) is the case a) for —(By+g(+,0)). For
the case a) and b), we can derive this theorem in the same manmer as used in
Theorem 5.3.4 and Theorem 5.3.9. The proof is complete.

Remark 5.3.11. In the condition (5.3.46), if the eigenvalues (1(\) =
a(A) + ib(N), B2(A) = a(X) — ib(N), and b(Ag) # 0, then Theorem 5.3.10 is
the Hopf bifurcation theorem. In fact, in this case, the matrix (5.3.3) is non-
degenerate:

degAlr=x, # 0

Hence, by the inverse function theorem, the system (5.3.1) has no bifurcation
of the equilibrum points.

5.3.4. Remarks on bifurcation of invariant manifolds

Now, let us concern the following problems, which are interesting and rela-
tively difficult.
1). Do the attractors ), in Theorem 5.3.4 contain at least a S™!-invariant
manifold?
2). What conditions do the vector fields of (5.3.1) satisfy so that the invariant
set Y, is a ™ l-attractor?
3). If 3~ has no singular points, then does )", contain an invariant manifold?
4). Under the below condition

<0(>0), A<AXo

Refi(\) =4 =0, A=X (I1<i<m)
>0(<0), A>Xo

Reﬁj(/\()) 75 O,Vm-i- 1< j <n

(5.3.49)

does the system (5.3.1) bifurcate from (z,\) = (0, A¢) an invariant mani-
fold? If does not, then what additional conditions do we need to imposed in
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order for (5.3.1) to do so?
With the problems in mind, here we present some open quasitions and sug-
gestions as follows.

Problem 5.3.12. Under the conditions of Theorem 5.3.4, if the vector
fields G(z, A0 in (5.3.1) are analytic, then the bifurcated invariant set )", is a
Sm~L attractor.

Conjecture 5.3.13. Under the conditions of Theorem 5.3.4, if the bifur-
cated attractor ), of (5.3.1) has no singular points, then ), must contain at
least an invariant manifold.

This conjecture is based on the observation that the boundary 0M3 of the
unstable manifold My C R™ of (5.3.1) at x = 0 is a (m — 1)-sphere S™~!
with the self-intersection, which is invariant in > ,. If OM;) has no singular
points, then the self-intersection in M}, which is invariant too, either is empty,
thus M} = S™~!, or contains some invariant manifolds with dimensions
E(1<k<m-—2).

We referred the fourth problem to the follow conjecture.

Conjecture 5.3.14. Under the condition (5.3.49), the system (5.3.1)
bifurcates from (z,A) = (0,)¢) at least a k-dimensional invariant manifold
SO0 <k<m-—1),and as k =0, consists of the singular points of (5.3.1).

When m = 2, this conjecture holds true, which is Theorem 5.3.10. When
m=odd, the conjecture is trivial because there always exists the bifurcation of
singular points.

In order to describe the problem 4), we introduce a definition on the stable,
unstable and neutral sets, which are the analogues of the stable, unstable and
center manifolds. We denote the vector fields of (5.3.1) by

F(z,\) = Az + G(z,\), ze€R" Ae€R.

Definition 5.3.15. Let S)(¢) : R™ — R"™ be the operator semigroups
generated by F(z,\),U C R"™ be a neighborhood of x = 0. We respectively
call the sets

Q(U) ={z € U|Sx(t)xr € U Vt > 0, and w(x) = {0}}
QN(U) ={z € U|Sx(—t)x € U ¥Vt > 0, and a(z) = {0}}
M(U) ={z € U|S\(t)r € U Vt € R, and a(z),w(z) # {0}},

the stable, unstable and neutral sets of F(x,A) in U.
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Obviously, we have
dimQ3 + dimQy + dimQy > n.

And if the sets Q3, Q% and QF are manifolds with dimension > 1, then z = 0 is
an interior point of them, and as x = 0 is an isolated singular point of F(x, \),
we have

ind(F*(-,\),0) = deg(F*(-,\),Q5,0) = (=1)*
ind(F*(-, \),0) = deg(F"(-, A), Q%,0) = 1
an(Fn(’A)aO) = deg(Fn('a)‘>v ;\Lao) =1

where k = dimQ3, and F*, F'“, F" are respectively the restrictions of F' on
O3, Q% and QY. Furthermore, we have

Theorem 5.3.16. Let = 0 be an isolated singular point of F(z,\) at
A = Ay, and U C R" be a neighborhood of = = 0. If all the stable, unstable
and neutral sets in U are manifolds, then

dimQ)3, + dim§dy, + dim§Yy, = n

ind(F(-,\),0) = (=1)F, k=dimQ3,.

We now return to analyse the problem 4). Conjecture 5.3.14 is based on the
following facts. By the center manifold theorem, the bifurcation of invariant
manifolds of F(z,\) can be reduced to that of the vector fields in R™ defined
as in (5.3.31)

Fi(z,A\) = Bz + f(z,\), x€R™
By the condition (5.3.49), the neutral set of F;(z, \g) equals to the neutral set
of F(x, Ag). If the neutral set of Fy(x, \p) has the dimension smaller than m:

dimQy, <m
then the stable and unstable sets of Fy(x, Ag) satisfy
(5.3.50) dimQ3, + dimQY, > 1

By using lemma 5.3.5, in a similar manner as used in Theorem 5.3.4 and The-
orem 5.3.10, from (5.3.50) we can derive that Fy(x, \) have the bifurcation of
invariant set at (0, Ag). Thus, we summarize to a theorem as follows

Theorem 5.3.17. Under the condition (5.3.49), if the dimension of the

neutral set of F(z,\) at A = Ag is smaller than m, then the system (5.3.1)
bifurcates from (0, Ag) an invariant set.
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Thus, Conjecture 5.3.14 derectly depends on Conjecture 5.3.13 and the con-
jecture that if the neutral set of F'(z, o) has dimQ} = m(m=even), then there
is a sequence of invariant manifolds {I'y|n = 1,2,---} C Q} of F(x,\g) such
that T',, — {0} as n — 0.

5.3.5. Stability on bifurcation

Let Q C R™ be an open set, O € 2, and A € R a parameter. We denote the
space of parameterized vector fields by

Co (2% R, R") = {F : QO x R — R"|F(0,\) = 0,¥\ € R}

with the norm

k
[Fllgrr = iugsgp[z |DYF| + | DAF| + | DX, F].
S

p=0

Obviously, if F € C'g’l(Q x R,R™)(k > 1), then F is k-th differentiable on
x € Q and differentiable on A € R. Moreover, F' can be expressed as

F(-,A) = Ay + G(-,\)

where G(+, A) and Ay satisty (5.3.2)-(5.3.4), and the simple real and simple com-
plex eigenvalues of Ay are differentiable on A(see [Kal), which can be expanded
by

Bi(N) = abh+aiA+o(A), (1<i<n).

Definition 5.3.18. Let Fy, I, € C’(If’l(Q X R, R™), \; € R be a bifurcation
point of invariant set T, of F;(x, p)(i = 1,2). We say that the both bifurcation
points A1 and Ay have the same structure if F; and F5 are locally topologically
equivalent at le and Fiz (p1 — A\ = p2 — A2), i.e. there are neighborhoods
U; C R"™ of F;i (i =1,2) and a homeomorphism ¢ : U; — Us such that ¢ takes
the orbits of F; in U; to orbits of F5 in Us, preserving orientation.

Definition 5.3.19. Let F' € Cg’l(ﬂ x R, R™), \g be a bifurcation point of
F(z,)). We say that the bifurcation point X is stable in C&'(Q x R, R™), if
Ve > 0 sufficiently small, there is a neighborhood O C C’g 1(Q x R, R") of F
such that VF; € O, F; has a bifurcation point A; with |A; — Ag| < €, where A
and Ao have the same structure. If all the bifurcation points of F' are stable in
Cg’l(ﬂ x R, R™), then we say that F' is stable on bifurcation in C’g’l(ﬂ X R, R"),
or F is a vector field with stable bifurcation.

297



Definition 5.3.20. Let F € Co''(Qx R, R™)(k > 1), Ay € R be a parameter
of F.
i). Ao is called an eigen-parameter with multiplicity m of F, if DF(0, Ag) has
the eigenvalues with zero real parts, the sum of whos multiplicities is m.
ii). Mg is simple if either the multiplicity m = 1, or m = 2 and the two
eigenvalues passing through zero at )y are the conjugate imarginary number
Bi(Ao) = B2(Ao) = iB(8 # 0).
iii). If the simple eigenvalues passing through zero in (5.3.49) satisfy

ORefi( o)
o\

then \g is called to be regular.

#£0, 1<i<m (m=1, or =2)

The following is a basic theorem on stable bifurcation points

Theorem 5.3.21. Let F € C’g’l(Q x R,R"™), and Ay be a simple eigen-
parameter of F'(x, A). There exists a number b()g), called the bifurcation num-
ber of F' at A\, which continuously depends on the module || F||¢s.1, such that
the following assertions holds true.

i). Ao is a stable bifurcation point of F if and only if \g is regular and the
bifurcation number b(\g) # 0.

ii). If Ao has multiplicity m = 1, and b(A\g) # 0, then F(z, A) bifurcates an
unique branch of singular points 2*(\), which are hyperbolic for A # Ag(i.e.
the eigenvalues of DF(x*, ) have the non-zero real parts), and have k
-dimensional stable manifold for A < Ag(or A\g < A), (k + 1)-dimensional
stable manifold for A\g < A(or A < Ag), depending the manner passing
through zero of eigenvalues in (5.3.49), where k=number of the
eigenvalues of Ref;(A\g) < 0.

iii). If Ao has multiplicity m = 2, F/(x, \) bifurcates an unique branch of
periodic orbits 'y for A < Ag
(or Ag < A) as b(N\g) > 0, and for A\g < A(or A < Ag) as b(\g) < 0, which
are hyperbolic for A #£ ).

Proof. First, we consider the case that A\g has multiplicity m = 1. Thus,
in a neighborhood of (x,\) = (0, o), F(z,\) can be expressed, in a proper
coordinate system, as

(5.3.51) F(z,)) = ( gl(/\) OBA ) ( ggj ) + ( gigm )

where z = (z,y),z € R*NQy € R"INQG : QxR — R,Gy: QxR —
R™ ! are C3 functions on z € €2, and

(5.3.52) Gi(z,y,A) = o(lz[, [yl),  (1=1,2)
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while, By is the (n—1) order matrix having the eigenvalues {3;(\)}|2 < j < n}
defined as in (5.3.49).
By the center manifold theorem, there is a function

(5.3.53) y = h(z,\), h(0,\) = 0, R,(0,\) =0

which is C3 on @ € R' (N, and continuous on A, such that the bifurcation of
(5.3.51) at Ag is equivalent to that of the following equation
dx

(5.3.54) i B1(N)x + Gi(x, h(z, A), A)
where

<0 (or >0), A<Xo

ﬂl(/\) = =0, A= Xo
>0 (or <0), A>X

By (5.3.52) and (5.3.53), we have the Taylor’s expansion

(5.3.55) G1(x, h(z, ), \) = b(\)z? + c(\)z® + o(|z]?)
where )
bA) = ) Gg(;);O,)\)

It is clear that b(\) continuously depends on A and the module || F||¢z. The
number b(\g) is the one expected by us.

In fact, when b(\g) # 0, the equation (5.3.54) bifurcates an unique branch
of singular points xo(\). Therefore, x*(\) = (zo(A), h(zo,A)) is a bifurcated
branch of singular points of (5.3.51). We shall show that z*(\) are non-
degenerate for all |\ — Ag| > 0 sufficiently small. We see that

DF(*, \) = < gl()\) 0 >+ ( DGl(xo,h(azo,)\),i) )

B)\ DGQ(anh(z()a)‘)a )
_{ BN+ 26(N)zo + o|zo])  O(|wol)
(5.3.56) = ( O(|zo)) By + O(|zo|) )
Hence

detDF (z*,\) = (81 + 2bxq)det By + o(|zo])
Because xo()) satisfy
Bi(N)x +b(N)z? + o(jz|*) =0

one can deduce that

L5 +o(|61))

zo(A) = )
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Therefore we obtain

detDF (z*,\) = —pB1(N)detBy+ o(|f1])
% 0, for all |\ — Xo| > 0 suf ficiently small,

and

sign detBy, X <X (or A > X\o)

(5.3.57) sign detDF (2", A) = { —sign detBy, A > Ao (or A < Xg)

Because the eigenvalues 5 (A)(1 < i < n) of DF(z*, \) continuously depends
on A, and B (Ao) = B;(Ao)(2 < j < n), and by (5.3.49), Ref;(Ao) # 0, conse-
quently the derivative operator DF(x*, A) are hyperbolic for all |\ — Ag| > 0
sufficiently small. From (5.3.57) we get that

by — k, as A <X (or A > X\o)
Y7L k41, as A> X (or A< \o)

where k;=number of the eigenvalues of DF(x*, ) which have the negative real
parts. Hence, by the stable manifold theorem we obtain the conclusion ii).
We are now in a position to prove the conclusion i) for m = 1. Let Ag
be regular and b(Ag) > 0 (for the case of b(Ag) < 0, the proof is the same).
By the definition of norm | - ||gs.1,Ve > 0 there exists § > 0 such that if
Fy € CP'(Q x R, R™) and
IF - F)l <6

then the eigenvalues of DF} (0, \) satisfy that 3; € C'(R), and
1Bi = Biller <€, V1<i<n
Because Ag is regular,
Bi(A) = a(XA—=Xo) +o(]A = Xo]), a#0

It means that as € > 0 sufficiently small, the eigenvalues (1(\) of DF,(0,))
has the expansion

Bi(N) = a1(A = A1) +o(|]A = Aif), a1 #0

and
a; —a, M —X as Fi — Fin C*' —norm.

Hence, it follows that there is a neighborhood O c Co''(Q x R, R") of F such
that for any F; € O, F; has a simple and regular eigen-parameter A\; with
[A\1 — Ao| < €, and the bifurcation number of F; at \; satisfies b*(\1) > 0.
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We say that a linear vector field A is hyperbolic if all the eigenvalues of A
have the non-zero real parts. The number of eigenvalues of A with negative real
parts is called the index of A. It is well known that if A and B are hyperbolic,
then A and B are topologically conjugate (therefore the flows of A and B are
topologically equivalent) if and only if they have the same index (Cf.[PM]).

Let 23 (\) be the bifurcated branch of singular points of F; from (0, A;). By
the conclusion ii), DFy(x7, p1) and DF(z*, py) are hyperbolic respectively for
p1 # A1 and pg # Ag. On the other hand, as (5.3.56) we have that

* _ *5&(01) +o(|61) O(B)
(5.3.58) DFy(z%, p1) = ( o5 4 )
where
IBX — Bal| <€, €>0 sufficiently small.

Hence, from (5.3.56) and (5.3.58) it follows that DFy(z¥, p1) and DF(z*, po)
with p1 — A1 = pg — Ag have the same index. By the Hartman-Grobman theo-
rem we derive the sufficient conditions for m = 1 of conclusion i).

The necessary condition.

When b(A\g) = 0 and C(Ag) # 0 in (5.3.55), the topological structure of
bifurcation of (5.3.54) is clearly different from the case that b(X\g) # 0. If
b(Ao) = C(N\g) = 0, then F can be approximated by Fy and Fy in Cg''(Q x
R, R™), where the bifurcation numbers of F; are non-zero, and the numbers as
defined in (5.3.55) of F; have b(A2) = 0 and C(A2) # 0, A2 the eigen-parameter
of Fy. Hence )\g is not stable on bifurcation.

When A is not regular, i.e. 81(A) = o(]A — Ao|), then F can be approxi-
mated by Fy in Co'' (2 R, R"), where DFy (0, \) have the eigenvalues passing
through zero as follows

/BN()\)— 0, )‘E[)\O_GNa)\O“FEN], ey >0, ey —0, N — 00
! o 750, )\é[/\o—GN,/\()—l-GN].

Obviously, the bifurcation structure of Fy is different from that of F' at A = Ag.
Thus, the conclusion i) for m = 1 is proven.

Next, we consider the case that A9 has multiplicity m = 2.
For the sake of simplicity, let F'(z, A) be expressed as

Oé()\) -1 Ty Gl(xa?%)‘)
(5.3.59) Fz,\)=1| 1 a(A) z2 |+ | Ga(z,y,N)
@ B/\ Y G3<l’,y,A)

where 2z = (z,9) € Q,2 = (71,22) € R2NQ,y € R" 2NN, G1,G2: QA x R —
R,G3:Qx R— R" 2 are C? functions on z € ), and

(5.3.60) Gi(z,y,\) =o(lzl,|y]), (=1,2,3)
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while B), is the (n — 2) order matrix possessing the eigenvalues {5;(\)[3 < j <
n} defined as in (5.3.49)

By the center manifold theorem, the bifurcation of (5.3.59) at Ao is equiv-
alent to that of the following system

(5.3.61) { = a(N)ay — 22+ fi(@1,22,))
' G =r1+a(Nze + fa(z1, 72, )
where
<0(0T >0), A< Ao
OK(A) = = 0’ A= )\O
>0 (or <0) A> A
and

fi(.’lfl,.fQ,A):Gi(xl,ﬂfg,h(afl,l'g,/\),)\), 7’:172

The function y = h(x,A) defined as in the center manifold theorem satisfies

the properties (5.3.53). By the Taylor expansion, from (5.3.53) and (5.3.60) we
have

2 n—2
filz, A) = Z a’ TN + ZZ ik TYk + 0 (Jz?)
2<p+q<3 Jj=1 k=1
(5.3.62) Yk = hi(x1,22,N),  h(z,\) = {h1(z,\), -, hp_2(z, )}
h‘k 1;1,332, Z 1:11'2 +o |I|2)
r4+s=2
where
APT4G;(0,0,0,N) .
a/pq - axglyaxg ) (O S D, q S 3a 1= 1’2)
i 92G;(0,0,0,\)
L 0x 0y,
2
Cfs = —3 hi(0,0, A) (0<rs<2)
0x} 0z}

It is clear that the coeficients apq, bl i and k. continuously depends on A and
the module || F||gs.1.

We adopt the polar coordinate system to discuss the equation (5.3.61). Let
r1 =rcost,xo = rsinf. Then we have

dr dzry dxo
% = COS 0% + sin 0%
d0 dl‘Q = dl‘l
dt 50? —sind 7



From (5.3.61) and (5.3.62) it follows that

dr _ a(\)r® +rcosffi(rcosd, rsing) +rsind fo(rcosd,rsinb)
o r 4 cosOfy(rcosf,rsin@) — sin @ f1 (r cos b, rsin 6)

(5.3.63) = [ar + up (6, /\)7‘2 + us (6, /\)7“3 + o(r?’)] X

x [1 + 0 (97 )\)’I“ + V2 (97 )‘)TQ + O<T2)}
= ar + (ug + avy)r® 4 (ugvy + us + avs)r® + o(r®)
where u;,v;(i = 1,2) are the homogeneous functions of degree i+ 2 on cos § and

sin 0, and continuously depend on the coeficients aé,w b;k and ¢, in (5.3.62). Tt
is readily to check that

27
(5.3.64) / (41 (0, 3) + a(\)vr (6, \)]d6 = 0
0

Denote by
b(\) = /0 W[ul (0,0) - v1(0,A) + u2(0,\) + a(N)va (0, A)]dO

The number b()\g) is defined as the bifurcation number of F(z,A) at \g. We
divide into a few steps to prove the conclusions i) and iii) for m = 2.

Step 1. F'(z, A) bifurcates an unique branch of periodic orbits I'y for A < Ag
(or A > MAg) as b(Ao) > 0, and for Ay < A(or A < Ag) as b(Ag) < 0, depending
the manner that a()\) passes through zero.

This claim above is well known. But, for the sake of completion, here we
still give a proof. It suffices to only prove the case of b(Ag) > 0. Let r(0, A, a)
be the solution of (5.3.63) with the initial value r(0,\,a) = a. We know, by
the ODE theory, that r(, A, a) is third differentiable on a > 0. Then r(6, A, a)
can be expressed near a = 0 as

(5.3.65) r(0,\,a) = a+719(0,\)O(a?)

In the case without confusion, we denote 7(8, A, a) by r(6,a).
On the other hand, by (5.3.63) we get
ldr 1
(5.3.66) ol i ;a(/\) + (u1 + avy) + (urv1 + vz + ave)r + o(r)
Inserting (5.3.65) into the right side of (5.3.66), and then integrating it, by
(5.3.64) and r(0,a) = a, we obtain that

r(2m,a) — r(0,a)

(5.3.67) o a)

= c(a, \)a(N) + b(N)a? + o(a?)
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where
{ c(a,N) = [Z7[1 + o(a)ro(6, \)]d6
c(0,A) =27

It is easy to see that every positive solution a > 0 of the following algebraic
equation is corresponding to a periodic orbit through the point (x1, z2) = (a,0)
of (5.3.61):

(5.3.68) c(a, \)a(\) +b(N)a* +o(a*) =0

Obviously, when b()\g) > 0, the equation (5.3.68) uniquely bifurcates from
(a,A) = (0, ) a branch of positive solutions a(A) for A < Ao, or A\g < A, de-
pending on the signs of a(\), and there is no bifurcated branch for Ay < A(or
A< )\o)

Step 2. The bifurcated periodic orbits I'y are hyperbolic

For convenience, here we shall introduce the concepts of the poincare maps
and hyperbolic periodic orbits, which can be found in some textbooks on the
dynamical systems, e.g. see [PM].

Let v be a periodic orbit of a vector field F,zg € v a point. Let > be a
section transversal to F' through the point xg.

The orbit through z( returns to intersect > at time T' > 0, where T is the
period of 7. By the continuity of the flow of F', there exists a neighborhhod
U C > of g, for each point « € U, the orbit through z returns to intersect »
at some time ¢ > 0. Thus, we can define a map P : U — ) as that for every
point © € U, P(x) is the first point where the orbit of = returns to intersect
>". This map P is called the Poincare map associated the periodic orbit v (see
Fig. 5.13).

Pzl

Fig 5.13.

The Poincare map P : U — P(U) C Y is a homeomorphism, and each fixed
point of P associates a periodic orbit of F.
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We say that - is a hyperbolic periodic orbit of F', if x( is a hyperbolic fixed
point of the Poincare map P : U C Y. — >, i.e. DP,, has no eigenvalues of
modulus 1.

Without loss generality, we assume the center manifold M) of the vector
field (5.3.59) is the z-plane, namely

y = h(z,\) =0,Y|\ — \g| > 0 sufficiently small and x € R*.
In fact, in the transformation of coordinate system as

{ izl‘, %:(51,%2), $:(ZE1,$2)
g:y_h(xaA)a

the vector field (5.3.59) is transformed into the below form

_ a(A) -1 T Hy(7,7,\)
Flz,g\) =11 a(N) 0 T | + | HZ,7,))
0 Bx/\¥ H3(%,7,\)
where
Hy(T,5,)) = Gi(T, 7+ h(T,\), ), i=1,2
e
H3(Z,5, A) = BAh(Z,\) = Vh- d—f +G3(Z, 5+ h,\)
@_ a -1 74+ H,
ad 1 o )7 H,
Therefore

Hi(z,y,A) = o(lz], [y]), 1<i<3.

It is clear that the both vector fields F and F are topologically conjugate, and
the z-plane is a center manifold of F.

Y AR y AR

Ds

arhs)

183

Fig. 5.14
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Now we give the Poincare map associated the bifurcated periodic orbits
'y of F. By the assumption, the z-pland y = 0 is a center manifold of F,
then I'y C R? the z-plane. Let I'y be through the point (a()),0) € R? with
0 < a()\) < p(p sufficiently small). Denote by D, = {y € R"7?|||ly|| < p}. We
take the section transversal to F' through the point (a()),0) as (see Fig. 5.14)

Y = {(z1,9) eR"MNO< a1 <p,yED,C R"?}
= (Oap)XDp

The Poincare map P: Y. — > is given by
P(z) ={p1(2), ®(t:, 2)}, 2= (21,9) € X =(0,p) x D,

where p; : >~ — (0,p), ®(ts,-) : > — D,, and
t

(5.3.69) B(t,z) = etPrz Jr/ eBAG (2, ®)dr
0

which is the solution of the equation

y(0) = 2

and t, is the time that the orbit through z returns to intersect .. Because
the z-plane is invariant for the vector field (5.3.59), therefore the line segment
(0,p) x {0} C > is invariant for the Poincare map P(z). Thus, we have

(5.3.70) O(t2, 2)|:=(@1,0) = 0
(5.3.71) p1(21,0) =r(2m, 1)
= by (5.3.67)
T

1—c(z1, \)a(X) — bz3 + o(a?)
= @1+ c(wr, Nazy +bxf +o|al, |21 )

For the fixed point (a(A),0) € >_ of p(z), from (5.3.69)-(5.3.71) we derive that

9p1(a,0) %
DP(a,0) = < 0<1>6(?£;21,z)| 09 (t,.2) )
1 z=(a,0) oy ‘z:(a,O)
B ( 1+ ca + 3ba® + o(|al, |a]?) =
B 0 etzB)\|z:(a,0) )
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Since t.|,—(a,0) = 1, and a(}) is the positive solution of (5.3.68), we have that
1 2
@*(\) = —g¢-a+o(al) = —Ta +of|a])

Hence the eigenvalues of DP(a,0) are as follow
1 —4ma(N) +o(|al), %N, 3<j<n.

Because Ref3;(Ag) # 0(3 < j < n), we can see that DP(a,0) is hyperbolic for
all [A — Ao| > 0 sufficiently small. Thus, the conclusion iii) is verified.

Step 3. Finally, we prove the conclusion i) for m = 2.
We only need to prove the sufficientness because the necessity is obvious.
Let b(Ag) > 0 and Ay be regular, i.e.

a(A) =0(A—Xo) +o(|]A = Ag), o #0

When Fy € Co'(Q x R, R") and ||[F} — F||¢s.1 sufficiently small, there exists
an eigen-parameter A\ of F}, which is close to Ay, and in a neighborhood of Ay,

ar(A) —p
DF(0,\)=| 0§ a1 () , O~1
0 B}

where
al()\):Jl()\_)\l)+0(|)\_)\1|); [oaEa-ea

and B is close to By. Meanwhile, the bifurcation number b*(\) of F} is also
close to b(Xg), therefore b*(\1) > 0. By the steps 1-2 above, Fj bifurcates an
unique branch of perioidic orbits I'} for A < Ay (if o1 < 0, then A; < A), and
which are hyperbolic for all |[A — A;| > 0 sufficiently small. Thus the bifurcated
branchs I‘}\ and I'y are on the same side of their bifurcation points.
It is knwon that the hyperbolic periodic orbits of vector fields in C” (Q, R™)(r >

1) are locally structurally stable. Because the parameterized vector fields
F € CJ'(Q x R,R") are continuous on A in the C3-norm, in the bifur-
cated branch of hyperbolic periodic orbits I'y of F, any two F(A1,-) and
F()Xg,-) are locally topologically equivalent at T'), and T'y,. On the other
hand, when Fj is close to F' in C’S”l(Q x R,R™), for some fixed parameter
p, Fi(p,-) is close to F(p,-) in C3(2, R™). Therefore there exists a neighbor-
hood U c CJ''(Q x R, R") of F such that for any Fy € U, Fi(p,-) and F(p,-)
are locally topologically equivalent at F; and I',, which implies that the bi-
furcation point A\; and A\g of F} and F have the same structure. The proof of
Theorem 5.3.1 is complete.
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It is not difficult to obtain directly from Theorem 5.3.21 the following global
stability theorem on bifurcation

Theorem 5.3.22. A parameterized vector field F € Cg''(Q x R, R") is
stable on bifurcation, if and only if
1). all the eigen-parameters of F' are simple and regular;
2). each of the bifurcation numbers of F at eigen-parameters is nonzero.

Moreover, the set of all vector fields with stable bifurcation is open and dense
in C3''(Q x R, R™).

Obviously, if all the eigen-parameters of I’ are regular, then the eigen-
parameters must be discrete.

Remark 5.3.23. It is worth to point that the order k = 3 of C& (€ x
R, R™) in Theorem 5.3.22 can not be reduced anymore, because in C’o’l(Q X
R, R™) there are no vector fields with stable bifurcation, and in C’g 1(Qx R, R™),
the set of all vector fields with stable bifurcation in C’g 1(Q x R, R™) are those
whose eigent-parameters regular and simple with multiplicity m = 1.

5.4. Bifurcation of Invariant Sets of Infinite
Dimensional Fields

In this section, we shall generalize the dynamic bifurcation theory of invari-
ant sets of finite dimensional systems in Section 5.3 to the infinite dimensional
fields in Hilbert spaces. These generalizations can be applied to the bifurca-
tion problems of various partial differential equations, for instance, the Navier-
Stokes equations, dissipative wave equations and reaction-diffusion equations,
ets.

5.4.1. Locally invariant manifolds

Let H, H, be the Hilbert spaces, and H; — H be an dense inclusion em-
bedding. We consider the nonlinear evolution equations given by

(541) { %:LAU+G(U7)\)7 ueHl, ANER

u(0) = ¢

where G(-,\) : Hy — H are the parameterized C" bounded operators (r > 1)
continuously depending on the parameter A € R, and

(5.4.2) Glu,\) = o(||ullm,), YAeER
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and Ly : Hi — H are the parameterized linear completely continuous fields
continuously depending on A\ € R, which satisfy

Ly=—-A+ B,
(5.4.3) A: Hy — H a linear homeomorphism
By : Hi — H the parameterized linear compact operators

In this subsection, we give the generalizations of the center manifold the-
orems of finite dimensional systems to the infinite dimensional system (5.4.1),
although these generalizations have been essentially known.

We assume that the operators Ly are generators of strongly continous semi-
groups of bounded linear operators, and the spaces H; and H can be decom-
posed into

(5.4.4) Hy=E @ E), dimE} <
o H=E'@E;, E}=E) E3= closureof E3in H

where F7 and E2 are the invariant subspaces of Ly, i.e. Ly are decomposed
into Ly = £7 @ £3, and

L3 =Li|py : By — E3

in where the eigenvalues of £7 and L3 respectively possese the non-negative real
parts(this condition is not necessarily required in the center manifold theorem)
and the negative real parts.

Thus, the equations (5.4.1) can be written as to read

de — L2+ Gz, y,\)
5.4.6 i 1 v
(54.6) { i _ 3y 1 Gyl )

where u =z +y € Hy,v € E{,y € FE3, and

P;H — FE; are the projective operators
Let S\(t) : By — EQA be the strongly continuous semigroups generated by
L3. We have the following theorem on the locally invariant manifolds for the

system (5.4.1).

Theorem 5.4.1. Let G(u, A) be C"(r > 1) on w € Hy. Under the hypothe-
ses (5.4.2)-(5.4.5), if

(5.4.7) Sx(®)|| < Kxe™ ', for some constants Ky, ay >0
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then there exists a number § > 0 such that as |A — \g| < 6, there are neigh-
borhood Q) C E} of x = 0 and C" function h(-,\) : Q) — E7, continuously
depending on A, which satisfy

i). h(0,A) =0,D,h(0,\) =0

ii). the sets

MA:{($,y)€H1| JL'EQ)\,y:h(I’,A)GEQ)\}

called the local center manifolds, are locally invariant for the system (5.4.1),
i.e. V¢ € My,3t, > 0 such that

ux(t, @) € My, VO <t <ty

where u(, ¢) is the solution of (5.4.1);
iii). if (zx(t),ya(t)) is a solution of (5.4.6), then there is a Gy > 0 and k) > 0
with k) depending on (x(0),yx(0)) such that

lya(t) — h(za(t), )|l g < kae

Proof. The ideas employed here follows the finite dimensional cases (Cf.[CH]).
For the sake of simplicity, in all satuation without confusion, we drop the A in
the functions, for example denote G;(z,y) = G;(x,y, \), etc. Let € > 0, and
pe : E1 — [0,1] be C* function with

1, |lz|| <e€
o ={ g 2]

||lz]| > 2¢
We denote
C"(Ey,Ey) ={h: E1 — E3] h(0)=0,hisr—th def ferentiable}

We only proceed for the case r = 1, and the proof of r-th differentiable of h(x)
is omitted here. For each h € C'(E4, E»), there is an unique solution x(t, h, @)
of the inital value problem

(5.4.8) { 3%_%0): ff J epeglc)Gl(x, h(z))

and x(t, h, ¢) is differentiable on h and ¢. We define a mapping T : [0, 00) X
R x Cl(El,Ez) — Cl(El,E2> by

{ T(ev >\a h) = f_ooo S(_T)pé(‘r(Ta ha -))Gg(i(T, hv ')a h(‘r(Tv ha )))dT
T(0,\,h) =0
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If this definition makes sense and T has a fixed point h € C(Ey, E»)

h() = / S(—T)pg(l‘(ﬂ h, -))Gg(l‘(T, h, ')7 h(l‘(T, h, )))dT

—0o0

then it is clear that for the solution z(t,h, ) of (5.4.8), simply denoted by
x(t, @), the function

y(t,h(d) = h(z(t,¢))

s(t — s)pe(a(s, 9))Ga(x(s, 0), h(x(s, 9)))dr

/
= [ Sl b )Gl 7,0, Ry
/

satisfies the equation

{ W — Loy + pe(a(t, ) Ga(z(t, 6), )
y(0) = h(¢)

Thus, {x(t,$), h(z(t,¢))} is a solution of the below problem

? = L1z + pe(x)G1(z,y)
= Loy + pe(2)Ga(z,y)
z(0) = ¢,y(0) = h(e)

which means that the set M = {(z,y) € Hi|r € Be,y = h(x)} is a locally
invariant manifold of (5.4.1), where B, = {x € E1|||z||u, < €}
In the following we divide a few steps to prove this theorem.

SIS

Step 1. The mapping T makes sense.

Because Ga(z,y), h(z) are C! on their arguments, and the solution x(t, h, ¢)
of (5.4.8) is C* on ¢ € Ey, if the integral of T' exists, then T'(e, A, h)(¢) is differ-
entiable on ¢ € Hy. On the other hand, by (5.4.2) and h(0) = 0, z(¢, h,0) = 0,
we have that T'(e, A\, h)(0) = 0. Hence, we only need to show that the integral
of T makes sense, namely, the following limit exists
(5.4.9)

t

tlingo 0 S(T)pé (CE(—T, h, ¢))G2 (.T(—T, h, ¢)a h(ﬂ?(—T, h, ¢>))dTa Vo € Ey
By the theory of semigroups of linear operators, we know that for any differ-
entiable curve f € C'([0,00), H) and a strongly continuous semigroup T'(t) :
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H — H generated by L : Hy — H, which is invertible, we have
to
[ 10, v sz 0
t1

and

|| / T f(r)dr |, = |IT / T f(r)dr g

ty

~ 7)) - T(0)f () + [ T Gl

Thus we obtain

ta
|| / S()peCadrll, < ||5(t2)peGalls + |5(t)peGal i
ty

to d
+ [ 1 15 0 G
ty

By (5.4.7), from the boundedness of ||p:Ga| i and || (peG2)||n we can derive
that

to
lim H 8(T>p5(‘r(_7-a h,¢)>G2(x(_T’ h7¢)7h)d7—”H1 =0
ty

t1—o00ty—00
V¢ € E;. It implies that the limit (5.4.9) exists.

Step 2. The mapping T has a fixed point.
Obviously, T'(e, A, h) is continuous on the arguments ¢ > 0 and A € R. We
shall prove that

lim  T(e,\,h) =0 in C'(Ey, Ey)
e—0A— g

It suffices to show that

lim |[DyT(e, A, h) ()| =0, Vhe CH(EN, Bs) and ¢ € B,
For a given h € CY(E1, Ey), we see that
DyT(e,\,h) = / S(T)[Dype - DpxGa(zh, h)+
0

+peDyGa(xp, h)Dyx + peDyGa(xp, h) - Dyh - Dyxldr
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where xp, = x5 (—t, ¢) satisfies

dz — _ T — T 1\T
(5.4.11) { :(viEO)_: qfl pe(x)Gr(z, h)

and z = Dyx(—t) satisfies

% =—L12 — pe(xn) D G1(xh, h)z — Dype(xp)G1(zh, h)z
(5.4.12) —pe(xn)DyGr(xh, h) - Dyh - 2
z(0)=1

Due to the action of the cut-off function pe, by (5.4.2), for any ¢ € E; we can
get the estimates

|Gi(zn, h)|| < cle)-€, Vap € Baye (i=1,2)

1D G (n, )| + | DyGa(zn, h)l| < ¢€),  Van € Bae

where ¢(e) — 0 as € — 0. By the definition, we have
| Dape(zn)| <c-e ', ¢ >0 a constant.

On the other hand, because —£7 has no eigenvalues with the positive real parts
at A = Ao, by (5.4.2), from (5.4.11) and (5.4.12) we can obtain the estimates

lzn(—t, @) < e’ &N 01(e, ) = 0 as e — 0 and A — Ao

| Dya(—t)|| < cet®EN  hy(e,\) — 0 as € — 0 and A — Ao

By (5.4.7), from the estimates above the equality (5.4.10) follows.
We now consider the mapping

K(e,\,) =id —T(e, \,-) : OY(Ey, By) — CY(Fy, Es)

By (5.4.10) we see that K (e, A, h) is continuous on (e, \) in a neighborhood of
(e, A, h) = (0, Ag,0). We shall use the implicity function theorem to prove this
claim. To this end, we need to show that T is differentiable on h at (0, Ao, 0).
We see that

DiT(e.0) = [ S (7)Dape(@ Dne( )G, 0) +

+,05 (%)DIGQ(%, O)DhZE + Pe (E)DyGQ (%, 0)]d7

where & = Z(—t, ¢) satisfies

4 — £\ — p(F)Gh(F,0)
z(0)=¢
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and Z = Dpx(—t) satisfies

% =—L12 — pD;G1(Z,0)2 — DypcG1(T,0)2 — peDyG1(2,0)
z2(0)=0

In the same fashion as above we can derive that the derivative DT (¢, Ao, 0)
exists, and
].iII(l) DpT (e, X0,0) =0

Hence we obtain
DK (0,),0) = id — D,T(0, X\, 0) = id

By the implicity function theorem we get that there is a number ¢ > 0 such
that as |A — Ag| < &, there exists ey > 0 and hy € C"(E1, E3) which satisfy

h/A - T(E)\v )\, hA)

moreover, hy continuously depends on A. By (5.4.2), it is easy to see that
D,h(0) = 0. Thus the conclusion i) and ii) are verified.

Step 3. Finally we show the conclusion iii).
Denote by

CYR" x H,Ey) = {J(t,x,y) € B3| te R,z € Ey,y€ Fy, J(t,0,0) =0}
We define a mapping
T:R" x CY(R" x Hy,Ey) — CY(R" x Hy, Fs)

as that, VJ € C*(RT x Hy, Ey) and e € HT

¢
T(e,J) = / S(t —T)pe - Godr
0
where p. : Hy — [0, 1] is the C* cut-off function defined on H;, and

Pe = pe(ZE(T — 1,20, Yo, J)v J(T,LE(T —t, %0, Yo, J),yo))
G2 = G2($(T - tvx()vy()a J)v J(Tvx(T - t7x07y0a J)vy()))

J(t, 20,y0) = S(t)yo + J(t, 20, Y0)

and z(t, g, Yo, J) is the unique solution of the problem

‘é—f = Lix 4 pe(x, J(t, 2,90))G1(z, J(t, x, yo))
z(0) = g
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Consider the mapping ~ ~ ~
K(e,J)=J—T(e, J)

Obviously, K(0,0) = 0. In the same manner as above, we can get that
DsK(0,0) = id — D;T(0,0) = id

Therefore T' has a fixed point Jase>0 sufficiently small, namely for J =
J 4+ 8(t)yo, we have

t
(5413) J(t,$0,y0) = S(t)y() +/ S(t - T)pe : GQd’T
0

It is clear that if (z(t),y(t)) is a solution of the equatin

d—? =Lz + pe(l’y y)Gl(% y)
(5.4.14) { L= Loy + pe(z,y)Ga(z,y)
then
(5.4.15) y() = 7t 2(2),4(0))

From (5.4.2)(5.4.7) and (5.4.13) we can deduce that for any « € E1,y1,y2 € Ea
with [|z||, |ly1|| and ||yz|| sufficiently small, there exist K, 5 > 0 such that

(5.4.16) [Tt x,y1) — J(t, @, y0) || ir < Ke P!

Let {z(t,&,m), y(t, &, 1)} denote the solution of (5.4.14) with z(0) = £, y(0) =

Y
. For {I(t)vy(t)} = {z(t7x0ay0)7y(tax0ay0)}a ||'1:0||H1 + ||y0HH1 < € and any
to > 0 we define

& = x(to, 20, %0), m = h(&)
Let M be the center manifold. For (&1,71) € M, there exists ({o,70) € M such
that
l’(to,fo,?’]o) :glv y(thSOano) =M
Hence, by (5.4.15)
y(to, xo, yo) = J(to, &1, 9o)

y(to, &o,m0) = J(to,z(to,€0570):M0)
= ‘](t07 517 770)
= by the invariance of center manifold M

h(z(to, &0, m0))
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By (5.4.16) we get

ly(to) — y(to,&osmo)lle = lly(to) — h(z(to)) =
Ke*ﬁt", fortg >0

IN

The proof is complete.

Now, we consider a class of special linear completly continuous fields Ly =
—A + By in (5.4.1), which are the generators of the analytic semigroups.
Suppose that H; — H is compact, and there exist real eigenvalue sequence
{pr} C R and eigenvector sequence {¢,} C Hy of A, with

Adr = pror
(5417) { 0<pr<py<-nnyg pk—>+oo(k;—>oo)

such that {¢y} is a common orthogonal base of H; and H. This condition
means that A is symmetric. As defined in Subsection 3.1.3, we can define the
Hilbert spaces as follows
(5.4.18)
Hy={z € H| z=Yi2idi, Yioqpi®z? <o}, 0<a<oo
{ <zy >p,=< A%, A% >p= > 12, prayk

and Hz — H,(Hy = H) is compact Y0 < o < 3. We also assume that there is
a constant 0 < 6 < 1, such that

(5.4.19) By : Hy — H bounded.

Theorem 5.4.2. Let G(u,A) be C"(r > 1) on u € Hy. Under the condi-
tions (5.4.17) and (5.4.19), for the system (5.4.1) the conclusions of Theorem
5.4.1 are valid.

Proof. By Theorem 3.1.4, the eigenvalues of L) with nonnegative real
parts are finite. Hence the conditions (5.4.4)-(5.4.6) are valid.

On the other hand, by Theorem 3.1.6, the semigroups T (t) generated
by L, are analytic. Hence the semigroups Sy(t) : Ey — E» generated by
L) By — E, are also analytic. Because the operators L3 have no the eigen-
values with real parts > 0, thus we obtain the condition (5.4.7). By Theorem
5.4.1, this theorem is proven.

If we only consider the existence of the local invariant manifold, then the
condition that the eigenvalues of the operators £ and £3 in (5.4.5) respectively

316



have the nonnegative real parts and negative real parts can be relaxed as follows

A LA A
(5.45) f=Dilgy: B~ B
Ly = LA|E2A ( By — By

in where £3 has a finite number of eigenvalues possessing positive real parts,
and F3, E3, L2 can be decomposed into

Ly = ['5\1 @EQ%EE)\ = EQ)\I @EézaEzA = EQ/\l EBEg\z

‘C%i : E2Az - Eé\z (i=1,2)
such that dim F3;, < oo, and £3, has no eigenvalues possessing positive real
parts.
Thus, Theorem 5.4.1 can be rewritten as follows.

Theorem 5.4.1(b): Under the conditions (5.4.2)-(5.4.4) and (5.4.5)', if the
operator £3, has the semigroup S (t) satisfying (5.4.7), then the conclusions
i) and ii) in Theorem 5.4.1 still hold true.

5.4.2. Equations of the first order in time

We consider the bifurcation of invariant sets of the following nonlinear evo-
lution equations

(5.4.20) { du = Lyu+ G(u,\)

u(0) = ¢

where G(u, \) satisfy (5.4.2) and Ly = —A + B, satisfy (5.4.3),(5.4.17) and
(5.4.19). Denote the eigenvalues (counting multiplicities) of Ly by

Br(A), B2(N), -5 Bk (X) € C the complex space.

Suppose that

< 0, A< )\0
ReBi(A)=4{ =0, A=) (1<i<m)
(5.4.21) S0 As

Reﬂj(ko) <0,Vm+1<j

As in Section 5.3, for the system (5.4.20), we have the following attractor bi-
furcation theorems.

Theorem 5.4.3. Let m = 1 in (5.4.21), and eq, e € H; be respectively
the eigenvectors of Ly, and L3 corresponding to B1(\g) = 0. If for given
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ug € Hi(up # 0) and B € R, ||G(Bug, \o)||zr ~ B¥(as B — 0) for some k > 1,
and

(5.4.22) < G(zeo, \o), e >u=alz|/"tz +o(|zF), a<0

then there exists an neighborhhod U C Hj of u = 0, such that as A > Ag the
system (5.4.20) bifurcates from u = 0 exactly two equilibrum points u} and
u} € U, and the open set U is decomposed into two open sets U and Us',

U =0} +U3, UM\Us =¢, and 0 € U} (U3
with u} € Ui = 1,2), such that
Jim us(t o)l =, as 6 UM =1,2)
where uy (¢, @) are the solutions of (5.4.20).

Proof. Let L} be the conjugate operator of Ly, and ey and e5 € H; respec-
tively the eigenvectors of Ly and L} corresponding to 31(\)(eo = ex,, €5 = €3,)-
We know that the system (5.4.20) can be decomposed into

{ g—f = B (N)z+ < G(u, \), € >,
= LYY+ PG(u, \)
where
H =EPE
Ef‘ = span{ey}, Eé‘ ={y € Hi| <y,e} >=0}

and u = zey +y,x € Ry € B3, Py : H — Eg‘ the projective, £ : B3 — EQA
the linear operator possessing the eigenvalues 8;(A)(2 < j). Let hy : (Ao —
8, Ao + 6) — E2 be the function of center manifold, § > 0. By Theorem 5.4.2,
it suffices to only consider the bifurcation equation of dimension one

— =GN+ < G(zex + h(z, N)), ex >u -
At A = )\g and u = xeg, we have the Taylor expansion
< G(zeg + h(x)), el >p=< G(zeg), e, >g +
+ " < DPG(zeq)h”(x), €5 >m +o(|h|")
p=1
Because G(zeg) ~ xP DPG(xey) as ¢ — 0, by (5.4.22) and h(z) = o(|z|), we

have
< Glzeo + h(z)), e >p= alz|* 'z + o(|z]*),a < 0.
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The remander proof is the same as that of Theorem 5.3.1. This proof is com-
plete.

Theorem 5.4.4. Under the condition (5.4.21), if w = 0 is asymptotically
stable for (5.4.20) at A = Ay, then the following assertions hold true for A—Xg >
0 sufficiently small.

i). The system (5.4.20) bifurcates an attractor ), withm—1 < dim>_, <m,
which is connected as m > 1.

ii). >, is a limit of a family of m-manifolds M, (0 < 7 < co) with boundary,
which have the homotopy type of m-annulus:

ZA:mT>OM”'7 MT2 CMTl as T > T1.

iii) If Y, is a finite simplicial complex, then ), is a deformation retract of
a m-manifold with boundary having the homotopy type of m-annulus, hence
>, has the homotopy type of S™~ 1.

iv). If the mapping G(-,\) : H; — H are compact, and the equilibrum points
of (5.4.20) in }_, are finite, then we have the index formula

Z ind[—(Lx + G(-, \)), w) _{ g: m = odd

“iGZA

This theorem can be directly obtained from Theorem 5.4.2 and Theorem
5.3.4. For the more general cases, we have the following results.

m = even

Theorem 5.4.5. Under the condition (5.4.21), if © = 0 is unstable for
(5.4.20) at A = Ao, then (5.4.20) must bifurcate from (0, A¢) an invariant set
Yo\ with 0 < dim ), < m.

We now replace the condition (5.4.21) by

<0 (or >0), A<Xg

ReB;(\) =4 =0, A=X  (1<i<m)
>0 (or <0), A> A

Reﬂj(ko) 7£ O,V?TL‘F 1 Sj

(5.4.23)

Then we have
Theorem 5.4.6. Let m = 2 in (5.4.23). If the system (5.4.20) has no bifur-
cation of the equilibrum points from (0, Ag), then it must bifurcate a periodic

orbit.

Remark 5.4.7. It is interesting to know whether the following conclusion
is valid or not:
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Under the condition (5.4.23), the system (5.4.20) must bifurcate from (0, A\g)
a k-dimensional invariant manifold with 0 < k < m — 1.

Remark 5.4.8. If the conditions (5.4.21) and (5.4.23) are relaxed as to
read

Reﬁi(x)={ SoASy a=isw)

RefBr(A) >0,A> A for 1 <k<m
RefBi(A) <0,A> Ao form+1<I<N
Ref;(Xo) <0 (or #0),YN+1<

then the theorems above still hold true.
5.4.3. Equations of the second order in time
This subsection is devoted to the attractor bifurcation for a class of abstract

nonlinear evolution equations of the second order in time with some damping
terms. We first consider the system given by

d’u du
L +20% = Lyu+G(u,\), a>0
5.4.24 dt? dt VD
(o420 AT
We always assume that the operators G and L) = —A + B, satisfy the

conditions (5.4.2)(5.4.3) and (5.4.17).
For the system (5.4.24), when the operators By are symmetric for all A € R,
namely

(5.4.25) < Byu,v >g=<u,Byv >g, Yu,v€ H;

then, by Theorem 3.1.4, the operators Ly, which are also symmetric, have the
complete real eigenvalues

Pr(A) = B2(A) = -5 Br(A) = —oo(k — o0)

and the eigenvector sequences {ex(\)} C H; consist of the orthogonal base of
H.

Theorem 5.4.9. Let the hypotheses (5.4.21) and (5.4.25) hold, and m =1
in (5.4.21). If for give ug € Hi(up # 0) and B € R,||G(Buo, \o)||zr ~ B*(as
3 — 0) for some k > 1, and

< G(.T@l, )‘0)761 >pg= _U|x‘k_lx + 0(“r|kﬂ )70 >0
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where e; = e1(Ao), then there exists an open set U C Hy x Hy,(0,0) € U, such
that when A > )¢ the system (5.4.24) bifurcates from (u,u;) = (0,0) exactly
two equilibrum points (u3,0) and (u3,0) € U, and U is decomposed into two
open sets U}, Us':

U=0}+0;, UM \Us=¢, and (0,0) € U} (T3
with (u},0) € U} (i = 1,2) such that

Jim [Ju(t, A, 6,9) 1, =} as (6,9) € U}

) d
tliglo Hau(tv )‘, ¢7 ¢)||H - Oa
where u(t, A, ¢, 1) are the solutions of (5.4.24).

Proof. The system (5.4.24) is equivalent to

(5.4.26) = Lyu + o?u — av + G(u, \)

w(0) =¢o, v(0)=vo (Po =& %=1+ ad)

In order to applied Theorem 5.4.2 and Theorem 5.3.1 to the system (5.4.24)
we need to reduce the equation (5.4.26) to the form (5.4.1). To this end, we
define the Hilbenrt spaces as follows

d—?z—au—l—v
&
di

leHle%, H:H% x H
respectively with the inner products
< (u1,v1), (U2, v2) >, =< u1,us >p, + < 1,02 >Hy V(ui,v;) € Hy
< (ug,v1), (ug,v2) >H=< uy, us >H% + <wi,ve >g; Y(ug,v) € H,i=1,2.
Define the mapping Ly:Hi —H by
Ly=—A+ B,
Av(u,v) = ( ZI ;1{ > ( Z ) = (au — v, Au + av)

~ 0 0 u
By (u,v) = ( 0T+ By 0 ) ( ; ) :(O,azu—i-B)\u),

and G(-,\) : Hy — H by

G(u,v,A) = (0,G(u, N))
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V(u,v) € Hy. Thus, the equation (5.4.26) is written as to read

(5.4.27) % =Lyw+G,)), V=(uv)eH
It is clear that the operators Ly and G, satisfy (5.4.2) and (5.4.3).

It is known that if the eigenvalues B;(A) # 0(1 < k < o0) of Ly, then the
norm ||ull} = ||L{ul g is equivalent to the Hy-norm defined as in (5.4.18), and
the eigenvectors {ej(\)} of Ly are the comon orthogonal base of Hyp(0 < 0 < c0)
under the equivalent norms | - [|3. If there are some [;(A) = 0, then we
take Ly + pl instead of Ly, which still remain {e;(\)} as their eigenvectors,
and the eigenvalues O (A) + p # 0 V1 < k < co. Thus we can take some
proper equivalent norms of Hg(0 < 6 < o0) such that {e;(\)} are the common
orthogonal bases of Hy.

Under the bases {ex(A\)}, the equation (5.4.27) can be decomposed into the
following form

& ozt
o = oz +y
dy 2
(5.4.28) e BNz + oz — ay+ < G(u, \),e1(A) >m
d’Ul ~ ~
o L\Vi + PGV, ), Vi = (u1,v1) € Ey

where

Mi=EPE, H=EPE

B} = {(zer,yer)] z,y € R'}

E;‘ ={(u1,v1) € Hi| < up,er(A) >g=0,< v1,e1(A) >pg= 0}
Hence, for the system (5.4.27), the conditions (5.4.4) and (5.4.5) are fulfiled,

and the decomposition (5.4.28) is corresponding to (5.4.6). We are now in a

position to show that the operators Ly : Es — FE5 generate the semigroups
S (t) which satisfy the condition (5.4.7).
We denote

Hy ={)_ areM] Y (=8: (V) af < o0}

k=2 k=2

Then Ey = H X Hi,Eg = HI x H*, and ZA By — EQ can be expressed as
2 2

~ —al I u
La(u,v) = ( —A+By+a?l —al > < v >

(—au + v, Liu + o®u — av),¥(u,v) € By
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where L} = Ly

mr- By the hypothese (5.4.21), in a neighborhood of A = Ao,

the eigenvalues 3;(\)(2 < j) of L} are negative, therefore the eigenvalues of Ly
have the negative real parts, which are as follows

—a£ a2+ 6L(\), Br(h) <0, k=2,3,---.

On the other hand, it is readily to check that the semigroups Sy (t) : EQ — EQ
generated by Ly are as to read

S\()(s,¥) = e;at ( ?2(22(75) ;(;)1@2@) ) < i )

V(¢,1) € Es, where

L= (L} +a%)?

namely, for (¢,v) € Ea, ¢ = Y ohes Prer(N), 1 = D000 5 trer(N),

i(t)p = Y orle ™+ eP)ern(N)
k=2

N
- Z dr(e V1B 1 etV/a? =BVl ()

k=2

+2 f: or cost/|Br(N)| — a2er(N)

k=N+1

Oo(t)y = Y (e —eF)er(N)

S (e VTR _ TR

k=2
~2i > psinty/[B(N)] = aex(N)
k=N+1
where the natural number N satisfies

9 | =20 ask<N
«Q +5k(/\)_{ <0 ask>N+1
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By a direct caculation we can derive that there exists a constant k& > 0 such
that

efat

IS\l = sup [ [[@1(t)¢ — L™ @a (1),
I8l =1 ¥ llo=1 :
e—oet
+ ) - 2030+ @1 (00 ]
S Ke_alt,

where ,
_ [ a—+y/a2=[B(N)] as a® > [B2(N)]
<= { a, as & < |Ba(No)|
Hence the condition (5.4.7) is checked.
By Theorem 5.4.1, we reduce the bifurcation problem of (5.4.26) to that of
the below equation

(5.4.29) G =Tty
o Y= BNz + oz — ay+ < Glzer(N) + bz, N)), e1(A) >p
By (5.4.21), the eigenvalues of (5.4.29) are as follows

<0,A< Ao
0'1()\):—Oé+ Oé2+ﬁ1(/\): :0,)\:)\0

>0,A> Ao
0'2()\0) = 2«

In the same fashion as in Theorem 5.4.3, by the hypotheses we can get
< G(zey + h(z, Xo), No), e1 >p= —ol|z|*tx 4+ o(|z]*), o >0

If we make the change v = Z,y = ¥ + aZ, then the equation (5.4.29) with
A = )\g is transformed into

E=j
.
W — 905 — o|F|* 17 + o(|Z|*), 0 > 0

Applying Theorem 5.1.2 it is easy to show that (Z,7) = (0, 0) is asymptotically
stable. Therefore (z,y) = (0,0) is also asymptotically stable for (5.4.29) at
A = Ag. Thus, by using Theorem 5.3.1 we can obtain the desired conclusion.
This proof is complete.

Likewise, for the higher dimensional cases m > 1, we have the following
result.
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Theorem 5.4.10. Under the conditions (5.4.21), if u = 0 is asymptotically
stable for (5.4.24) at A = Ao, then the system (5.4.24) bifurcates an attractor
Yoy withm—1<dim}) , <m.

Next, we investigate the attractor bifurcation of the system given by

(5.4.30) { L4 +20L(A° — \)u = —Au + G(u, \)

u(0) = ¢, us(0) = ¢

where 0 < o and 0 < 0 < 1.

Theorem 5.4.11. Let the first eigenvalue p; of A in (5.4.17) have the
multiplicity m > 1, then the following assertions hold.

i). When A < pf,u = 0 is asymptotically stable for (5.4.30) in Hy x H.

ii). If u = 0 is asymptotically stable for (5.4.30) at A = p¢, then when \ > p¢
(5.4.30) bifurcates a attractor ), with 2m—1 < dim ", < 2m, which has
the homotopy type of S?™~!. Especially, if m = 1, then ), is a periodic
orbit.

Proof. The equation (5.4.30) can be decomposed into

(5.4.31) Gi=—a(pf = Nai+y; (1<i<m)
= —prx; + () — N2z — a(pf — Nyit+ < G(u, \), ¢; >

du — (A% — ADa+7
I I iy .
S = —Au+a”(A° = N)*u — a(A” = MX)v + PG(u, \)

where P: H — Ey = {3 i1 ThOr € W D01 T < 0o} is the projection,
and u € HlmEQ,'ﬁG H% mEQ
We can find that the equation (5.4.31) has the eigenvalues

BiN) = —alpf — N +iyfpr —a2(p ~ N2, 1<i<m

and the equation (5.4.32) has

Bi(N) = —a(p) = N) & \Ja2(p) — N2 —pj, m+1<]
Obviously the eigenvalues of (5.4.31) and (5.4.32) in a neighborhood of \g = p¢

satisfy the condition (5.4.21). Thus, by using the same method of proof as the
above theorem, one can derive the desired conclusions. This proof is complete.
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If the first eigenvalue p; of A has multiplicity m = 1, then we obtain the
Hopf bifurcation for the equation (5.4.30)

Theorem 5.4.12. Let the first eigenvalue p; of A in (5.4.17) have multiplic-
ity m = 1, then, at A\ = p the equation (5.4.30) will occur the Hopf bifurcation.

Remark 5.4.13. In fact, for any eigenvalue p; of A, if p; has multiplicity
m = 1, then the equation (5.4.30) will occur the Hopf bifurcation at A = p,.

5.5. Dissipative Partial Differential Equations in
Mechanics and Physics

5.5.1. Nonlinear wave equations with a damping term

First, we shall apply Theorem 5.4.9 to discuss the equilibrum attractor
bifurcation of the following nonlinear wave equation

%—i—a% = Au+ M+ g(x,u, Vu, D*>u, ),z € Q C R
(551) UlBQ =0

u(z,0) = ¢(z)
where a > 0 is a constant, g(z,z,&,n,\) is C! on its arguments, and

where
p1 € CHRY), as1<n<4
pi(z) =4 c(lz[P+1), p<oo, asn=4
c(|lz|=% +1), asn >4

p2 € CHRY), asn=1
pa(§) = C(|f|pj 1), p<oo, asn=2
c(l¢™2 +1), asn>2

For any given z > 0 and &,n, A # 0, we assume that
(5.5.3) g(w, Bz, B¢, B0, A) = —ol 8718 + o(8]")

where k > 1 is some constant, 6 > 0 depends on z > 0,&,1, A # 0.
Let Ay and uq(z) be respectively the first eigenvalues and eigenfunction of
the Laplace operator:

7AU1 = /\1U1
uiloo = 0,u1 > 0in Q
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We have the following result.

Theorem 5.5.1. Under the conditions (5.5.2) and (5.5.3), as A < A\j,u =0
is an asymptotically stable equilibrum point of (5.5.1), and as A > A;, there
exists an open set U C H?(Q) (" HL(Q) x H}(Q),0 € U, such that the equation
(5.5.1) bifurcates from (u,u;) = 0 exactly two equilibrum point (u7,0) and
(u3,0) € U, and U is decomposed into two open sets U (i = 1,2):

U=0+0;3, UM \Us=¢ ocU T3
with (u,0) € UM (i = 1,2) such that
Jim (Ju(t, A, 6, 0) o) = ui s (6,9) €U

tli{go ||ut(ta )‘7 ¢7 1Z))”LQ(Q) =0

where u(t, A, ¢, 1) are the solutions of (5.5.1)

Proof. Let H; = H*(Q)NHL(Q),H = L*(Q), and Ly, = —A+ B,G :
H,; — H defined by that

—Au=Au € H,u € Hy

Byu=Mu€ Hu € Hy

Gu = g(x,u, Du, D*u,\) € H,u € H;
Obviously, A and B satisfy (5.4.3)(5.4.17)(5.4.19)(5.4.21) and (5.4.25). By the
conditions (5.5.2) and (5.5.3) it is easy to see that G : H; — H is continuous

and bounded, which satisfies (5.4.2).
From (5.5.3) if follows that

< G(Pur),ur >g = /Qg(x,ﬂul,ﬁDul,ﬁDQM,)\)uldaz
—a1|B|* 18+ o(|8IF)

01:/0~u1d:c>0 (by u1 > 0 in Q)
Q
Thus, this theorem follows from Theorem 5.4.9. The proof is complete.

Remark 5.5.2. In Theorem 5.5.1 and the later theorems, the basic con-
dition of the existence of global strong solutions for all small initial values is
required, and which can be ensured by the center manifold theorem provided
that the conditions in Theorem 5.4.1 (or in Theorem 5.4.3-Theorem 5.4.12) are
satisfied.
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As a corollary of Theorem 5.5.1, we immediately obtain the equilibrum
attractor bifurcation for the following Sine-Gordan equation

%Jra% = Au+ Asinu,x € Q C R"
u(z,0) = ¢, ur(x,0) =1

Corollary 5.5.3. When A\ > A, the Sine-Gordan equation (5.5.4) will
have the equilibrum attracter bifurcation from (u, A) = (0, A1).

Proof. By the Taylor expansion
1
sinu=wu— gu?’ + o(|ul®)

and g(z,u, \) = Asinu — Au satisfies (5.5.2) and (5.5.3). Thus, we obtain the
corollary. The proof is complete.

Next, we consider the Hopf bifurcation for the vibrating equations with
strong damping given by

% - OéA'Uzt - )\Ut = —A2U+g($,U7DU,D2U),x €EQCR"
(5.5.5) ulga = 0, Aujga =0
u(z,0) = ¢, u(x,0) =9

where a > 0,9 € C1(Q x R! XR”XR”2),1§n§3, and

(5.5.6) 9(, Bz, BE, Bn) = o(|6])

Applying Theorem 5.4.11 and Remark 5.4.13, we can obtain the following
result.

Theorem 5.5.4. Under the condition (5.5.6), we have the following asser-
tions.
i). For any simple eigenvalue A; of the Laplace operator —A, the equation
(5.5.5) will occur the Hopf bifurcation from (0, a);).
ii). If u = 0 is asymptotically stable for (5.5.5) at A = a\1, then the
equation (5.5.5) bifurcates a stable periodic orbit for A > aA; from (u, A) =
(0, Oé)\l).

Proof. We take the spaces as to read

Hy = {u € H*(Q)|ulsa = 0, Aulyq = 0.}
H = L*(Q)
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Then we have that Hy = H2(Q) N H(Q). Let A and G : H; — H be defined
by

Au=A*uec H, ueH
Gu = g(x,u, Du,D*v) € H, u € H;

Thus, the operator Az H% — H is as follows

A%u:fAuEH, uGH%

Obviously, the conditions in Theorem 5.4.11 are satisfied. Thus, this theorem
is proven.

Remark 5.5.5. Under centain restrictions on the exponent growth the
function g(x,u, Du, D*u) in (5.5.5) can be relaxed by g(z, D%u),0 < o < 4,
and Q C R" for any n > 1.

5.5.2. Ginzburg-Landau equations

This subsection is devoted to the study of cycle attractor bifurcation and
invariant set bifurcation for the Ginzburg-Landau equation. The Dirichlet and
periodic boundary conditions will be considered. The equation is given by

(5.5.7) % —(a+iB)Au+ (o +ip)|ul®*u — Au =0

where the unknown u is a complex-valued function defined on Q x RT,Q C
R™ 1 < n < 6. The parameters «, 3, p,0, A are real numbers, for them we
make the following assumption:

(5.5.8) a>0, >0
The equation will be supplemented with on of the following boundary con-
ditions:
the periodic boundary condition, in which case
(5.5.9) Q= (0,2m)" and u is Q@ — periodic
the Dirichlet boundary condition
(5.5.10) ulgo =0

For the equation (5.5.7) we provide the initial value of u:

(5.5.11) u(z,0) = ¢+ iy
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Let w = uj + iug. Then the initial value problem of (5.5.7) is equivalent to
the following form
% = aAuy — BAus + Augo|u>ur + plul?us
(5.5.12) % = BAu; + aAus + Aug — olul?uz — plul?u;
ui(,0) = ¢(x), uz(z,0) = ¥()

The following is the S'-attractor bifurcation theorem for the equation (5.5.7)
with the boundary condition (5.5.9), or (5.5.10).

Theorem 5.5.6. Suppose that (5.5.8) holds. Then we have the following
conclusions:

i). As A <0,u =0 is an asymptotically stable equilibrum point of the
problem (5.5.7)(5.5.9), and as A > 0 the problem (5.5.7)(5.5.9) will bifurcate
from (u,\) = (0,0) an unique S!-attractor. If p # 0, then the S'-attractor
is a periodic orbit.

ii). As A < a)j(); is the first eigenvalue of —A with the boundary condition
(5.5.10)), u = 0 is asymptotically stable for the problem (5.5.7)(5.5.10),
and as A > aA; the problem (5.5.7)(5.5.10) bifurcates from (u, ) = (0, a\1)
an unique S*-attractor. If |p| + |3] # 0, then this attractor is a periodic
orbit, especically as 3 # 0, it is the Hopf bifurcation.

Proof. Here, we only prove the conclusion i), because the proof of conclu-
sion ii) proceeds in the same fashion.
Let the spaces be taken as follows

Hy=H},.(Q) x H>,.(Q); H=LQ)x L*(Q)

per
where Q = (0,27)", and

H2,.(Q) = {u € H*(Q)|u(x + 2k7) = u(z), K = {ky1,---, kn}, k; the integers}

per

The mapping Ly = —A + By and G : H; — H are defined by

[ a(Auy —uq) — A
—Au = ( ﬁAull—i— a(lAuQ — uS >

me=( 1o )

12 2
G (Tl plulu
—olulfug — plul?uq

By the Sobolev embedding theorems and 1 < n < 6, the mapping G : H; —
H is C* and bounded. Tt is clear that the conditions (5.4.2) and (5.4.3) are
satisfied for the operators Ly and G.
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Let {\x} and {ex} C HZ.,(€2) be the eigenvalues and eigen-functions of the
Laplacian —A with the periodic boundary condition

—Aek = )\kek
er(x + 2km) = ep(x)

(5.5.13)
We know that
D= << <A<y Ap—00as k— oo.

and {e;,} constitutes a common orthogonal base of H7,,.(€2) and L?(Q). There-
fore {ey} x {e;} is a common orthogonal base of H; and H. With this bese,
the problem (5.5.12) can be decomposed into the below infinite dimensional
systems

Wi — (X — alp)zk + BA\yr + PrGi(u)

dt
(5.5.14) % = =Bk + (A — ap)yk + PrGa(u)
25(0) = d, yr(0) = ¥x
where - -
up = vak(t)el; Ug = Zyk(t)ek
k=1 k=1
(5.5.15) P,G1(u) = / [—olul?uy + plul®uz)erda
Q

PGa(u) = / [—o|u?uz — plul*u;]erda
Q

and ¢ = 377 drer, b =0 drex.
On the other hand, from (5.5.14) it is easy to see that the eigenvalues of
the operator Ly = —A + B, are as follows

(5.5.16) A —ade) £iBhe, k=1,2,--.

From (5.5.14)-(5.5.16) it is easy to see that the conditions (5.4.4)-(5.4.6)
are satisfied for the operator Ly + G. In order to apply the center manifold
theorem (Theorem 5.4.1) to this proof, we need to check the condition (5.4.7).

We see that the first and second eigenvalues of (5.5.13) are

Hence, the spaces H; and H can be decomposed into
Hy=E B H=EDE
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E1:E1:{$61‘ .’L‘GRl}X{y61| yERl}

[ee] (oo} [ee] oo
By ={) wper] D Nai <oo} x{D wmer] D Ayi < oo}
k=2 k=2 k=2 k=2

. o0 o0 o0 o0
EQ:{Zaxkek| in < oo} X{Zykek| Zyi < oo}
k=2 k=2 k=2 k=2

When A < «, the operator
E% :L)\|E2 = —A+B)\|E2 By — EQ

has the eigenvalues (5.5.6) with k& > 2, which possesse the negative real parts.
The semigroup Sy (t) generated by £3 is as follows

(5.5.17) Sx(t)v = etl2 .y

3, e @AVt (yl cos BNkt + v2 sin BAgt)ey,
T S, e @M Nyl sin Bt 4 v cos BAxt)ex

o 1
v\ D vker

v = — o0 2
V2 > k2 VicCk

From (5.5.17) it follows that

where

1SA(0)]| < Cem (@23 — cem(@=d)

Thus, the condition (5.4.7) is verified.

By the center manifold theorem, the bifurcation problem of (5.5.12) from
(u, A) = (0,0) is equivalent to that of the bifurcation equation of (5.5.14) as
follows

T

d_tl = Az1 + PiIGi(z1e1 + hi(z1,y1), yrer + ha(z1,91))
W\ + PG h h

— = A+ PiGa(zier + hu(@n,y), yien + ha(z1, 41))

where h = (hy,hs) : By — Es is the center manifold function, and PyG;(i =
1,2) defined as in (5.5.15)
We notice that the eigenfunction corresponding to A\; = 0 is a constant

e1 = constant (#0)
and

| —o(aT+y)w + plat +yP)n
G(arer,y1e1) = < —o(a? + gy — pla? +yPe ) €
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namely P,G(z1e1,y1e1) = 0,VEk > 2. Hence it follows that the center manifold
function h = 0:

h(x1,y1) = (ha(w1,91), ha(21,91)) = (0,0)

Thus, the bifurcation equation (5.5.18) reads

Gt = Xoy —o(a +yd)en + p(af + )
(5.5.19) &M N — ol Ve — o(?

2=y — oz +yi)y — p(a] +yi)r
Obviously, by (5.5.8) it is clear that as A < 0, (z1,y1) = 0 is asymptotically
stable for (5.5.19). By Theorem 5.3.9, the equation (5.5.19) bifurcates from
(u, \) = (0,0) an attractor for A > 0. When p = 0, it is easy to see that the

attractor is the cycle which is unique, and which consists of equilibrum points
of (5.5.19):

B4 ="1 (A>0).

When p # 0, the equation (5.5.19) has no equilibrum points, otherwise one can
obtain that p(2? + y?)? = 0 from the following equation

A1y — o(2] + yi)zwys + p(@] + y1)yi =0

A1z — o(23 + YD)y — p(ad +y3)ai =0

Therefore, by the claim ii) of Theorem 5.3.9, the attractor is either a periodic
orbit or an anulus.

In the following, we shall show that the attractor is the periodic orbit. We
take the polar coordinate system

xy =rcosf, y; =rsind

Then the equation (5.5.19) is changed to

(5.5.20) { 7%1_%0):::;)72 (A>0)

From (5.5.20) it follows that

(NS

2
r2(2m) — r? = —or?
(r(2m) —r7(0)) /0 (A )do

Because 72 = r2(0, a) is C™ on a > 0, we have the Taylor expansion

r2(0,a) = a+ R(0) -o(la]); R(0) =0
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Thus, we get that

£ (+2(2m) ~ 2(0)) = 27X ~ 2704+ o

Obviously, the initial values a > 0 in (5.5.20) satisfying
(5.5.21) 27\ — 2rca+o(la]) =0  (o,A > 0)

are corresponding to the periodic orbits of (5.5.20). It is easy to see that the
solution a > 0 of (5.5.21) near a = 0 is unique. Thus we derive this theorem.
The proof is complete.

More generally, for the Ginzburg-Landau equation we have the bifurcation
theorem of the homotopical sphere S*(k > 1) at any eigenvalue of the Lapla-
clan —A.

Theorem 5.5.7. Let \,, be an eigenvalue of —A with the boundary con-
dition (5.5.9)(or (5.5.10)), which has multiplicity m > 1. Then, under the
condition (5.5.8), as A > a),, the problem (5.5.7)(5.5.9)(or (5.5.7)(5.5.10))
bifurcates from (u,A\) = (0,a\,,) an invariant set > which has the homo-
topy type of S?m=L. If |3| + |p| # 0, then there are no equilibrum points of
(5.5.7)(5.5.9)(or (5.5.7) and (5.5.10)) in >_.

Proof. We still proceed only for the case of periodic boundary condition.
We denote the eigenfunctions corresponding to \,, by

{6?,---,6:;1}

Thus, the spaces H; and H defined in Theorem 5.5.6 can be decomposed into

Hy =E,@PEy; H=E.(DE;

Ep = span{el,- -+, ey, } x span{e], -, €, }
EL={uc H|<uv>y=0YveE,}
By = En,

E:r={ue H|<u,v>p=0VYveE,}
By the center manifold theorem (Theorem 5.4.1 (b)), the bifurcation of
(5.5.12) at A = A, is equivalent to that of the below equation

vy

5.5.22
(5.5.22) 02 = BAv; + @y + Mg + PGa(v + h(v))

where ) is near \,,,v = (vi,v2) € E,,,h : E,, — E is the center manifold
fEnction, G = (G1,Gs) : Hi — H defined as in Theorem 5.5.6, and P : H —
E,, the projection.
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The equation (5.5.22) is a system of ordinary differential equation with
order 2m, and the eigenvalues of whose linearized operator are the same in the
multiplicity, which reads

(A= a\y) £iBA,.
By Theorem 5.3.4, it suffices to prove that v = 0 is asymptotically stable for
(5.5.22) at A = a\,. From (5.5.22), for A = a\,,, we can obtain that

1d
ST [|vl\2 + |vg)? diE—/GU+h( ))vdx
We notice that
h(v) = o(|v])
Hence we have
d
E/ WPde = 2/[G(v)~v+o(|G(v)-v\)]dx
Q Q

_ o /Q [[o]* + o [v]*)]da

which implies that v = 0 is asymptotically stable for the system (5.5.22). The
proof is complete.

Remark 5.5.8. For the periodic boundary condition, the multiplicities m
of eigenvalues A\, with k& > 2 of —A are greater than one, i.e. m > 1. For
example, the multiplicity m of Ao = 1 is m = 2n, and the eigenfunctions corre-
sponding to Ay = 1 are as to read:{sinz;,cosz;|1 <i < n,(z1, -+, 2,) € Q=
(0,2m)"}. Hence the problem (5.5.7)(5.5.9) will bifurcate from (u, A) = (0, @)
a (4n — 1)-dimensional homotopy sphere S4"~1.

5.5.3. Pattern formation equations

The equations under study in this subsection are related to various pattern
formation plenomena. First, we shall consider the bifurcation of attractors and
invariant sets of the homotopy sphere S* for the Cahn-Hilliard equation which
models pattern formation in phase transition. Then we shall investigate the
bifurcation of S!-attractors and periodic orbits for the Kuramoto-Sivashinsky
equation related to turbulence phenomena in chemistry and combustion.

The Cahn-Hilliard equation reads:

{—:AK( u), z€QCRY(1<n<3)
K(u) = —aAu+ f(u), a>0

where f is a polynomial of order 2k 4 1

(5.5.23)

2%k+1
(5.5.24) flu)==du+ Z apuP
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This equation is added an initial condition
(5.5.25) u(z,0) = ¢(z)

For the sake of convenience, here we only consider the case that € is a cube:
Q = (0,2m)™.

The equation (5.5.23) is supplemented with one of the below two types of
boundary conditions

The Neumann boundary conditions

Oou O0Au
5.2 —=—= Q
(5.5.26) o o 0 on 0
n the unit outward normal on 9f2.
The periodic boundary condition
(5.5.27) u(z + 2k, t) = u(z,t)

K ={kyi, -+, kn}, k; the integers.
For the coificients in (5.5.24), we assume that

(5.5.28) as =0, a3=0(>0

We notice a particular aspect of the problem (5.5.23)(5.5.25) with the
boundary condition (5.5.26) or (5.5.27) is that the average of u is conserved,
which means the non-existence of bifurcation of attractors and invariant sets.
In fact, when we integrate (5.5.23) over ), we find

%/ﬂu(m,t)da: - /QAK(u)da: - /{m %K(u)dw ~0

/Qu(a:,t)da::/ﬂ¢(x)dx, YVt >0

On the other hand, when the initial value ¢ in (5.5.25) satisfies
/ d(x)dx =0
Q
then the solution u(x,t, @) of (5.5.23) has

/ u(z,t,p)de =0, Vt>0
Q

Thus, it makes sense for us to discuss the bifurcation problem for the equa-
tion (5.5.23) with the initial value and boundary condition (5.5.25)(5.5.26), or
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(5.5.25)(5.5.27) in the spaces introduced by

0Au

ou
H1 = {U S H4(Q)‘a—n|aﬂ = 8—n

loo = 07/Qud:c =0}; for (5.5.26)
Hy = {u € H*(Q)|u(z + 2kr) = u(w),/ﬂudw =0}; for (5.5.27)
H = {ue Q) /Q udz = 0}

When we say that the problem (5.5.23)(5.5.26)(or (5.5.23)(5.5.27)) bifur-
cates an invariant set ), from (u, \) = (0, \o), it means that ), C Hy, and
Yy — 0in H as A — A.

We denote by {\;} and {ej} the eigenvalues and eigenfunctions in H; of
the Laplace operator —A with the boundary condition (5.5.26), or (5.5.27)

7A6k:>\k6k
(5.5.29) {0<)\1§/\2§~“,/\kéoo,kﬂoo

It is known that the eigenfunction {ex} of (5.5.29) constitute the common
orthogonal base of H; and H.
Then we have the following results.

Theorem 5.5.8. Under the condition (5.5.28), the following assertions

hold true:

i). As A > alj, the equation (5.5.23) bifurcates from (u, A) = (0, aA;) an
attractor of homotopy sphere S"~! for the boundary condition (5.5.26)(as
n = 1, which is the equilibrum attractor), and an attractor of homotopy
sphere S?"~1 for (5.5.27).

ii). For any eigenvalue A of (5.5.29) having multiplicity m, as A > a)g
the problem (5.5.23)(5.5.26)(or (5.5.23)(5.5.27)) will bifurcate from (u, A) =
(0, a\x,) an invariant set of homotopy sphere S™~1.

Proof. We define the mappings Ly = —A+ By and G : H; — H by

Au = aAu

Byu = —-)\Au
2k+1

Gu = A( Z apu®)
p=2

It is readily to check that the conditions (5.4.2)-(5.4.7) and (5.4.5)" in the center
manifold theorems are satisfied.
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Hence, for an eigenvalue \;, of (5.5.29) having multiplicity m the bifurcation
equation of (5.5.23) can be written as

241
(5.5.30) ddx; = (A — gz — /\k/ Z ap(v + h(v))Peidr
Q5

1 <i<m,wherev = 37" xje}, {ej|1 < j < m} the eigenfunctions of (5.5.29)
corresponding to Ay, and

h(v) € Hf ={u € Hy| <wu,ef>y,=0, V1<i<m}

the center manifold function, which satisfies

h(v) = o(|z]), [z] =

By (5.5.28), from (5.5.30) we can obtain
%MQ = AN — aXp)|z]? — 2)%6/ lv|*dx + o(|z|*)
Q

It means that when A = a\, z = 0 is asymptotically stable for (5.5.30). Hence,
by Theorem 5.3.4, the conclusion ii) is proved.

Because the first eigenvalue A1 of (5.5.29) has multiplicity m = n for the
boundary condition (5.5.26), and m = 2n for the boundary condition (5.5.27),
the conclusion i) follows. Indeed, the eigenfunctions corresponding to A; are

cosx;(1 <i<mn) for b.c. (5.5.26)

sinx;, cosz;(1 < i <n) for b.c. (5.5.27)

where © = (x1,- -+, x,) € Q = (0,27)". Thus, the proof is complete.
Now, we consider the Kuramoto-Sivashinsky equation in space dimension
one, which is given by

Qu @y Pu g L(Ouy2 () 0 <gp<2m
(5.5.31) u(z + 2m,t) = u(z,t)

u(z,0) = ¢(x)
where p > 0, the boundary condition is space periodic

Alternative, we consider the equation obtained by differentiation of (5.5.31)
with respect to x:

Qv _ 00 9%v L 0u

ot — Hoze Oz? Vo <z <27
(5.5.32) v(z +2m,t) = v(w,t); [y v(z,t)de =0,vt >0

U(.T,O) =9
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For the problem (5.5.32) we introduce

Hy = {uc H*0,27)] wu(z+27) = u(:c),/o 7Tuda: =0}

2
H={ue L2(0,27r)|/ udx = 0}
0
Then we have the below results.

Theorem 5.5.9. When 4 > 1,v = 0 is a global asymptotically stable equi-
librum point of (5.5.32) in H, and for each integer k(k =1,2,---) the problem
(5.5.32) will bifurcate from (v, ) = (0,k~2) a periodic orbit. Especially, from
(v, ;) = (0,1) it bifurcates the S'-attractor.

Proof. We define the mapping L, = —A + pw'Band G: H — H by

d* d? d
—d—;:; Bu = Y Gu=—uss

Au = _du
Y dz?’ dx

The problem (5.5.32) can be written as the abstract form

(5.5.33) { 4 — L+ Guyu € Hy, > 0

u<0) = ¢7¢ € Hl

We know that the eigen-problem

2
— % = Aeey
ex(x 4 2m) = ex(x)

has the following eigenvalues and eigenfunctions
e =K% k=12,
ep(x) =sinkz; coskx

Hence the operator L, has the eigenvalues and eigenvectors

Bull) = p K2 K, k=12,
(5.5.34) { {sinkz,coskz| k=1,2,---}

Each eigenvalue of L, has the multiplicity m = 2, and the eigenvectors of L,
constitute the common orthogonal base of H; and H. It is readily to check
that for the equation (5.5.33) the conditions in the center manifold theorem
(Theorem 5.4.1 (b)) are fulfilled. Hence, near every eigenvalue pu~'k? — k% =
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0, the bifurcation equation of (5.5.33) is a 2-dimensional system of ordinary
differential equation, which reads

dy

(5.5.35) o

2m
du .
= (k* — pkM 7/0 u=—sin kxdx

2m
% = (k? — pk®)ys — /0 uj—z cos kxdzx

where u = y; sin kx + yo cos kz + h(y1,y2), and

27 27
h(y1,y2) E{UEH1|/ vsink’xdw:/ vecos kxdx = 0}
0 0

is the center manifold function. By Theorem 5.3.9, from (5.5.35) it follows
that the equation (5.5.33) bifurcates from (u, ) = (0,k72) a S'-invariant set.
Meanwhile, the equation (5.5.32) has no nonzero equilibrum points. Indeed, if
(5.5.32) has a nonzero equilibrum point v # 0 in Hy, then u = [vdx # 0 in
H; is an equilibrum point of (5.5.31), thus it satisfies

2m 4 2
d*v  d*u 1,du
0 = — 4+ — 4 =(—)?d
/0 [Mdz4+dx2+2(d:r) ldz
1 (% du.,
= = —)=d
2 /0 (da;) *
It is a contradiction to that v # 0 in H;. Hence the bifurcated S!-invariant
sets of (5.5.32) at u=k~2(k=1,2,---) are the periodic orbits.
Now, we return to prove that v = 0 is a global asymptotically stable equi-

librum point of (5.5.32) for x> 1 by using Theorem 3.2.8. In fact, we see that
G : H; — H is an orthogonal operator

27 27 3
d 1 d
<Gu,u>:f/ uQ—Uz:f—/ M ge =0
0 0

On the other hand, the eigenvalues (5.5.34) of L,, are negative for all > 1:

Be(p) =k (n ' —k* <0, Vk=1,2,---, and p > 1.

When g = 1,61(1) = 0 and its eigenvectors are {sinz, cosz}. We see that for
any aj sinx + ag cosz, |ai| + |as| # 0,

G(aisinz + agcosx) = (aisinz + azcosz)(ag cosx — agsinz)

1
5(04% — a3)sin 2z + oy g cos 2x
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Namely, Vu € Ey = span{sinz,cosz},u # 0
Gu € Ey ={u € H| <u,v >p=0,Yv € Ey}, and
Gu #0
Thus, the desired conclusion follows from Theorem 3.2.8. The proof is complete.

5.5.4. Reaction-diffusion equations

In this subsection we study the bifurcation of invariant sets associated with
reaction-diffusion equations. We consider a boundary value problem involving
a vector function u = (uq,- -, u,,) which satisfies the equation

94 — AAu+ Byu+G(z,u), z€QCR"(1<n<3)
)

(5.5.36) ulog =0 (or 4o =0

where A is a positive diagnal matrix of diffusion coeficients
1 0

(5.5.37) A= .
0 e,

and B, is a m X m parameterized constant matrix
b1 (A) - bim(N)
(5.5.38) By=]: U
b (A) o+ by (N)
and G = {G4,---,G,,} is continuous on Q x R™, and

(5.5.39) G(z,&) =o(f¢]), &€ R™

Let pr, > 0(k =1,2,--) be the k-th eigenvalue of the Laplacian

—Au = ppu
5.5.40
( ) { ulaq =0 (or %\3920)

n

For the mathematical setting we introduce
Hy = H*(Q,R™) () Hy (2, R™)
ou
(or Hy = {u € H*(Q, R™)| %bg =0})

H = L*(Q,R™)
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Obviously, the operator A 4+ By + G : H; — H defined by (5.5.37)-(5.5.39)
satisfies the conditions in (5.4.20). In view of Theorem 5.4.3-Theorem 5.4.6 we
have the following results

Theorem 5.5.10. Assume that the eigenvalues 3;(A)(1 < j < m) of the
matrix —p1 A+By = (bi;(X\)—0i;p1 ;) satisfy that (here p; is the first eigenvalue
of (5.5.40))

<0, )\<)\0(0T)\>>\0)
ReBi(A) =< =0, A=Xo
>0, A> X (or A< X)

RefBi(Xo) <0, 1+1<j<m

and as A = A\g, u = 0 is locally asymptotically stable for (5.5.36), then the prob-
lem (5.5.36) must bifurcate from (u, \) = (0, A\g) an attractor with dimension
d<l—1.

Theorem 5.5.11. Assume that the eigenvalues 3;(A)(1 < A < m) of the
matrix —pr A + By = (b;j(A\) — 6;jpr ;) satisfy that

<0, )\<)\0(O7">\>)\0)
Refi(A) = Refa(A) =9 =0, A=Xo
>0, A> Ao (or A>Xg)

Refj(Xo) #0, V3<ji<m

then the problem (5.5.36) will bifurcate from (u,\) = (0, \¢) an Sl-invariant
set.

In the following, we give some examples of reaction-diffusion equations sat-
isfying the conditions in Theorem 5.5.10-5.5.11.

Example 5.5.12. These equations arise in the study of super-conductivity
of liquids (see [Te]). We have m = n, and u = (ug, -+, uy) is a solution of the
equations

gu = ANu+u — [ul?u
U‘QQ =0

(5.5.41) {

where the parameters taken are p; in the diagnal matrix A. The eigenvalues
B; of the matrix

1—=pi 0
—mA+1= -
0 1 — P1fn
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are as ; = 1 — pip;, p1 the first eigenvalue of (5.5.40). If 1 = --- =y <
Wity (1 < 1 < n), then by Theorem 5.5.10, the system (5.5.41) will
bifurcate from (u,pu1) = (0,p;") a S'"'-attractor. In fact, the behaviors of
solutions of (5.5.41) are alike to that of the Landau-Ginzburg equation discussed
in Subsection 5.5.2. If the multiplicity py of (5.5.40) is r, and

M“:...:ml:pgl (1Sl§m)

then it is not difficult to show that the system (5.5.4) will bifurcate from
(u, 1) = (0,p;, ") a S~ Linvariant set.

Example 5.5.13. These equations arise in ecology which discribe the
ecological balance (for instance the predator-prey systems, the colony growth
atc.), which read

(5.5.42) { 2 — Au+ M+ uGi(u,v) + [ Ga(u(s), v(s))ds

% = Av + \v + vFy (u,v) + fg Fa(u(s),v(s))ds

where
G1(0,0) =0, Go(z1,22) = o(|z1] + |22])

Fi(0,0) =0, Fy(z1,22) = of|21] + |22])

when the parameters A\; = Ag, or the multiplicity of the eigenvalue py, of (5.5.40)
is two, the system (5.5.42) will bifurcate from (u, \) = (0, p1)(or from (0, px))
a Sl-invariant set. Furthermore if (5.5.42) has no nonzero stationary solution
near u = 0, then the S'-invariant set is a periodic orbit.

Example 5.5.14. The final example is the equations which serve as a
model for the Belousov-Zhabotinsky reactions in chemical dynamics (see [Te]).
Here m = 3 and u = (uq, us, u3) satisfies

% = u1Aug + Aug + Aug — dugus — Aﬂu?
ou 1
(5543) 8—: = ,ugAUQ — XUQ + }UZ), — XU1U;2
% = ugzAug — duz + duy

uiloo =0, i=1,2,3.

where \, 3,v,6 > 0. For the domain Q, we here take Q = (0,27)? C R%. In
this case, we know that the eigenvalues of (5.5.40) are

Prm = m?+n%, n,m>1are integers,
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and when m = n, the multiplicity of py,,, is one, when m # n, the multiplicity
is > 1(generally = 2). On the other hand, if the multiplicity of pj equals 2,
and \g > 0 is a solution of the algebraic equation

A—pipe A 0
det | 0O —(>\71 + p2pk) )\71’7 =0
s 0 —(6 + pspr)

namely A\g > 0 satisfies

(A = p1pr) (p2pr 1) (p3ps + 0) + 76N =0
then the system (5.5.43) will bifurcate from (u, \) = (0, \g) a S*-invariant.

5.6. Navier-Stokes Equations (n = 2)

We shall conclude this chapter by consider the 2D Navier-Stokes equations
with the perioidic boundary condition, the free boundary condition, and the
Dirichlet boundary condition. The equations are given by

(5.6.1)

% | (u-Vyu=pAu—Vp+ f(z,\),r €QC R
divu =0

which are the same as in Subsection 3.3.1. Here A € R! is a parameter, and
Q) C R? is a compact manifold with boundary.
The equations (5.6.1) is supplemented with the initial value condition

u(z,0) = up(x)

Three cases of the boundary conditions will be considered.
The periodic boundary condition: in which case Q = (0, 27)?, and

(5.6.3) u(z +2Km,t) = u(z,t), Yt>0
K = (k1,k2), k; the integers.

The free boundary condition:

ou,
on
where u, = u-n,u, = u-7,n and 7 respectively the unit normal and tangent

vectors on the boundary 0f2.
The Dirichlet boundary condition

(5.6.4) un|ag = 0, |aQ =0

(5.6.5) ulog =0
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For the periodic boundary condition, we also impose the condition that the
unknown function u has the zero average

(5.6.6) / u(z,t)dt =0, Vt>0
Q

We shall latter see that the condition (5.6.6) means that v does not contain
the harmonic fields.

5.6.1. The Hodge decomposition

We say that a vector field u € H*(Q, R?)(k > 0) is a Hamiltonian if there
is a function v € H*T1(Q) such that
% i

= u2
8.%‘2 ’ 8%‘1

In this case, v is called the Hamiltonian function, or in some time it is also
called the stream function. We set

u = (uy,us) = curlh, wy

D*(Q,R?*) = {u e H*(Q, R?)| divu = 0,u,|oq =0}
H*(Q, R?) = {u € D*(Q, R*)| wis a Hamiltonian}

0]
GH(Q, ) = (Vp| pe HY(Q), 5 lon = 0)
For a general domain Q C R?, it is known that there is a decomposition
H(Q, R?) = D*(Q, R*) (P G*(2, R?)

But, if Q C R? is a compact manifold with boundary, then we have the Hodge
decomposition theorem as follows, which is very useful for our discussion on the
2D Navier-Stokes equations. The following version of the Hodge decomposi-
tion theorem on a compact manifold with boundary is due to G. Schwartz [Sw].

Theorem 5.6.1(Hodge decomposition). Let @ C R? be a compact man-
ifold with boundary. Then, for any v € H*(Q, R?)(k > 1),u can be uniquely
written as

u=-curlyy +Vo+v
o, 99 k1

5, loa =0, 8T|aﬂ—0, ¥, ¢ € H™(Q)
v € EFQ,R*) = {ve D*(Q,R?)| curlv =0}

Moreover, E¥(€, R?) is finite dimensional and

dimE*(Q, R?) = 31(Q), the first Betti number of Q.
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The vectors in E*(Q, R?) are called the harmonic fields.

Proof. For convenience, we prove this theorem in the k-th differentiable
space C*(Q, R?)(k > 1). Let F*(Q) be the space of all C* differential one form
on Q. By the Hodge decomposition theorem (see [Sw]), any w € F*(Q) can be
uniquely decomposed into

w=dy+66+v*

o ki
Lloa =0, ¢eltQ)
0¢ fe+1
(5.6.7) 66 -mlon = 5-loa =0, ¢ € C"HQY
v* e Eh(Q)
where
B = ¢dry |\ da,
¢ ¢
66 = *a—mdlj + a—ldl‘g

v* =vidr; + vidas
and Ey () is the space of C* harmonic 1-forms:
Ep(Q) = {v* € F¥(Q)|6v* = 0,dv* =0, and

v} cos(T, 1) + v cos(T, x2)|sq = 0}

Under the symplectic homeomorphism J : F*(Q) — C*(Q, R?) given by
the area form wy = dzq1 A dza of Q, we infer from (5.6.7) that

u=Jw=-curly —Vo+v

o, 99,
(5.6.8) 57 l02 =0, Ebﬂ =0
. o - 81}2 8711 -
divv =0, curlv = 0z, 9s 0

where v = Jv*. In fact, the symplectic homeomorphism J can be expressed as
that for any w = vidx, + vodxo,

w= (15 (2)- (37 e
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Hence, for any u € C*(Q, R?) we deduce from (5.6.8) that

u=curlyy + Vo +v
divv =0, curlv=20

oY 0¢

—loa =0, ——loa=0, v-nlag =0
o7 109 a7 B ) lag
This is the first conclusion of this theorem.

By Theorem 2.2.2 in [Sw], it is easy to see that E¥(2, R?) = JEg(Q2), and
dimE*(Q, R?) = dimEg (Q) = 31(Q)

This proof is complete.

By the Hodge decomposition theorem, we see that a vector field on a two
dimensional manifold is a direct sum of a Hamiltionian, a gradient field and
a harmonic field. On the general manifolds of dimention two, the harmonic
fields are not the Hamiltonian, however, on Q C R? the harmonic fields are the
Hamiltonian, which are characterized by the following theorem

Theorem 5.6.2. Let Q C R? be a compact manifold with boundary and
B1(Q2) # 0. Then for any v € E¥(€2, R?), there is a function ¢ € H*+1() such
that

v = curly
AYp =0
Ploa # 0, 5E|a0 =0

Proof. We know that the first Betti number (3; represent that there are
(1 holes in the interior of 2. Hence, the boundary 02 has 5; + 1 components,
each of which is homeomorphic to S':

B1
0Q = | J I«
k=0
It is well known that each of the below boundary value problems has an

unique solution

A =0
(5.6.9) Yrlr, =1, for some one k (0 <k < ()
ﬁ’kh“j = O,VJ 7é k

Thus, we obtain 8; + 1 functions %y, ---,1g,. Obviously, there are only 3;
functions in {¢%|0 < k < (1} which are linear independent up to a constant.
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For instance
B1
do—1==> 1
k=1

Hence, the vector field v; = curly;(1 < j < (1) are linear independent, and
v; € EF(, R?) are the i harmonic fields. Thus, this theorem follows from
theorem 5.6.1. The proof is complete.

It is easy to see that the harmonic fields enjoy the properties
(5.6.10) Av =0, and / vdr #0, Yu e E¥(Q,R?)
Q

For the periodic boundary condition (5.6.3), the equations (5.6.1) can be
regarded as defined on the torus 72. Thus the space of the harmonic fields on
T? is as follows

E*(T? R?*) = {u=(a,b)| a,bc R'}=R?

Hence, the vector fields v € H* (€2, R?) with the periodic boundary condition
if and only if u satisfy the condition (5.6.6).

5.6.2. Mathematical setting

According to the above subsection, it is sufficient for us to discuss the
problems ((5.6.1)-(5.6.6)) only in the spaces H*(Q, R?) @ G*(Q2, R?)(k > 0).
For any f € H*(Q, R?) @ G*(Q, R?), we have

f=curly +Veo, ¢ € H(Q)
Then the equation (5.6.1) can be written as

9 4 (u-V)u = pAu— Vpy + curly)

divu =0

p=p—9
Hence, the gradient term V¢ in the given function f does not influence the
behaviors of solutions of (5.6.1). Thus, we only need to consider the given
functions f in the spaces H*(2, R?).

For the given parameterized terms f(x,\) in (5.6.1), we introduce the fol-

lowing space

C(RY,H*) = {f(-,\) € H¥(Q, R*)|X € R, f(x,0) =0,

and f(x,\) is continuous on \}
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endowed with the topology that B,.(f) C C(R', H*) is an open disk with center
f and radius r defined by

Bi(f)={g € C(R. MO supllg — flln <)
Obviously, C(R*, H*) is a linear topological space, but not a Banach space.
For the vector field with the boundary condition, we set
k 2y _ k 2 . o
H,(Q, R7) = {u € H*(Q, R*)| wuis Q— periodic}
HE(Q, R?) = {u € H¥(Q,R?)| uy, = %1: =0 on 00}
HY(Q, R?) = {u € H*(Q, R?)|  uloq = 0}

The spaces of the associated Hamiltonian function are given by
k _ k . S
Hy(Q) ={y € H*(Q)|[Y is Q — periodic}

2
HE(Q) ={y e H’“(Q)@—f =0, % =0 on 00N}

HE(Q) = { € H*(Q)| Dy = 0 on 99}

Usually, we uniformly denote the above spaces by H% (2, R?) and HE ().
It is readily to check that

Au#0, YuecHEQLRY) andu#0 (k> 2)

Otherwise we can get that

/Au-ud:c:—/|Vu|2d:r:0
Q Q

which is a contradiction with that uw # 0. Hence, by (5.6.10) the spaces
H%(Q, R?) have no the harmonic fields.

When Q = (0,27)2, there are three cases of the boundary conditions in
which cases the vector fields can be expressed by the Fourier series.

The periodic case, u € H’; (22, R?) has the Fourier expansion:

u= (uy,us) € H];(Q, R?)

= S ageittny
n,m=—oo
0 .
(5.6.11) Uy =Y by’

n,m=—00
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Apm = G—p—m, bnm = bfnfm
Napm = _mbnma apo = bOO =0

The associated Homiltomian function is given by

> 1 . > 1 .
(5.6.12) ¢ = —i > Eanme“””my)—z‘ > —agme™
m,n=—oon#0,m#0 m=—oom#0
) 1 .
— Z Ebnoelnz
n=—oon#0

The free boundary condition, u € HX(Q, R?) satisfies

u1(0,y) =w(2m,y) =0, 0<y<2r
uz(x,0) = ug(z,2m) =0, 0<z<2rm
Ouy(x,0)  Ouy(x,2m)

=0, 0<x<2m

oy y
aUZ(an) _ 8’1,62(277,:1]) — 07 0 S y S ot
or or

Therefore, u € HA (€2, R?) has the Fourier expansion

u = (uy,uz) € Hi(Q, R?)

o0

Uy = E QA SINNX COS MY
n,m=1
oo
(5.6.13) Ug = E bpm cosnx sinmy
n,m=1

Ny + Mbym = 0

The associated Hamilton function is given by

— 1
(5.6.14) P = Z — Ay SIn N sin my
m

n,m=1

The semi-periodic boundary condition, in this case it can be regarded as
the free boundary condition defined on an annulus. This condition is given by

uy(x + 2k, y) = uy (z,9)
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(z,0) = %(x,%r) =0

(5.6.15) o

us(x,0) = ug(z,27) =0

Under the condition, u = (u1,us) has the Fourier expansion

o0 o0
up = E E Gy, cOS MYE™®
m=1n=—o0
oo o0
(5.6.16) Uy = E E bym sin mye'™™
m=1n=—o0
Apm = G—nm, bnm = b_nm

NApm + Mbpy, =0,  agg =0
The associated Hamiltonian function reads

(5.6.17) P = Z Z —anm sin mye*™*

m=1n=—o0

5.6.3. Invariance of the eigen-spaces

Let {pr} C R' and {er} C HF(Q, R?) be the eigenvalues and eigen-
functions of the following system

—Aey, = prer  (pr > 0)
(5.6.18) { ot 4

A special property of 2D Navier-Stokes equations is the invariance of the
eigen-spaces of (5.6.18), which is given by the following theorem.
We investigate the equations

% = pAu— (u-V)u—Vp+ep
(5.6.19) divu =0
u(z,0) = up(x)

where ey, is the eigenfunction of (5.6.11) corresponding to py.

Theorem 5.6.3. For the problem (5.6.19) with the periodic boundary
condition (5.6.3), or with the Dirichlet boundary condition (5.6.5), the following
assertions hold:

1). v = u~tp; tex is a stationary solution of (5.6.19), and the eigen-space
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E) C H%(Q, R?) corresponding to py, is invariant, namely if the initial
value ug € Ej, then the solution of (5.6.19) satisfies that u(z,t,ug) €
FEy, vt > 0.

2). The stationary solution vy, is stable in Ej, i.e; the solution u(x, ¢, ug) — vg
provided ug € Ej.

Proof. Let H} (2, R?) be the space of all the Hamiltonian which are not
the harmonic fields. Then, by Theorem 5.6.1 and Theorem 5.6.2 we have

H*(Q, R?) = HY(Q, R*) D E* (9, R*) P GF (9, R?)
Denote by

Py : H*(Q, R?) — HY(Q, R?)
P, : H*(Q, R?) — E*(Q, R?)
Py : H*(Q, R?) — G*(Q, R?)

the projection operators. Then the stationary equation of (5.6.19) can be de-
composed into
Pi[pAu— (u-V)ul+e, =0
(5.6.20) PolpAu — (u-V)ul =0
Ps[(u-V)u] —Vp=0

In order to prove the conclusion 1), it is necessary to show that.

(5.6.21) Pil(u-V)u] =0, Yué€ E, CHYF(Q,R?)

(5.6.22) Pj(u-V)u] =0, VueE;
Because u € Fj is a Hamiltonian,

oh  0h

dry’ Omy

uzcw‘lhz( >, h e H*®(Q)

Noting that u satisfies (5.6.18), we have

(5.6.23) —Ah = pih
We see that
0 0
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L0 (0h Fh ohhY o ( ohoth oh o
 Oxg \ 012 011032 Oz 073 0xy Oz9 022 Oy 011079
om0 o

o 8_1'28_1}1 81‘1 81’2
=0, (by (5.6.23))

From (5.6.24) we obtain the equality (5.6.21).
The equality (5.6.22) is equivalent to that

(5.6.25) /(u V)u-vdr =0, YucE,, wveE"Q R?
Q

For the periodic boundary condition, v=constant in E*(, R?), the equality
(5.6.25) obviously holds. For the Dirichlet boundary condition, by Theorem
5.6.2, there is a ¢ € H**1(Q) such that

0 0
v=curly = <8—;p2 — 3—:’[11)

Hence we have (by u|aq = 0)

/Q<u~V)u-vda: = —/qu[%((u-vm)—a%«u-vm)] dx
= 0, (by(5.6.24))

Thus, we derive the equality (5.6.22)
In view of (5.6.21)(5.6.22), the equations (5.6.20) restricted on Fj, is equiv-
alent to the following equation

pAu+e, =0, Yué€ By

Thus, the conclusion 1) is proven.
Because the eigen-space Ej, is invariant, the equation (5.6.19) restricted on
FE;. can be written as

U — uA E
5r — MAU +er, uU€ELbyg
(5.6.26) { u(zx,0) = up, ug € Ey,
Let Ey = spanf{ey,, -, ek, b, u = > v, zi(t)ex,,ug = Y 1oy ajey,, and ej =

ek, Then the equation (5.6.26) is equivalent to the ordinary differential equa-
tions

Lol — —pppay + 1,
(5.6.27) T = Pk 2<j<m
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The solutions of (5.6.27) read
$1(75) = ale_ﬂp’vt + M—lplzl(l _ e—upkt)
z(t) = aje_“”’“t, 2<j<m
It is clear that
u(z,t) = Z%‘(t)@ki — oy ten, = 0 prer,  ast— oo
i=1

The proof is complete.

Remark 5.6.4. When the Betti number 31 (€2) > 0, in general the theorem
of invariant eigen-spaces does not hold for the free boundary condition. The
reasion is that the equality (5.6.22) is not true. Indeed, we find that

/Q(u-V)u-vd:c:/(uV)u.curmd:c

Q

= /89(u -V)u-1pds  (by (5.6.24))

Vu € Ey,v € E¥(Q, R?). By Theorem 5.6.2,
B
Ylp, =C;, 0<i<p, (0Q= U r';)
j=1
where C;(0 < ¢ < 1) are constant, and there is a Cj # 0. Thus
B
/ (u-Vu-7pds = ZQ/ (uw-V)u-7ds
o0 i=0 r;
B1 9
= ZQ/ |u|=—u-7ds  (by unloq = 0)
, . or
=0 g
B1
_ Zci/ 1 25~ Julk(e)un]ds
i=0 ro O
51
— Z(Ji/ 1 24 g
i=0 L dr

where k(x) is the carvature of 9Q at x. Usually %"Ttbg # 0, it means that the
eigen-space Ej, is not invariant for the free boundary condition in general.
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But, if the Betti number £;(2) = 0, i.e. Q is homeomorphic to an open
disk, or the equations (5.6.19) are defined on anulus, i.e. supplemented with
the semi-periodic boundary condition (5.6.15), then the theorem of invariant
eigen-spaces still holds true.

Theorem 5.6.5. For the free boundary condition, if 31(Q2) = 0, or the
condition (5.6.15) is imposed, then the conclusions of Theorem 5.6.3 hold true.

Proof. If 3;(Q) = 0, then E*(Q, R?) = {0}. Hence the projections (5.6.21)
and (5.6.22) are valid. When the boundary condition is (5.6.15) the harmonic

space reads
E*(Q,R?) = {u = (a,0)|a € R'} = R

In this case, it is obviously that the equalities (5.6.21)(5.6.22) hold. Thus, this
theorem is derived.

5.6.4. Global stability

This subsection is devoted to the study of global stability for the following
problems

% = pAu—(u-V)u—Vp+ ey, z€Q=(0,2r)?
(5.6.28) divu =0
u(z,0) = ug

where e; is an eigenfunction of (5.6.18) corresponding to the first eigenvalue p1,
and the associated boundary condition is one of the conditions ((5.6.3),(5.6.4)
and (5.6.15)).

In view of ((5.6.11)-(5.6.17)) it is clear that the eigen-spaces F; of (5.6.18)
corresponding to p; are respectively as follows

E; = span{(sin z2,0), (cos z2,0), (0,sinz1), (0,cosxz1)}; for (5.6.3)
E; = span{(sinz1 cos x3, — cos z1 sinxs)}, for (5.6.4)
Ey = span{(cosz2,0)}, for (5.6.15)
and the eigenvalue p; =1 for (5.6.3) and (5.6.15), p1 = 2 for (5.6.4).
‘We know from Theorem 5.6.3 and Theorem 5.6.5 that vy = )\,u_lpl_lel S
is a stationary solution of (5.6.28). In the following, we shall prove that for any

)\ € R, the stationary solution v} is globally asymptotically stable for (5.6.28),
i.e. for any initial value uy € H% (2, R?)(k > 3), the solution of (5.6.28) satisfies

lim ||u(z,t,u) — vallg1 = 0.
t—o0
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Theorem 5.6.6. For any A\ € R! the stationary solution vy = )\,u_lpflel
is global asymptotically stable in the H!'-norm for (5.6.28) provided the initial
value ug € H%(Q, R?), and locally asymptotically stable in the H*-norm for
any k > 1.

Proof. Let the eigenfucntions {ex} C HZ (2, R?) of (5.6.18) be as follows

Oh,  Oh

€L — CUTlhk = {8_(132’ —8_])1}

Obviously, the functions hy, satisfy

For the boundary conditions ((5.6.3),(5.6.4) and (5.6.15)) from ((5.6.11)-
(5.6.17)) we can see that {e} and {hy} respectively constitutes the orthogonal
base of M’ (Q, R?) and HET(Q),Vk > 0. Moreover, the Hamiltonian function
P € HEH(Q) satisfy the boundary condition

Y is Q — periodic, for (5.6.3)
(5.6.30) ¢ Yoo = 0,A¢lpn =0, for (5.6.4)
Y is 1 — periodic, and ¥ = Ap =0 on y =0,27m, for (5.6.15)

Let o a0
u = curl = {8_332’ ~ oz,

From (5.6.28) and (5.6.29) it follows that the Hamiltonian function 1) satisfies

OAY 2

o= = AP + [V, AY] — Ap1h
(5.6.31) { w??c,O):wo 1
where o0 96 o0 96

6] = g —

89@1 8%‘2 89@2 8%‘1

In order to prove this theorem, we only need to investigate the problems
(5.6.31) with the boundary conditions (5.6.30). Let

p=vp— " prthy
where A\u~'p; thy is the stationary solution of (5.6.31). Then we get

A
(5.6.32) % = A2+ ML py (b, AG] + [0, Aha]) + [6, Ad]

= puA%¢ + A" o1 [he, Ad + p1o] + [6, A
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(5.6.33) d(x,0) = ¢o = tho — A ' p1ha

Multiplying the equation (5.6.32) by A¢+ p1¢ and integrating it, we can derive
that

d
.6. — Ag|? Ag - = A%p- A Ag|?
(.63 G [186F +mao-olde = [ (8% A6+ [ Aof)ds

In the above equality, we have employed the boundary condition (5.6.30) and
the following fact

/Q[f,mfdx —~ [lonriz =0, vigeHy@, bz

Because {h;} is a common orthogonal base of all the spaces H%(2)(k > 0), as
q/) S H}%(Q)Jﬁ = Z;il ¢jh]‘, and

16l ze = /Q (—1)FAkG - gdz =3 @2k, (k> 0)

Jj=1

here we have made the normalization
/ |hjlPde =1, Vj=1,2,---.
Q

Noting that p; > p1 > 1,Vj > m + 1, m the multiplicity of pi, from (5.6.34) it
follows that

d o0 o0
I > pilpi—p1)ds =—p Y pipj — p1)d]
j=m+1

j=m+1

(5.6.35) S —Pmt1i Z pi(ps = p1)#3
j=m+1

By the Gromwell inequality, we infer from (5.6.35) that the solution of (5.6.32)(5.6.33)

satisfies
oo

> pilps = p1)g < Ceremat
j=m+1

where C' = ||(A%+p1A)¢o|| L2 is a constant. Thus, for the solutions of (5.6.32)(5.6.33)
we obtain that

(5.6.36) llp — Po|lg2 < Ce~#Pmiit (> 0 a constant.
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where _
P: HY(Q) — E, the projection.

E; the eigen-space of (5.6.29) corresponding to p;. We denote by

o=0-Po
Then, from (5.6.32) it follows that P¢ satisfies
d 9 ~ ~
o1 P = —pupiPé — PP6,AG + p1)-

—P[§, AG] = Aoy Plha, A + pd]
Thus, we get that

t ~ ~
P¢:P@mw“ﬂ—mﬂfwﬂ/“wﬁ%ﬂP@A¢+m@+
0

(5.6.37) +P[6, A¢] + M pr ' Plha, Ad + prg]ldr

From (5.6.36) we can derive the estimates

/ 99086 09 06 |, ,
Q c’)xl al'g (’)332 81‘1 i

!/ kﬁzAaahi-ézAgam]dz
Q

|Pl6, Ad]

ory 0o 0xo 0xy
< o [ |ad]: [vilds
Q
< COllélHe
< Cle HPm+1t

where h; € El, (1 <i < m),C > 0 the constant dependent on the moduli of
the first eigen-functions h;.

|Plh1, Ad + p1d]| < Cle~ 5HPm+1t

[P[P6, A + pr]| < Ce2temit|[Pg)|
By the estimates above, from (5.6.37) we obtain (noting that pm,4+1 > 2p1)

t
(5.6.38) wwHSCawﬂ+05Wﬂ/npwm
0
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Let
(5.6.39) [Pol| = e7#712(t)  (2(t) > 0)

From (5.6.38) we get
t
(5.6.40) z<C+ C/ e T 2(T)dT
0

By the Gromwell inequality, from (5.6.40) we obtain

1 (efumf_l)

2(t) < Ce™ we1 < const.

Thus, we infer from (5.6.39) that P¢ — 0 in E;. Therefore we deduce from
(5.6.36) that

Jim (¢~ A~ o gz = lim (6] = 0

The first conclusion of this theorem is proven.
It is know that the solutions of (5.6.31)(5.6.30) are C*° provided the initial
value ¥y € C°, and the eigenvalue of

AQhk = Pihk

have the asymptotical property

pi. ~ ck®

On the other hand, the eigen-problem

—puA2p — A~ pr b, Ad + prg] = B(N)@
(5.6.41) { be HEQ). & Zi ! !

has no the eigenvalues possessing the nonnegative real parts for all A € R',
otherwise, there must exist a Ag € R! such that 8(\g) = 0(because each eigen-
value of (5.6.41) is isolated, it is continuously dependent on A(see [Ka]), and
B(0) = —p3,k=1,2,--), then the eigenfunction v # 0 of (5.6.4) satisfies

(5.6.42) Ao + Xopy T [, Ao + prtho] = 0

In the same fashion as above one can deduce from (5.6.42) that 1 € El, and
it means that 1y = 0, a contradiction.

Hence, for the equation (5.6.32) the conditions in Theorem 3.2.6 are satis-
fied. Thus, the second conclusion is proven. This proof is complete.
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From Theorem 5.6.6, we can deduce the local stability of (5.6.1) in a neigh-
borhhod of Xej, VA € RL.

Theorem 5.6.7. For any A € R!, there is a neighborhhod O C H%(Q, R?)(k >
1) of Ae; such that for any f € O the equations (5.6.1) are locally stable, i.e.
the stationary solution of (5.6.1) for f € O is locally asymptotically stable.

Proof. For any f € O, f = Ae; + g(z), and
(5.6.43) llgll g+ < €, for some e >0

Let g = curlB, 8 € H*1(Q), and u = curly). Then we have

OAY 2
D20 = uA2 + [, AY] — Aprhy + A8
(5.6.44) { fte HEP(Q), (2, 0) = 1o

We consider the stationary equation of (5.6.44)
(5.6.45) PA*P + 1, AY] = Apthy — AB
We define the mapping A + G : Hy™(Q) — H*1(Q)(k > 1) by

Ay = pA*p, Gy = [, Ay

By Theorem 5.6.6 we can derive that YA € R! the solution vy = )\,u_lpflhl of
Ay + G = Apihy is unique, and the derivative operator

(5.6.46) A+ DG(vy) : HEP3(Q) — HF1(Q)

which is a linear completely continuous field, is a homeomorphism because
it has no zero eigenvalues. Indeed, (5.6.41) and (5.6.42) are the eigenvalue
equations of (5.6.46).

By the inverse function theorem, for any e > 0 sufficiently small there is a
6 > 0 such that the equation (5.6.45) has unique solution ¢ = A\jp; 'u="hy + ¢
with

(5.6.47) @]l g4z <6 (8 — 0 as e — 0)

provided the condition (5.6.43) satisfied.

Let ¢ = v — IZ Then the stability problem of (5.6.44) on the stationary
solution & is equivalent to that of the below equation on the stationary solution
¢=0

0Ap

— = —HA%e+ Aoyt A + prg, b+

+AD, d] + [Ad, ¢] + [Ad, b
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Because the eigenvalues of (5.6.41) have the negative real parts for all A €
R'. Hence, VA € R! there exists § > 0 such that if (5.6.47) is fulfilled the
eigenvalue problem

—uA2p — A7 T ha, AG + pro] + [Ad, ¢
—[6,A0] = 86, b€ HE(Q), k>4

has no the eigenvalues having the nonnegative real parts. Therefore, by Theo-
rem 3.2.2 we can derive this theorem. This proof is complete.

5.6.5. Taylor vortex type of the periodic structure

The invariance of eigen-spaces is related with the phenomena of the Taylor
vortices. The Taylor vortices appear in the case of fluid flows contained between
two rotating cylinders, which is studied originally in Taylor’s 1923[Ty]. In fact,
such periodic structure appears in many problems of mathematics and physics,
for instance see [FP] and [BLP].

Let the domain 2 = (0, 27)2. In this subsection, we shall restrict our atten-
tion to the boundary conditions ((5.6.3),(5.6.4) and (5.6.15)). The Taylor fields
on ) with the boundary conditions considered are referred to the Hamiltonian
defined by

v = curly, satisfy the boundary conditions (5.6.30),

(5.6.48) Y take the functions below

{cos nxy sin maae, cos nxy cos mxa, sin nry sinmas}

The Taylor vortices are referred to the periodic structure of phase diagram of
the Taylor field (5.6.48) as shown in Fig 5.15 below

X: Ak

2?‘5)

OY O O1TO
OrOvO O
O1OOvO
P I I

27T X,
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Fig. 5.15. The phase diagram of v = (cos 227 cos 2x9, sin 221 sin 2x5)

In the following, we hsall illustrate the applications of the previous theorems
in Subsections 5.6.3-5.6.4 to the Taylor vortex type of periodic structure by
some examples.

The problem is given by

9 4 (u-V)u=pAu—VP+ f(z)
(5.6.49) divu =0
u(z,0) = ug

Example 5.6.8. Let the periodic boundary condition be imposed, the
initial value ug = 0, and the function f in (5.6.49) be taken by

(5.6.50) f = (sinxy cos o, — cos xq sin )

By Theorem 5.6.3, the solution of (5.6.49) reads as

1
(5.6.51) U= ﬂ(l — e ?M){sin x) cos Ty, — cos Ty sinxg}
When the periodic eternal force (5.6.50) is exerted, the fluid motion is
governed by the Taylor field (5.6.51) whose topological structure is illustrated
by Fig. 5.16(a)

h
h 3

Fig. 5.16.

In [MW,1], the structure evolution of the Taylor vortices is studied. A ba-
sic result (Theorem 4.3 in [MW,1] says that there is an open and dense set
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O C H%(Q, R?) such that for any g € O, under the small perturbation f + eg,
the topological structure of the perturbated solution u. of (5.6.49) in a time
inteval 0 < t < tg is topologically equivalent to that as shown in Fig.5.16(b).

Example 5.6.9. We still consider the periodic boundary condition. The
function f in (5.6.49) is given by
_ S .
(5.6.52) { f=el —i— €g, |e| > 0 suf ficiently small
e1 = (sinxa,cos )

The function e; is the first eigenfunction of (5.6.18) in H% (£, R?). By Theorem
5.6.7, the stationary solution v.(x) of (5.6.49) is locally asymptotically stable.

In [MW,1], a theorem (Theorem 6.2) says that there is an open and dense
set O C H&(Q, R?), such that if ¢ € O, the stationary solution v.(z)(e #
0) of (5.6.49) with (5.6.52) is structure stable whose topological structure is
topologically equivalent to that as shown in Fig. 5.17(b). Thus, we infer that
there is a neighborhood U C HY(Q, R?)(k > 2) of v.(z), for any the initial
value ug € U, there exists a Ty > 0 such that the solution u(zx,t, ug) of (5.6.49)
is topologically equivalent to v.(z)(e # 0) for any ¢ > Tp.

The topological structures of v, at € = 0 and € # 0 are illustrated by
Fig.5.17(a) and (b)

A

N

A~

v

v

(a) structure of v, with e =0 (b) structure of v, with € # 0
Fig. 5.17.

Example 5.6.10. We consider the free boundary condition (5.6.4). The
function in (5.6.49) is given by

(5.6.53) { f=e1+e€g,|e| >0 sufficiently small

e1 = (sinx cos T2, — cos 1 Sin x5)
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The function e; is the first eigenfunction of (5.6.18) in H (2, R?)(k > 2), there-
fore the stationary solution v.(z) of (5.6.49) is locally asymptotically stable.

The generic Theorem of structure stability on stationary solution for the
Navier-Stokes equations with the free boundary condition is also valid (see
[MW,2]). Hence there is an open and dense set O C H%(Q, R?) as well a
neighborhhod U C HA(Q, R?)(k > 2) of e1, such that for any g € O and the
initial value ug € U, there exists a Ty > 0, at each moment ¢ > Ty the solu-
tion u(x,t,ug) of (5.6.49)(5.6.53) with |e| > 0 sufficiently small is topologically
equivalent to the vector field which has the topological structure as shown in
Fig.5.16.(b).

5.6.6. Asymptotically time-periodic solutions

We consider the Navier-Stokes equations where the given functions f are
time dependent

9 4 (u-V)u=pAu—Vp+ f(z,t),z € QC R?
(5.6.54) divu =0
u(z,0) = ug

which are supplemented with one of the boundary conditions ((5.6.3)-(5.6.5)).

When the eternal forces f are given to be the time-periodic functions, in
general the solutions of (5.6.54) are not time-periodic. However, we now con-
cern this problem whether or when the solutions are the asymptotically time-
periodic. To this end, we first introduce

Definition 5.6.11. Let the given function f(z,t) in (5.6.54) be time-
periodic. We say that a solution u(x,t,ug) of (5.6.54) is asymptotically time-
periodic if there exists a time periodic function v(z,t) € H%(£2, R?) such that

lim |lu(z,t,up) —v(z,t)|[gz =0
t—o0

Ofcourse, in general, for the arbitrary time-periodic functions and the ini-
tial values ug the solutions w(z,t,up) of (5.6.54) may be not asymptotically
time-periodic. But under some appropriate conditions they will be. By apply-
ing the invariance theorem of eigen-spaces, we can give some examples on the
existence of asymptotically time-periodic solutions. The conditions that make
the invariance of eigen-spaces hold are imposed in this subsection.

Theorem 5.6.12. Let f € L?((0,27), E) be a time-periodic function,

E). C H%(Q, R?) an eigen-space of (5.6.18). Then, for any initial value ug € Ej,
the solution of (5.6.54) is asymptotically time-periodic.
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Proof. By Theorems (5.6.3 and 5.6.5), the eigen-spaces of (5.6.18) are in-
variant for the system (5.6.54). By the projections (5.6.21)-(5.6.22), the system
(5.6.54) restricted on Ej is equivalent to

(5.6.55) Ui = —pppr; + fi(1), 1<i<m=dimEy
- i(0) =

where m is the multiplicity of the eigenvalue pg,

m

t) = Z fi(t)er
= f: Qi e,
i=1
t) = Z:Ei(t)ek
i=1

{€k,, ek, } is the orthogonal base of E.
From (5.6.55) we can obtain

t
g;i(t) = aie_ﬂpkt =+ e—upkt/ e”p’“Tfi(T)dT
0

Because f(z,t) is t-periodic, we have the below Fourier expansion:

i) =C; + Z [@im cOS L + bjpyy SINME]

m=1

o0

Z A, + bfm <00

m=1

We see that

t
e_“p’“t/ e*PrT sin mrdr
0

1 2.2
=—(1+ M—gk)fl[e*”p” — cosmt + L2~ sin mt]
m m m

t
ef“”’“t/ eMPrT cosmrdT
0

1
Lag w2 p2k) V- EPE o—npit | sinmt + E2% cosmi]
m m m "

From the equalities above it is easy to see that the solution of (5.6.55) is asymp-
totically time-periodic. The proof is complete.
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5.6.7. Open problems on the stability and bifurcation
We wonder whether the following two theorems are true or not.

Theorem 5.6.13. For any f € C(RY, H*)(k > 1), there two parameter
values —oo < A1 < oo and 0 < Ag < o0, such that the following assertions hold.
1). For any A\; < A < ), the stationary solution vy € H%™(Q, R?) of (5.6.1)

is locally asymptotically stable in H'-norm.

2). If |A\;| < oo(i = 1,0r = 2), then the system (5.6.1) must bifurcate from

(v, Ai) an invariant set.

Theorem 5.6.14. There exists an open and dense set 7 C C(R', H*)(k >

1), for any f € F, there are two parameter values —oo < A1 < 0 and 0 < Ay <

00, such that the following assertions hold.

1). For any A; < A < Ay, the stationary solution vy € H™2(Q, R?) of (5.6.1)
is locally asymptotically stable in H'-norm.

2). For the free and the Dirichlet boundary conditions, if |A;| < co(i =1, or
= 2), then the system (5.6.1) must bifurcate from (vy,, \;) either a
stationary solution or a periodic orbit.

3). For the periodic and the semi-periodic boundary conditions, if |\;| < oo,
then the system (5.6.1) bifurcates from (vy,, \;) a S'-invariant set.
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Bibliographical Notes and Remarks

This book is a summary of the author’s works(partly with Q. Yu) on the
subjects of nonlinear operator theory, bifurcation theory and partial differen-
tial equations. Most of the results were completed recently by the author, part
results, which are collected in Section 1.5-1.6 and Section 4.3-4.4, are referred
to T. Ma and Q. Yu[MY,1-4], T. Ma[Ma,1-2], Q. Yu and T. Ma[YM,1-2], and
the contents in Section 4.5 are referred to T. Ma[Ma, 3-4], Q. Yu, Q. Yu and
T. Ma[YM, 3-5]. Especially, the author would like to mention that the results
on the local uniqueness of bifurcated branch of positive solutions for the non-
linear second order elliptic equations in Subsection 4.5.1-4.5.2([Ma,3-4]) were
completed under the supervision by Prof. P. L. Lions during the author visited
CEREMADA, University Paris 9, in 1990-1991.

We believe that some results in this book may be covered by the other works
which we don’t know, and thus they are not mentioned here. We would like to
give some references closely related with the material presented.

Chapter I. The results introduced in Section 1.1 are classical, they can
be found in many books and Texts. The remarkable references are partly the
books of R. Temam [Te], S. Chow and J. K. Hale[CH], D. Gilbarg and N. S.
Trudinger[GT], T. Aubin[Au] etc.

There are plentiful studies on the theories of abstract operatos on Banach
spaces(e.g. the fixed point theory, the monotone operator theory, the varia-
tional methods, the operator semigroups etc.) and their applications to the
partial differential equations. Some good references related with the material
given in Section 1.2 are referred to E. Zeidler[Ze], M. A. Krasnoselskii[Kr], F.
E. Browder[Bd,1,2], H. Brezis[Bz], M. Struwe[St], A. Pazy|[Pa].

Some works related with the material in Section 1.5 are referred to O. A.
Ladyzenskaja and N. N. Uralceva[LU], M. Giaquinta[Ma,1,2].

On the Keldys-Fichera boundary value problem for the linear equations with
nonnegative characteristic form of second order, we refer to G. Fichera[Fi], M.
V. Keldys[Ke], O. A. Cleinik and E. V. Radkevich[OR], J. Kohn and L. Niren-
berg[KN].

Chapter II. There are lots of works on the global existence and regularity
of the initial boundary value problems of quasi-linear and semilinear parabolic
equations and systems, we briefly refer to O. A. Ladyzenskaja, V. A. Solonnikov
and N. N. Uralceva[LSU], J. L. Lions[Li], A. Haraux[Hal, A. Friedman[Fr]. On
the initial boundary value problems of nonlinear wave equations we refer to K.
Jorgens[Jr], D. H. Sattinger[Sa,1,2], R. Temam]|Te].

Chapter III. On the eigenvalue problem of linearized operators we refer to
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the excellent monographs of T. Kato[Ka], N. Dunford and J. T. Schwartz[DS].

Chapter IV. A detail introduction on the Liapnov-Schmidt method is
given by S. Chow and J. K. Hale[CH], W. Cheng[Ch]. The global bifurcation
theorem(Theorem 4.1.2) can be found in P. Rabinowitz[Ra]. Theorem 4.1.5 is
due to M. A. Krasnoselskii[Kr].

Chapter V. The Kaldor’s model on the business cycle can be found in G.
Gabisch and H. Lorenz[GL]. On the Hopf bifurcation and the center manifold
theorem of nonlinear operator defined on Hilbert spaces we refer to G. Tooss and
D. D. Joseph[1]]. In addition, we would like to mention the works of M. Golu-
bitsky and D. G. Schaeffer[GS], D. H. Sattinger[Sa, 3-4], V. I. Tudovich[Iu,1-2].

We need to point that the results in Section 5.3-5.4 follow the idea of T.
Ma and C. Zhong[MZ], although there some errors in the note.
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