
Chapter I

Existence and Regularity of

Nonlinear Stationary Equations

The existence of nonlinear stationary equations is very important for the un-

derstanding of dynamical properties of nonlinear evolution equations, and only

under the existence conditions of nonlinear stationary equations, can the sta-

bility and bifurcation problems of nonlinear evolution equations be effectively

researched. On the other hand, the stationary equations (i.e. the equations

independent of time) themselves are also of important significance in mathe-

matical and the other fields.

Because the majority of infinite dimensional evolution equations describing

the motion in nature is of the dissipative structure, and the dissipative structure

are always connected with the elliptic differential operators. Naturally, the

theory of elliptic equations and elliptic systems is a core subject in the field of

partial differential equations.

In this chapter, we present a basic theory for the abstract operators, which

can generally treat the existence problem of not only a large class of elliptic

equations and elliptic systems which can not be treated by the traditional meth-

ods, i.e. the monotone operator theory, variational principle and the Green ex-

pression method (fixed point theory+priori estimates), but also a large class of

the fully nonlinear elliptic boundary value problems, the degenerate equations,

and the equations with nonnegative characteristic form in general domains.

Combining with the acute-angle principle and LP -estimates, we can obtain

some regularity results on elliptic equations and degenerated elliptic equations

in general domains.

1.1. Preliminary Material

1.1.1. Sobolev spaces

Let Ω ⊂ Rn be an open set. We denote by Ck(Ω)(resp. Ck(Ω)), k =integer≥
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0, the space of all k times continuously differentiable functions on Ω(resp. on

Ω), and �
Ck0 (Ω) = {u ∈ Ck(Ω)| supp u ⊂ Ω}
supp u = the closure of {x ∈ Ω|u(x) 9= 0}

The spaces Ck(Ω) are Banach spaces endowed with the norm

nunCk =
[
|α|≤k

sup
x∈Ω

|Dαu|

where α = {α1, · · · ,αn},αi=integer≥ 0, 1 ≤ i ≤ n, |α| =
Sn
i=1 αi. We always

denote

Dαu =
∂|α|u

∂xα11 · · · ∂xαnn ,

Diu =
∂u

∂xi
; Diju =

∂2u

∂xi∂xj

For 1 ≤ p ≤ ∞, Lp(Ω) is the space of all measurable functions on Ω which
are of Lp integrability. It is a Banach space with the norm

nunLp = [
]
Ω

|u|pdx] 1p .

For 1 ≤ p ≤ ∞ and nonnegative integer k, we introduce the Sobolev space

which is denoted by

W k,p(Ω) = {u ∈ Lp(Ω)|Dαu ∈ Lp(Ω),∀|α| ≤ k}

endowed with the norm

nunWk,p = [
[
|α|≤k

]
Ω

|Dαu|pdx] 1p

When p = 2, we write W k,2(Ω) = Hk(Ω) which is a Hilbert space with the

scalar product

< u, v >Hk=
[
|α|≤k

]
Ω

Dαu ·Dαvdx

The space W k,p
0 (Ω) is defined by
W k,p
0 (Ω) = the closure of C∞0 (Ω) in W k,p(Ω),

Hk
0 (Ω) =W

k,2
0 (Ω).
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A equivalent norm of W k,p
0 (Ω) is

nunWk,p
0
= [

[
|α|=k

]
Ω

|Dαu|pdx] 1p

The space Ck,α(Ω), k=integer≥ 0, 0 < α < 1, is a Banach space, which is

defined by (without confusion, we always denote C0,α(Ω) by Cα(Ω)).

Ck,α(Ω) = {u ∈ Ck(Ω)|[Dβu]α <∞, |β| = k}

nunCk,α = nunCk +
[
|β|=k

[Dβu]α

[v]α = sup
x,y∈Ω,x 9=y.

|v(x)− v(y)
|x− y|α

For the Sobolev spaces, there are the following important properties, and

the reader can be referred to [Ad] and [Mj] for the details.

Density Theorem.

Theorem 1.1.1. For k ≥ 1 and 1 ≤ p <∞,W k,p
0 (Ω) is dense inW k−1,p

0 (Ω);

and when Ω ⊂ Rn is of class Lipschitz, then Ck(Ω) and W k,p(Ω) are dense re-

spectively in W k,p(Ω) and W k−1,p(Ω).

Embedding Theorems.

Theorem 1.1.2. Let Ω ⊂ Rn be a bounded domain, and 1 ≤ p <∞, then
W k,p
0 (Ω) ⊂ Lq(Ω),∀1 ≤ q ≤ np

n−kp , n > kp
W k,p
0 (Ω) ⊂ Lq(Ω),∀1 ≤ q <∞, n = kp

W k,p
0 (Ω) ⊂ Cm,α(Ω),∀kp > n,m+ α = k − n

p

moreover, the inclusions are continuous, namely

(1.1.1) nunLq ≤ CnunWk,p
0
, q ≤ np

n− kp .

(1.1.2) nunCm,α ≤ CnunWk,p
0
,m+ α = k − n

p
, kp > n.

where c = c(n,Ω, q).
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Theorem 1.1.3. Let Ω ⊂ Rn be a Lipschitz domain, not necessarily

bounded, then+
W k,p(Ω) ⊂ Lq(Ω), q = np

n−kp , n > kp,
W k,p(Ω) ⊂ Cm,α(Ω),m+ α = k − n

p , kp > n.

and the inclusions are continuous.

Trace Theorem (see [Te 1]).

Theorem 1.1.4. LetΩ be a domain of classCm+1. For any u ∈Wm,p
0 (Ω), p ≥

1, we have

Dαu|∂Ω = 0, a.e., ∀|α| ≤ m− 1.

Compactness Theorems.

Theorem 1.1.5. Let Ω be a bounded domain. Then the embeddings are

compact 
W 1,p
0 (Ω) /→ Lq(Ω), q < np

n−p , n > p
W 1,p
0 (Ω) /→ Lq(Ω), q <∞, n = p

W 1,p
0 (Ω) /→ C0,α(Ω),α < 1− n

p , n < p

Theorem 1.1.6. Let Ω be a bounded domain. Then the embedding is

compact

W 1,2(Ω) ∩ Lp(Ω) /→ Lq(Ω), 1 ≤ q < p.
The theorem follows from Theorem 8.22 in [Ad. 1].

Interpolation Theorems.

Theorem 1.1.7. For p < q < r, we have the Lp interpolation inequality

(1.1.2)


nunLq ≤ �nunLr + �−µnunLp

µ = ( 1p − 1
q )/(

1
q − 1

r )

where � > 0 is an arbitrary real number.

The interpolation theorem can be found in [GT]
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Theorem 1.1.8. There is a constant C = C(m,p, n), for any Ω ⊂ Rn, � > 0
and u ∈Wm,p

0 (Ω), we have

(1.1.3)

+
|u|j,p ≤ C[�|u|m,p + �−µnunLp ]
|u|k,p = [

S
|α|=k

U
Ω
|Dαu|pdx] 1p

where 0 ≤ j ≤ m− 1, µ = j/(m− j).

Theorem 1.1.9. Suppose that Ω ⊂ Rn is of Lipschitz and �0 > 0 given.

Then there is a constant C = C(�0,m, p,Ω), for any �, 0 < � ≤ �0 and u ∈
Wm,p(Ω)

|u|j,p ≤ C[�|u|m,p + �−µnunLp ]
where 0 ≤ j ≤ m− 1, µ = j/(m− j).
From Theorem 1.1.9, we can get an equivalent norm of W k,p(Ω) as follows

nunWk,p = [

]
Ω

|u|pdx] 1p + [
]
Ω

[
|α|=k

|Dαu|pdx] 1p .

1.1.2 Regularity estimates

We consider the linear elliptic equations

(1.1.4)

� −Sn
i,j=1 aijDiju+

Sn
i=1 biDiu+ cu = f(x), x ∈ Ω

u|∂Ω = φ

where Ω ⊂ Rn is a bounded domain, and
aij(x)ξiξj ≥ λ|ξ|2,∀x ∈ Ω, ξ ∈ Rn,λ > 0.

For the equations (1.1.4), we introduce the Schauder global estimate the-

orem and Lp-estimate theorem, which are very important for the theory of

nonlinear elliptic equations.

Schauder Global Estimate Theorem (see [GT]).

Theorem 1.1.10. Let Ω ⊂ Rn be of class C2,α, and aij , bi, c, f ∈ C0,α(Ω),φ ∈
C2,α(Ω). If u ∈ C2,α(Ω) is a solution of (1.1.4), then
(1.1.5) nunC2,α ≤ C[nunC0 + nφnC2,α + nfnC0,α ]

where C is a constant only depending on n,α,Ω,λ and the Holder modular of

aij , bi, c(x).
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Lp-Estimates of Strong Solutions (see [ADN]).

Theorem 1.1.11. Suppose that Ω is of class C2, aij ∈ C0(Ω), bi, c ∈
L∞(Ω),φ ∈ W 2,p(Ω), f ∈ Lp(Ω), 1 < p < ∞. If u ∈ W 2,p(Ω) is a strong

solution of (1.1.4), then

(1.1.6) nunW2,p ≤ C[nfnLp + nφnW 2,p + nunLp ]

where C is a constant depending on n, p,Ω,λ and the modulars naijnL∞ , nbinL∞ , nCnL∞ .

Now, we consider the linear elliptic equations of order 2m(m ≥ 1),

(1.1.7) Au =
[

|α|,|β|≤m
(−1)|α|Dα(aα,βDβu) = f(x), x ∈ Ω.

where Ω ⊂ Rn is bounded, and

λ|ξ|2m ≤
[

|α|=|β|=m
aα,β(x)ξ

αξβ ,∀x ∈ Ω

ξ = (ξ1, · · · , ξn) ∈ Rn, ξα = ξα11 · · · ξαnn . The adjoint operator of A is defined by

A∗u =
[

|α|,|β|≤m
(−1)|β|Dβ(aα,β(x)Dαu).

Agmon’s Theorem (see [Ag] and [Au]).

Theorem 1.1.12. Let Ω be C2m and aα,β ∈ Cm(Ω). Let u ∈ Lq(Ω) and
f ∈ Lp(Ω), q, p > 1. If for any v ∈ C2m(Ω) ∩Wm,p

0 (Ω),]
Ω

u ·A∗(v)dx =
]
Ω

f · vdx

then u ∈W 2m,p(Ω) ∩Wm,p
0 (Ω) is a strong solution of (1.1.7), and

unW2m,p ≤ C[nfnLp + nunLp ]

where C = C(n, p,Ω, A).

1.1.3. Maximum principle

Hopf Maximum Principle (see [GT]).
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Theorem 1.1.13. We denote

Lu = −
n[

i,j=1

aijDiju+
n[
i=1

biDiu+ cu, x ∈ Ω.

where aij , bi, c ∈ C(Ω), c(x) ≤ 0, and Ω is of class C2. Suppose that L is uni-
formly elliptic in Ω, and u ∈ C2(Ω) satisfies that Lu ≥ 0. If x0 ∈ ∂Ω, u(x0) ≤ 0
and u(x) > u(x0)∀x ∈ Ω, then

(1.1.8)
∂u(x0)

∂n
< 0

where n is the outward normal at x0 ∈ ∂Ω.

In the following, we give the maximum principle of quasilinear elliptic equa-

tions in divergence form, referred to [GT].

(1.1.9) −
n[
i=1

DiAi(x, u,Du) +B(x, u,Du) = 0, x ∈ Ω

where Ω is bounded, and

(1.1.10)
n[
i=1

Ai(x, z, p)pi ≥ λ|p|− b0

(1.1.11) −B(x, z, p) · signz ≤ b1|p|k−1 + b2
where k > 1,λ, b0, b1, b2 > 0 are constants.

Theorem 1.1.14. Let u ∈ W 1,2(Ω) be a weak solution of (1.1.9), i.e. u

satisfies ]
Ω

[
n[
i=1

Ai(x, u,Du)Div +B(x, u,Du)v]dx = 0

∀v ∈ c10(Ω). Then, under the conditions (1.1.10) and (1.1.11), we have the
estimate

sup
Ω
|u| ≤ sup

∂Ω
|u|+ c(b0 + b2)

where c = c(n, k,λ,Ω, b1).

1.2. Basic Theories and Methods
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1.2.1. Green expression method

In this subsection, we illustrate the ideal of Green expression method by

discussing the existence of the following equation

(1.2.1)

� −∆u+ |u|pu = f(x), x ∈ Ω ⊂ Rn
u|∂Ω = 0

where f ∈ Cα(Ω)(0 < α < 1),Ω is bounded and C2,α.

First, we transfer from the existence problem of (1.2.1) to the existence of

fixed points of an abstract operator as follows. By the theory of linear elliptic

equations, for any u ∈ Cα(Ω), the linear equation� −∆v = f(x)− |u|pu
v|∂Ω = 0

has an unique solution v ∈ C2,α(Ω). Then we define a mapping T : Cα(Ω) →
Cα(Ω) by

(1.2.2) Tu = v,

Obviously, the existence of equation (1.2.1) is equivalent to the fixed point

existence of the operator equation (1.2.2) in Cα(Ω).

It is well known that the embedding is compact

C2,α(Ω) /→ Cα(Ω).

From the Schauder estimate theorem (Theorem 1.1.10) one can deduce

nvnC2,α = nTunC2,α ≤ C[nfnCα + nunp+1Cα ]

which means that the operator T is compact.

Next, we consider the homotopical completely continuous field

id− Tλ : Cα(Ω)→ Cα(Ω), 0 ≤ λ ≤ 1
where Tλ is defined by that Tλu = v is the unique solution of the equation� −∆v = f − λ|u|pu,

v|∂Ω = 0

It is easy to see that T1 = T and T0 : C
α(Ω) → Cα(Ω) is a constant value

mapping. Therefore, by the topological degree theory, we have

deg(id− T0, U, 0) = 1
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where U ⊂ Cα(Ω) is an arbitrary open set including the T0 value.

Let uλ(x) be the solution of the equation

(1.2.3)

� −∆u = f − λ|u|pu, 0 ≤ λ ≤ 1
u|∂Ω = 0

For the solution uλ of (1.2.3) if we can get the uniform Holder estimate

(1.2.4) nuλnCα ≤ C
where C is a constant independent of λ, then for all 0 ≤ λ ≤ 1 the operator
equations

(1.2.5) u− Tλu = 0, u ∈ Cα(Ω)

have no solutions on the boundary ∂U for U ⊂ Cα(Ω) great enough. By the

homotopy invariability of the topological degree, we have

deg(id− T1, U, 0) = deg(id− T0, U, 0) = 1.
Therefore the equations (1.2.5) have solutions in Cα(Ω) for all 0 ≤ λ ≤ 1,

which implies that (1.2.2) has fixed point.

Finally, we show the uniform Holder estimate (1.2.4). By the Sobolev em-

bedding theorem (Theorem 1.1.2)

(1.2.6) nunCα ≤ CnunW2,q , q >
n

2

And by the Lp-estimate theorem (Theorem 1.1.11), the solution of (1.2.3) sat-

isfies

nuλnW 2,q ≤ C[nuλnLq + nf − λup+1λ nLq ]

(1.2.7) ≤ C[nfnLq + nuλnp+1C0 ]

where C is independent of λ(0 ≤ λ ≤ 1).
Obviously, the nonlinear term B(x, u,Du) = λ|u|pu−f(x) in (1.2.3) satisfies

(1.1.10) with b0 = b1 = 0, b2 = supΩ |f |. Therefore, from Theorem 1.1.14 one

deduce

(1.2.8) nuλnC0 ≤ sup
∂Ω
|u|+ cb2 = cnfnC0

where C is independent of λ.

From the inequalities (1.2.6)-(1.2.8), we get

nuλnCα ≤ C[nfnLq + nfnC0 + nfnp+1C0 ]
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which is the estimate (1.2.4).

Remark 1.2.1. By using the Green expression method, one can also dis-

cuss the quasilinear elliptic equations, see [GT].

(1.2.9)

� −Sn
i,j=1 aij(x, u,Du)Diju+ b(x, u,Du) = 0

u|∂Ω = φ

In this case, we transform the problem (1.2.9) into the fixed point problem of

operator

(1.2.10) T : C1,α(Ω)→ C1,α(Ω),

where, for u ∈ C1,α(Ω), Tu = v is the solution of the equation� −Sn
i,j=1 aij(x, u,Du)Dijv + b(x, u,Du) = 0

v|∂Ω = φ

And the homotopical operator Tλ(0 ≤ λ ≤ 1) is defined by that Tλu = v is the
solution of the equation� −Sn

i,j=1 aij(x,λu,λDu)Dijv + λb(x, u,Du) = 0

v|∂Ω = φ

Thus, the existence of (1.2.9) in C2,α(Ω) is reduced to the proof of the uniformly

estimate of solutions of (1.2.9)

(1.2.11) nunC1,α ≤ C.

In the proof of (1.2.11), the De Giorgi estimates and the maximum principle

for quasilinear equations are crucial.

The operator T of (1.2.10) can be expressed by the Green function, e.g. for

φ = 0, u ∈ C1,α(Ω)

Tu =

]
Ω

Gu(x, y)b(y, u(y),Du(y))dy

whereGu(x, y) is the Green function of the elliptic operator−
Sn
i,j=1 aij(x, u,Du)Dij .

It is why we call the method above the Green expression method.

Virtue of Green Expression Method.

i). The existence of solutions is in the C2,α classical sense.

ii). Many of the existence results of quasilinear elliptic equations of second

order obtained by this method can not be covered by the other methods and
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theories.

For example, for the quasilinear elliptic equations with divergence form as

follows

(1.2.12)

� −Sn
i=1DiAi(x, u,Du) +B(x, u,Du) = 0

u|∂Ω = φ

by using the Green expression method, we have the following results, which

can not be obtained by the other methods. Suppose that

(1.2.13)



Sn
i=1Ai(x, z, p)pi ≥ b1|p|k − b2

−B(x, z, p) · signz ≤ b3|p|k−1 + b4

λ(x, z, p)|p|2 ≤Sn
i,j=1DpiAj(x, z, p)pipj ,

|p|τ ≤ 0(λ(x, z, p))

DpA(x, z, p) = 0(|p|τ )

|p|DzA,DxA,B = 0(|p|k)

as p → ∞ uniformly for x ∈ Ω and z < ∞, 0 < λ(x, z, p)∀(x, z, p) ∈ Ω × R ×
Rn, k = 2 + τ, τ > −1, A = {A1, · · · , An}.

Theorem 1.2.2. Let Ω ⊂ Rn be C2,α and bounded, Ai ∈ C1,r(Ω × R ×
Rn), B ∈ Cr(Ω× R × Rn), 0 < r < 1,φ ∈ C2,α(Ω). Then under the condition
(1.2.13), the problem (1.2.12) has a solution u ∈ C2,r(Ω).

Imperfection of Green Expression Method.

i). It is too tedious for the proof of uniformly boundedness of C1,α-modular.

ii). It is unavailable for the cases of unbounded domains; higher order equa-

tions; elliptic systems and degenerate elliptic equations.

1.2.2 Monotone operator theory

Let X be a Banach space. Mapping G : X → X∗ is a monotone operator,
if

(1.2.14) < Gu−Gv, u− v >≥ 0,∀u, v ∈ X.
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Theorem 1.2.3. Let X be a reflective Banach space. Suppose that G :

X → X∗ is continuous and monotone, and

(1.2.15)
< Gu, u >

nun → ∞, as nun → ∞

then, for any f ∈ X∗,Gu = f has a solution in X.

We shall show the use of Theorem 1.2.2 by discussing the quasilinear elliptic

equations

(1.2.16)

� −Sn
i=1Di(|Diu|pDiu) + |u|qu = f(x), x ∈ Ω

u|∂Ω = 0

where Ω ⊂ Rn is an arbitrary domain, p, q ≥ 0, and f ∈ Lq+2(Ω). Let

X =W 1,p+2
0 (Ω) ∩ Lq+2(Ω).

Definition 1.2.4. u ∈ X is called a weak solution of (1.2.16), if for any

v ∈ X, we have ]
Ω

[
n[
i=1

|Diu|pDiuDiv + |u|quv − f · v]dx = 0

We define a mapping G : X → X∗ by

< Gu, v >=

]
Ω

[
n[
i=1

|Diu|pDiuDiv + |u|qu · v]dx

Obviously, the existence of solutions of the equation

Gu = f, f ∈ X∗

is equivalent to the existence of weak solution of (1.2.16). It is easy to check

that G : X → X∗ is continuous, and

< Gu, u >=

]
Ω

[
n[
i=1

|Diu|p+2 + |u|q+2]dx

which means (1.2.15) holds.

We know that, for a monotone increase function g(x), g3(x) ≥ 0. Therefore,
by the mean value theorem,

(g(x1)− g(x2))(x1 − x2) = g3(hx)(x1 − x2)2 ≥ 0
12



Since g(x) = |x|px(p ≥ 0) is a monotone increase function, hence we have

< Gu−Gv, u− v >=
]
Ω

[
n[
i=1

(|Diu|pDiu− |Div|pDiv)×

×(Diu−Div)]dx+
]
Ω

(|u|qu− |v|qv)(u− v)dx ≥ 0

Thus, from Theorem 1.2.3, we obtain the existence of weak solution of (1.2.16).

Virtue of Monotone Operator Theory

i). It is simple and easy to understand.

ii). It is a generally method, which can treat a large class of quasilinear

elliptic equations of order 2m(m ≥ 1) in general domains.

Imperfection of Monotone Operator Theory.

i). The monotone condition is sharper for the general differential equations,

especially, for the nonlinear elliptic systems.

ii). The solutions obtained are in weak sense.

1.2.3. Variational principle.

Let Ω ⊂ Rn be a bounded domain, and F ∈ C1(Ω × R × Rn) be a given
function. We consider the equation

(1.2.17)

� −Sn
i=1DiAi(x, u,Du) +B(x, u,Du) = 0

u|∂Ω = 0
where

(1.2.18)


Ai(x, z, ξ) =

∂F (x,z,ξ)
∂ξi

B(x, z, ξ) = ∂F (x,z,ξ)
∂z

The equation (1.2.17) with condition (1.2.18) is called to be of variational

structure.

The existence problem of weak solutions of (1.2.17) can be reduced to the

existence problem of minimum points of the below functional inW 1,p
0 (Ω), p > 1,

(1.2.19) I(u) =

]
Ω

F (x, u,Du)dx, u ∈W 1,p
0 (Ω)

where

F (x, z, ξ) = O(|ξ)p), for x ∈ Ω and |z| <∞.
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Suppose that u0 ∈ W 1,p
0 (Ω) is a minimum point of (1.2.19), namely there

is a neighborhood O ⊂W 1,p
0 (Ω) of u0 such that

I(u0) ≤ I(u),∀u ∈ O ⊂W 1,p
0 (Ω)

then we have
I(u0 ± �v)− I(u0)

�
≥ 0

∀v ∈W 1,p
0 (Ω) and � > 0 small enough.

From (1.2.19) and (1.2.18), one deduces that

lim
�→0+

I(u0 ± �v)− I(u0)
�

= ±
]
Ω

[
n[
i=1

Ai(x, u0,Du0)Div

+B(x, u0,Du0)v]dx ≥ 0,∀v ∈W 1,p
0 (Ω)

Thus, we obtain]
Ω

[
n[
i=1

Ai(x, u0,Du0)Div +B(x, u0,Du0)v]dx = 0

∀v ∈W 1,p
0 (Ω), which says that u0 is a weak solution of (1.2.17)

Now, we give an existence theorem of minimum points of abstract func-

tional on a Banach space.

Definition 1.2.5. Let X be a Banach space, and I : X → R1 be a C1

functional. We say that I is weakly inferior semi-continuous, if as xn, x0 ∈ X,
and xn - x0(- is weakly convergent), we have

limn→∞I(xn) ≥ I(x0)

Theorem 1.2.6. Let X be a reflective Banach space, and I : X → R1

be a C1 functional. Suppose that I is weakly inferior semi-continuous, and

I(x)→∞ as nxn → ∞, I has at least a minimum point in X.

In the following, we shall show how to apply Theorem 1.2.6 to the partial

differential equations by the given example

(1.2.20)


−Sn

i=1Di(|Diu1|p1Diu1) + u1u22 = f1(x)

−Sn
i=1Di(|Diu2|p2Diu2) + u21u2 = f2(x),

u1|∂Ω = 0, u2|∂Ω = 0

x ∈ Ω

14



where p1, p2 ≥ 0 and Ω ⊂ R3 is bounded.
The elliptic system (1.2.20) is of the variational structure, in fact, if we

write the system (1.2.20) in this form� −Sn
i=1DiA

1
i (x, u,Du) +B

1(x, u,Du) = 0

−Sn
i=1DiA

2
i (x, u,Du) +B

2(x, u,Du) = 0

u = (u1, u2) ∈W 1,p1+2
0 (Ω)×W 1,p2+2

0 (Ω), then we have

F (x, z1, z2, ξ, η) =
Sn
i=1(

1
p1+2

|ξi|p1+2 + 1
p2+2

|ηi|p2+2) + 1
2z
2
1z
2
2 − f1z1 − f2z2

A1i (x, z1, z2, ξ, η) =
∂F
∂ξi

= |ξi|p1ξi,

A2i (x, z1, z2, ξ, η) =
∂F
∂ηi

= |ηi|p2ηi

B1(x, z1, z2, ξ, η) =
∂F
∂z1

= z1z
2
2 − f1

B2(x, z1, z2, ξ, η) =
∂F
∂z2

= z21z2 − f2

Let X = W 1,p1+2
0 (Ω)×W 1,p2+2

0 (Ω). The functional corresponding to (1.2.20)

is as follows

I(u) =

]
Ω

[
n[
i=1

(
1

p1 + 2
|Diu1|p1+2+ 1

p2 + 2
|Diu2|p2+2)+ 1

2
u21u

2
2−f1u1−f2u2]dx

u = (u1, u2) ∈ X. Obviously, X is reflective, I : X → R1 is C1, and

I(u)→∞, as nunX →∞ (by Holder inequality).

Next we check the weak inferior semi-continuousness of the functional I.

Let un ∈ X and un - v in X. We notice that

I(u) = nu1np1+2
W

1,p1+2

0

+ nu2np2+2
W

1,p2+2

0

+ J(u)

J(u) =

]
Ω

[
1

2
u21u

2
2 − f1u1 − f2u2]dx

By the compact embedding theorem (Theorem 1.1.5), we have

lim
n→∞J(un) = J(v)

Hence

limn→∞I(un) = limn→∞[nun1np1+2W
1,p1+2

0

+ nun2np2+2W
1,p1+2

0

] + J(v)
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By the Mazur theorem, it is known that the functionals nuknpk+2
W

1,pk+2

0

(k = 1, 2)

are weakly inferior semi-continuous. Therefore the functional

nu1np1+2
W

1,p1+2

0

+ nu2np2+2
W

1,p2+2

0

is also weakly inferior semi-continuous. Thus, I(u) is weakly inferior semi-

continuous.

Theorem 1.2.6 tells us that I(u) has a minimum point in X, which implies

that the system (1.2.20) has a weak solution.

In the applications of variational principle, the variational structure is of

great restriction. But, in some spacial problems, the variational is a strong

means.

We notice that the two conditions below are the same in essential:

i). function f(x, z, ξ) is convex on variable ξ;

ii). functional I(u) =
U
Ω
f(x, u,Du)dx is weakly inferior semi-continuous.

1.3. Abstract Theory of the Inner Product
Operators

1.3.1. Upward weakly continuous operators

Let X be a linear space, X1,X2 be the completion of X respectively with

the norms n · n1 and n · n2. Suppose that X1 is a reflexive Banach space, and
X2 is a separable Banach space.

Definition 1.3.1. A mapping G : X1 → X∗2 is called to be weakly contin-
uous, if for any xn, x0 ∈ X1, xn - x0 in X1, we have

lim
n→∞ < Gxn, y >=< Gx0, y >, ∀y ∈ X2

Theorem 1.3.2. Suppose that G : X1 → X∗2 is weakly continuous, if there
exists a bounded open set Ω ⊂ X1, such that

< Gu, u >≥ 0, ∀u ∈ ∂Ω ∩X
then the equation Gu = 0 has a solution in X1.
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This theorem is a corollary of the following theorem (Theorem 1.3.3), here

we specially state it in order to emphasize the difference between the upward

operators and the downward operators in the later applications.

In some problems of partial differential equations, the space X2 should be

taken to be embedded in X1, i.e. X2 /→ X1, which means that the regularity

of u ∈ X2 is higher than that of u ∈ X1. Therefore the mapping G : X1 → X∗2
maps the lower differentiability elements into the dual space of a higher differ-

entiability space. In general, the degenerate elliptic equations and the equa-

tions with nonnegative characteristic form correspond to the upward mappings,

hence, Theorem 1.3.2 is a basic tool to treat these equations.

1.3.2. Downward weakly continuous operators.

Let X be a linear space, X2 be a reflexive Banach space and X1 be a

separable Banach space. Let X ⊂ X2 and there exist an one to one linear

mapping

L : X → X1

which is dense.

Theorem 1.3.3. Let G : X2 → X∗1 be weakly continuous and Ω ⊂ X2 be
a bounded open set. If

(1.3.1) < Gu,Lu >≥ 0, ∀u ∈ ∂Ω ∩X
then Gu = 0 has a solution in X2.

Proof. Because X1 is separable, and LX ⊂ X1 is dense, there exists a

sequence {en} ⊂ X1 ∩ L(X) such that span{en} is dense in X1. Denote by
Zn = span{he1, · · · , hen},
Yn = span{e1, · · · , en}, ei = Lhei (1)

We define a mapping An : Zn → Yn by

< Anu, v >=< Gu, v >, ∀u ∈ Zn, v ∈ Yn
Since LZn = Yn, by (1.3.1) we have

< Anu,Lu >=< Gu,Lu >≥ 0, ∀u ∈ ∂Ω ∩ Zn
Thanks to the Poincare-Bohl theorem of the Brouwer degree (cf. [Ze]), we get

deg(An,Ωn, 0) = deg(L,Ωn, 0), Ωn = Ω ∩ Zn

17



providedAnu 9= 0,∀u ∈ ∂Ωn. Because L : Zn → Yn is a linear homeomorphism,

hence

deg(L,Ωn, 0) 9= 0
Thus, it implies that Anu = 0 has a solution un ∈ Ωn, i.e.
(1.3.2) < Gun, v >= 0, ∀v ∈ Yn
Because {un} ⊂ Ω ⊂ X2 is bounded, and X2 is reflexive, there is a u0 ∈ X2
such that un - u0 in X2. Then from (1.3.2) it follows

lim
n→∞ < Gun, v >=< Gu0, v >, ∀v ∈ Yn

Due to the denseness of U∞n=1Yn ⊂ X1, it follows that Gu0 = 0. The proof is
complete.

Remark 1.3.4. When X ⊂ X1, and L = id : X → X1 is a inclusion

mapping, then Theorem 1.3.2 is a corollary of Theorem 1.3.3. When L 9= id

and X2 /→ X1, the mapping G : X2 → X∗1 is downward, which can treat a
class of fully nonlinear elliptic boundary value problems.

1.3.3. Downward operators with monotone
structure.

Let X1,X2 be separable and reflexive Banach spaces, and L : X2 → X1 is

an one to one and dense linear bounded operator. In the following, we shall

state and prove the existence theorems for the operators G : X2 → X∗1 , which
are of some monotone structure.

Definition 1.3.5. A bounded mapping G : X2 → X∗1 is called to be
coerceively continuous, if for any un - u0 in X2, and

lim
n→∞ < Gun −Gu0, Lun − Lu0 >= 0

then we have

lim
n→∞ < Gun, v >=< Gu0, v >, ∀v ∈ X1.

Theorem 1.3.6. Let Ω ⊂ X2 be a bounded open set. Suppose that

G : X2 → X∗1 is coerceively continuous, and

(1.3.3) < Gu,Lu >≥ 0, ∀u ∈ ∂Ω
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then Gu = 0 has a solution in X2.

Theorem 1.3.7. If G : X2 → X∗1 is continuous, which satisfies (1.3.3) and

(1.3.4) < Gu−Gv,Lu− Lv >≥ 0, ∀u, v ∈ X2
then Gu = 0 has a solution in X2.

Theorem 1.3.8. Let G : [0, 1]×X2 → X1 be bounded continuous. Suppose

that there exists a constant R > 0 such that

i).< G0u,Lu >≥ 0,∀u ∈ X2 with nunX2 > R.

ii).Gλu = 0⇒ nunX2 < R,∀0 ≤ λ ≤ 1, and
iii).for any un - u0 in X2,λn → λ0

lim
n→∞,λn→λ0

< Gλnun −Gλ0u0, Lun − Lu0 >= 0

⇒ un → u0 in X2

then G1u = 0 has a solution in X2.

Proof of Theorem 1.3.6. In the same manner as the proof of Theorem

1.3.3. there exists a sequence {un} ⊂ Ω such that un - u0 in X2, and

(1.3.5) < Gun, v >= 0, ∀v ∈ Yn
which implies that

(1.3.6) < Gun, Lun >= 0, and

(1.3.7) lim
n→∞ < Gun, v >= 0, ∀v ∈

∞̂

n=1

Yn.

Because
V∞
n=1 Yn is dense in X1, the equality (1.3.7) holds true for all v ∈ X1.

From (1.3.6) and (1.3.7) one obtains

lim
n→∞ < Gun −Gu0, Lun − Lu0 >= 0

Due to the coerceive continuity of G, from (1.3.7) it follows

< Gu0, v >= 0, ∀v ∈ X1
The proof of Theorem 1.3.6 is complete.
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Proof of Theorem 1.3.7. It is known that there exists un ∈ Ω which
satisfies (1.3.5). By the condition (1.3.4) is follows that for any v ∈ Zn and
k ≥ n

0 ≤ < Gv −Guk, Lv − Luk >
= < Gv,Lv − Luk >

Letting uk - u0 in X2, then

lim
k→∞

< Gv,Lv − Luk >=< Gv,Lv − Lu0 >

Hence

(1.3.8) < Gv,Lv − Lu0 >≥ 0, ∀v ∈
∞̂

n=1

Zn

Because L : X2 → X1 is one to one and dense, and
V∞
n=1 Yn = L(

V∞
n=1 Zn)

is dense in X1,
V∞
n=1 Zn is dense in X2. Hence (1.3.8) holds for all v ∈ X2.

Replacing v by u0 + λv in (1.3.8). We can obtain

< G(u0 + λv), Lv >≥ 0, ∀v ∈ X2,λ > 0
Passing to λ→ 0+ we get

< Gu0, Lv >≥ 0, ∀v ∈ X2
which implies that Gu0 = 0. The proof is complete.

Proof of Theorem 1.3.8. For any 0 ≤ λ ≤ 1, we define a mapping

Anλ : Zn → Y ∗n by

< Anλu, v >=< Gλu, v >, ∀u ∈ Zn, v ∈ Yn
Letting Ω = {u ∈ X2|nunX2 < R}, from the condition i) we get

(1.3.9) deg(An0 ,Ωn, 0) = deg(L,Ωn, 0) 9= 0
Now, we need to verify that

(1.3.10) Anλu 9= 0, ∀0 ≤ λ ≤ 1, u ∈ ∂Ω.

If (1.3.10) is not true, then there exist sequences {un} ⊂ ∂Ω and {λn} ⊂ [0, 1],
such that Anλnun = 0. Letting un - u0 in X2,λn → λ0, in the same fashion as

the proof of Theorem 1.3.6, one can deduce that

lim
n→∞,λn→λ0

< Gλnun −Gλ0u0, Lun − Lu0 >= 0
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From the condition iii), it follows that un → u0 ∈ ∂Ω, which means that

Gλ0u0 = 0, and a contradiction to the condition ii). Hence (1.3.10) holds true.

By the homotopy invariance of the Brouwer degree, from (1.3.9) we get

deg(An1 ,Ωn, 0) = deg(A
n
0 ,Ωn, 0) 9= 0

It implies that there is a un ∈ Ωn such that

< G1un, v >= 0, ∀v ∈ Yn.

Letting un - u0, as the proof of Theorem 1.3.6, from the condition iii), one

can derive that

< G1u0, v >= 0, ∀v ∈ X1
The proof is complete.

Remark 1.3.9. As X1 = X2 and L = id : X2 → X1 is an identity map-

ping, Theorem 1.3.7 is the well known monotone operator theorem.

1.3.4. Remarks and examples.

It is known that the monotone operator theory and variational principle

have a common character that the operators involved are the mappings which

map a Banach space to its own dual space, namely

G : X → X∗

which are termed to be horizontal operators. In applications to nonlinear par-

tial differential equations this condition makes the both theories to have the

limitations that they only can efficiently deal with the elliptic quasilinear prob-

lems, and the solutions obtained are in the weak sense.

In fact, a complete theory of the inner product operators should include the

upward and downward operators, which can treat a lot of nonlinear problems

which can not be solved by the horizontal operator theory. Example, the the-

ory of upward operators may efficiently treat the degenerate elliptic nonlinear

problems and the equations with nonnegative characteristic form, and the the-

ory for downward operators can deal with the existence of strong solutions of

a large class of fully nonlinear elliptic boundary value problems.

In the following, we shall illustrate how to apply the basic theorems to the

problems of partial differential equations by some simple examples.

We first introduce a lemma which is useful for the later discussion,. (Cf.[Te]).
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Lemma 1.3.10. Assume that the operator
S

|α|=2m aα(x)D
α is elliptic,

i.e.

λ|ξ|2m ≤
[

|α|=2m
aα(x)ξ

α, ∀ξ ∈ Rn

where λ > 0 is a constant, ξα = ξα11 · · · ξαnn ,α = {α1, · · · ,αn},m ≥ 1, aα ∈
C0(Ω), then

(1.3.11) [

]
Ω

(|
[

|α|=2m
aα(x)D

αu|p)dx] 1p

is a norm on the space

D2m = {u ∈W 2m,p(Ω)|u|∂Ω = 0, · · · ,Dm−1u|∂Ω = 0}

1 < p <∞, which is equivalent too the W 2m,p-norm.

In fact, if the Lp-estimate theorems hold for the boundary value problem,

which has unique solution
S
|α|=2m aα(x)D

αu = f(x), x ∈ Ω

Bu|∂Ω = 0

then the norm (1.3.11) on the space

B2m = {u ∈W 2m,p(Ω)|Bu|∂Ω = 0}

is equivalent to the W 2m,p-norm.

Example 1.3.11. Consider the degenerate elliptic equations

(1.3.12)


∂
∂x (e

− 1
x+y ∂u

∂x ) +
∂2u
∂y2 +

∂u
∂x − u = f(x),

u|∂Ω = 0

where Ω = {(x, y) ∈ R2|0 < x < 1, 0 < y < 1} is a square, and (x, y) = (0, 0) is
a degenerate point of (1.3.12) on ∂Ω.

As usual, the weak solution u of (1.3.12) is defined as to satisfy the inte-

gration

< Gu, v >=

]
Ω

[e−
1

x+y
∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y
+ u

∂v

∂x
+ uv

+fv]dx = 0, ∀v ∈W 1,2
0 (Ω).
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For the problem (1.3.12), if we choose X1 = X2 = W
1,2
0 (Ω), then although

the inner product < Gu, v > defines a bounded linear mapping G : X1 → X∗2 ,
but G doesn’t satisfy the acute angle condition

< Gu, u >≥ 0, ∀u ∈ ∂Ω

for some bounded open set Ω ⊂W 1,2
0 (Ω).

Let X = C∞0 (Ω), and X1 be the completion of X with the norm

nunX1
= [

]
Ω

(e−
1

x+y |∂u
∂x
|2 + |∂u

∂y
|2 + u2)dx] 12

If we take X2 = X1, then the term
U
Ω
u ∂v∂xdx in < Gu, v > maybe has no sense

for some u, v ∈ X1. Hence it is a basic requirement that X2 9= X1 for the

degenerate elliptic equations.

We take X2 = W
1,2
0 (Ω), thus the inner product < Gu, v > define a linear

bounded mapping G : X1 → X∗2 , and

< Gu, u > =

]
Ω

[e−
1

x+y |∂u
∂x
|2 + |∂u

∂y
|2 + 1

2
u2 − 1

2
|f |2]dx

≥ 0, ∀u ∈ X = C∞0 (Ω) and nunX1
= R.

where R = nfnL2 . From Theorem 1.3.2 it follows that (1.3.12) has a weak

solution u ∈ X1.
The next example shows the usage of downward operators.

Example 1.3.12. We consider the fully nonlinear elliptic equation as fol-

lows

(1.3.13)


−|7u|p−27u+ u = f, x ∈ Ω ⊂ Rn, p > 2

u|∂Ω = 0

where Ω is C∞ and bounded, f ∈ Lp3(Ω)( 1p3 + 1
p = 1).

Let X2 =W
2,p(Ω) ∩W 1,2

0 (Ω),X1 = L
p(Ω) and L : X2 → X1 be defined by

Lu = 7u.

It is known that L is a homeomorphism. The mapping G : X2 → X∗1 is defined
by

< Gu, v >=

]
Ω

[|7u|p−27u− u+ f ]vdx.
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It is easy to see that G : X2 → X∗1 is continuous, and satisfies the acute
condition (1.3.3) and the monotone condition (1.3.4). Then by Theorem 1.3.7,

the problem (1.3.13) has a strong solution u ∈W 2,p(Ω) ∩W 1,2
0 (Ω).

1.4. Strong Solutions of A Class of Fully
Nonlinear Elliptic Equations

1.4.1. Some lemmas

Before our discussion, it is necessary to introduce three lemmas which are

helpful to the later contents.

Lemma 1.4.1. For any α > 0, the functional

[

]
Ω

(|∇7u|2 + α|7u|2)dx] 12

is a norm on the space

{u ∈ H3(Ω)|u|∂Ω = 0}
which is equivalent to the H3-norm.

Proof. We consider the equations
7u = f, x ∈ Ω

u|∂Ω = 0

By the L2-regularity estimates (Cf.[GT]), for any f ∈ H1, the solution u obeys

the estimate

nunH3 ≤ C[nfnH1 + nunL2 ]

= C[

]
Ω

|∇7u|2 + |7u|2dx] 12 + nunL2

From Lemma 1.3.10, this lemma follows.

The following lemmas are basic in the nonlinear functional analysis (Cf.[Ch]),[ZFC]

and [CH]).
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Definition 1.4.2. A function f : Ω × RN → R is called to satisfy the

Caratheodory condition, if i) for any ξ ∈ RN , f(x, ξ) is a measurable function
with respect to x ∈ Ω;and ii) for almost all x ∈ Ω, f(x, ξ) is a continuous func-
tion with respect to ξ ∈ Rn.

Lemma 1.4.3. Let f : Ω × RN → R satisfy the Caratheodory condition

and Ω ⊂ Rn be bounded. If

(1.4.1) |f(x, ξ)| ≤ α
N[
i=1

|ξi|pi/p + b(x)

where α > 0, pi, p ≥ 1, b ∈ Lp(Ω), then the mapping
F : Lp1(Ω)× · · · × LpN (Ω)→ Lp(Ω)

defined by F (u1, · · · , uN ) = f(x, u1, · · · , uN ) is continuous.

Lemma 1.4.4. Let Ω ⊂ Rn be an open set (not necessarily bounded),

and f : Ω × RN → R satisfy the Caratheodory condition and the condition

(1.4.1) with pi, p > 1. If {uik} ⊂ Lpi(Ω)(1 ≤ i ≤ N) is bounded, and for any
bounded subdomain Ω0 ⊂ Ω, uik converges to ui in measure on Ω0, then for
any v ∈ Lp3(Ω), we have

lim
k→∞

]
Ω

f(x, u1k, · · · , uNk)vdx =
]
Ω

f(x, u1, · · · , uN )vdx.

1.4.2. W 2,p-strong solutions

Let us consider the fully nonlinear elliptic Dirichlet boundary value problem

given by

(1.4.2)


F (x, u,∇u,7u) = g(x, u,∇u,D2u), x ∈ Ω

u|∂Ω = 0
where Ω ⊂ Rn is C∞ and bounded.

We shall apply Theorem 1.3.6 to investigate the existence of W 2,p-strong

solutions of (1.4.2).

According to Lemma 1.3.10, we denote by K > 0 the best constant which

satisfies

(1.4.3) K2nun2H2 ≤
]
Ω

|7u|2dx.
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The following assumptions are imposed. Let F (x, z, ξ, y) and g(x, z, ξ, η)

satisfy the Caratheodory condition, and

(1.4.4) F (x, z, ξ, y)y ≥ C1|y|p − C2, p ≥ 2,

(1.4.5) (F (x, z, ξ, y1)− F (x, z, ξ, y2))(y1 − y2) ≥ k|y1 − y2|2

(1.4.6)


|g(x, z, ξ, η1)− g(x, z, ξ, η2)| ≤ K1|η1 − η2|

K2
1 < K

2 · k2,K is as in (1.4.3), k > 0 as in (1.4.5).

(1., 4.7) |F (x, z, ξ, y)| ≤


a(x, z, ξ)(|y|p−1 + 1), as n < p

b(x, z)(|y|p−1 + |ξ|q1 + 1), as p ≤ n < 2p

C(|y|p−1 + |ξ|q1 + |z|q2 + 1), as 2p ≤ n

(1.4.8) |g(x, z, ξ, η)| ≤ C[|η|p1 + |ξ|p1 + |z|p1 + 1]

where q1 <
n(p−1)
n−p , q2 <

n(p−1)
n−2p , p1 < p − 1, and a ∈ C0(Ω × R × Rn), b ∈

C0(Ω×R), C > 0 is a constant.

Theorem 1.4.5. Under the conditions (1.4.4)-(1.4.8), the problem (1.4.2)

has a strong solution u ∈W 2,p(Ω) ∩W 1,p
0 (Ω).

Proof. We shall use Theorem 1.3.10 to prove this theorem. Let

X2 =W
2,p(Ω) ∩W 1,p

0 (Ω),

X1 = L
p(Ω). (2)

and the linear mapping L : X2 → X1 be as to read

Lu = 7u.

We define the mapping G : X2 → X∗1 by

< Gu, v >=

]
Ω

(F (x, u,∇u,7u)− g(x, u,∇u,D2u))vdx
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u ∈ X2, v ∈ X1. By the conditions (1.4.7)(1.4.8) it is clear that G : X2 → X∗1
is a bounded mapping.

According to (1.4.4) and (1.4.8), we see that

< Gu,Lu > =

]
Ω

[F (x, u,∇u,7u)7u− g(x, u,∇u,D2u)7u]dx

≥
]
Ω

[C1|7u|p − C2 − |g(x, u,∇u,D2u)||7u|]dx

≥
]
Ω

[
C1
2
|7u|p − C|g(x, u,∇u,D2u)|p3 − C]dx

≥ C1
2

]
Ω

|7u|Pdx− C
]
Ω

[
|α|≤2

|Dαu|p3p1dx− C

Because p3p1 < p, by Lemma 1.3.10 it follows that

< Gu,Lu >≥ α1

]
Ω

|7u|pdx− α2, α1,α2 > 0 are constnts

which implies that the condition (1.3.4) is fulfilled.

We are now in a position to check the coerceive continuity of G : X2 → X∗1 .
Let un - u0 in W

2,p(Ω) ∩W 1,p
0 (Ω), and

(1.4.9) lim
n→∞ < Gun −Gu0, Lun − Lu0 >= 0

We notice that

(1.4.10) < Gun −Gu0, Lun − Lu0 >=
]
Ω

[(F (x, un,∇un,7un)

−F (x, un,∇un,7u0))(7un −7u0)−

−(g(x, un,∇un,D2un)− g(x, un,∇un,D2u0))(7un −7u0)]dx

+

]
Ω

[(F (x, un,∇un,7u0)− F (x, u0,∇u0,7u0))(7un −7u0)

−(g(x, un,∇un,D2u0)− g(x, u0,∇u0,D2u0))(7un −7u0)]dx
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Because

{un,∇un}→ {u0,∇u0} in


C(Ω)× C(Ω, Rn), as n < p

C(Ω)× Lq1(Ω, Rn), as p ≤ n < 2p

Lq2(Ω)× Lq1(Ω, Rn), as 2p ≤ n.
where q1 <

np
n−p , q2 <

np
n−2p , by Lemma 1.4.3 and Lemma 1.4.4, from (1.4.7)

and (1.4.8) one obtain

lim
n→∞

]
Ω

[F (x, un,∇un,7u0)− F (x, u0,∇u0,7u0)][7un −7u0] = 0

lim
n→∞

]
Ω

[g(x, un,∇un,D2u0)− g(x, u0,∇u0,D2u0)][7un −7u0]dx = 0

On the other hand, by (1.4.5) and (1.4.6).]
Ω

[(F (x, un,∇un,7un)− F (x, un,∇un,7u0))(7un −7u0)

−(g(x, un,∇un,D2un)− g(x, un,∇un,D2u0))(7un −7u0)]dx

≥
]
Ω

[k|7un −7u0|2 −K1|D2un −D2u0||7un −7u0|]dx

≥
]
Ω

[
k

2
|7un −7u0|2 − K

2
1

2k
|D2un −D2u0|2]dx

≥ K2k2 −K2
1

2k

]
Ω

|D2un −D2u0|2dx

Hence, from (1.4.9)(1.4.10) it follows that

lim
n→∞

]
Ω

|D2un −D2u0|2dx = 0

namely, D2un converges to D
2u0 in measure on Ω. Thus, by Lemma 1.4.4,

from (1.4.7) and (1.4.9) we get

lim
n→∞

]
Ω

[F (x, un,∇un,7un)− g(x, un,∇un,D2un)]vdx

=

]
Ω

[F (x, u0,∇u0,7u0)− g(x, u0,∇u0,D2u0)]vdx
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∀v ∈ X1 = Lp(Ω), which shows that G : X2 → X∗1 is coerceively continuous.
The proof is complete.

Example 1.4.6. According to Theorem 1.4.5, it is easy to see that the

below equation (1 + |7u|2)7u = ke−|D2u| + g(x), g ∈ L 4
3 (Ω)

u|∂Ω = 0

has a strong solution u ∈ W 2,4(Ω) ∩W 1,4
0 (Ω) provided 0 < |k| < K, where K

is the constant as in (1.4.3), and

|D2u| =
v[
|α|=2

|Dαu|2.

Next, we investigate the below equations

(1.4.11)


F (x, u,∇u,D2u,7u) = g(x), x ∈ Ω

u|∂Ω = 0
Assume that

(1.4.12) F (x, z, ξ, η, y)y ≥ c1|y|p − c2, p > 1,

(1.4.13)

]
Ω

[F (x, u,∇u,D2u,7u)− F (x, v,∇v,D2v,7v)][7u−7v]dx

≥ 0, ∀u, v ∈W 2,p(Ω) ∩W 1,p
0 (Ω)

(1.4.14)


|F (x, z, ξ, η, y)| ≤ c[|y|p−1 + |z|p1 + |ξ|p1 + |η|p−1 + 1]

p1 ≤ n(p−1)
n−p ,

Applying Theorem 1.3.7, we can deduce the following theorem.

Theorem 1.4.7. Under the conditions (1.4.12)-(1.4.14), if g ∈ Lp3(Ω),
then the problem (1.4.11) has a strong solution u ∈W 2,p(Ω) ∩W 1,p

0 (Ω).

The proof of Theorem 1.4.7 is similar to that of Theorem 1.4.5, here we

omit the details.
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Example 1.4.8. We consider the following example

(1.4.15)

 7u+ e
−|7u|2 = f(x), x ∈ Ω, f ∈ L2(Ω)

u|∂Ω = 0

Let F (x, y) = y + e−y
2

. It is easy to verify that F satisfies conditions

(1.4.12) and (1.4.14). We notice

F 3y(x, y) = 1− 2ye−y
2 ≥ 1−

√
2e−

1
2 > 0, ∀y ∈ R

which implies that

[F (x, y1)− F (x, y2)][y1 − y2] ≥ 0, ∀y1, y2 ∈ R.
Hence the condition (1.4.13) is satisfied. By Theorem 1.4.7, the problem

(1.4.15) has a strong solution u ∈ H2(Ω) ∩H1
0 (Ω).

Finally, we shall apply Theorem 1.3.8 to discuss the equation given by

(1.4.16)


F (x, u,∇u,7u) = B(x, u,∇u), x ∈ Ω

u|∂Ω = 0
We assume that

(1.4.17) F (x, z, ξ, y)y ≥ ky2, k > 0

(1.4.18) (F (x, , ξ, y1)− F (x, z, ξ, y2))(y1 − y2) ≥ α|y1 − y2|2, α > 0

(1.4.19) |F (x, z, ξ, y)| ≤

a(x, z)(|y|+ |ξ|q1 + 1), n < 4

c(|y|+ |ξ|q1 + |z|q2 + 1), 4 ≤ n

where a ∈ c(Ω×R), q1 < n
n−2 , q2 <

n
n−4 , and

(1.4.20) −B(x, z, ξ)signz ≤ c(|ξ|+ 1)

(1.4.21) |B(x, z, ξ)| ≤

b(x, z)(|ξ|p1 + 1), n < 4

c[|ξ|p1 + |z|p2 + 1], 4 ≤ n

where b ∈ c(Ω×R), p1 < n+2
n , p2 <

n
n−4 .
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Theorem 1.4.9. Under the assumptions (1.4.17)-(1.4.21), the problem

(1.4.16) has a strong solution u ∈ H2(Ω) ∩H1
0 (Ω).

Proof. Let the spaces be taken by

X2 = H
2(Ω) ∩H1

0 (Ω),

X1 = L
2(Ω). (3)

and the linear operator L : X2 → X1 be defined as in Theorem 1.4.5. Define

the mapping G : [0, 1]×X2 → X∗1 by

< Gλu, v >=

]
Ω

[F (x, u,∇u,7u)− λB(x, u,∇u)]vdx

λ ∈ [0, 1], u ∈ X2, and v ∈ X1.
In the same fashion as the proof of Theorem 1.4.5, the conditions i) and iii)

in Theorem 1.3.8 are readily checked, and we only need to check the condition

ii). To this end, it suffices to verify that there exists a constant C > 0 such

that for all solution u ∈ H2(Ω) ∩H1
0 (Ω) of (1.4.16), we have the estimate

(1.4.22) nunH2 ≤ C.
Let u0 ∈ H2(Ω) ∩ H1

0 (Ω) be a solution of (1.4.16). Then u0 satisfies the

equation

(1.4.23)


7u− b(x, u,∇u) = 0

u|∂Ω = 0
where

b(x, u,∇u) = B(x, u,∇u)G−1(x)
G(x) = F (x, u0,∇u0,7u0)/7u0

Due to (1.4.17),∀(x, z, ξ, y) ∈ Ω×R×Rn ×R,
(1.4.24) F (x, z, ξ, y)/y ≥ k > 0
From (1.4.20) and (1.4.24) one gets

(1.4.25) −b(x, z, ξ)signz ≤ Ck−1(|ξ|+ 1)
Thanks to the maximum principle of elliptic equations (Cf.[GT]), the solution

u0 of (1.4.23) satisfies

(1.4.26) sup|u0| ≤ ck−1
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where C > 0 is a constant only dependent on Ω, n and k. Besides, u0 satisfies

0 =

]
Ω

[|∇u0|2 + b(x, u0,∇u0)u0]dx

≥
]
Ω

[|∇u0|2 − Ck−1|∇u0||u0|− Ck−1]dx (by (1.4.25)

≥
]
Ω

[
1

2
|∇u0|2 − 1

2
Ck−1|u0|2 − Ck−1]dx

Hence we have

(1.4.27)

]
Ω

|∇u0|2dx ≤ 2Ck−1|Ω|+ Ck−1
]
Ω

|u0|2dx

≤ 2Ck−1|Ω|+ C3k−3|Ω|; (by (1.4.26))

By (1.4.21)(1.4.26) and (1.4.27), one can see that there is a constant C1 > 0

such that for all solutions u ∈ H2(Ω) ∩H1
0 (Ω) of (1.4.16), we have

g ∈ Lq(Ω), q = 2

p1
, and

ngnLq ≤ C1 (4)

where

(1.4.28) g(x) = B(x, u,∇u)7u · F−1(x, u,∇u,7u).

By the Lp-estimates of elliptic equations, it implies

nunW2,q ≤ CnqnLq ≤ CC1
Because p1 <

n+2
n , we have 2 < nq/n − q, and by the Sobolev embedding

theorems

n∇unLq∗ ≤ CnunW 2,q ≤ C, q∗ =
nq

n− q
Consequently, for r = nq/(n− q)p1 > q = 2/p1,

g ∈ Lr(Ω) and

ngnLr ≤ C, C > 0 independent of u

By iteration, one can deduce that (1.4.22) holds true. The proof is complete.
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Remark 1.4.10. Under the conditions (1.4.17)-(1.4.21), for any p < ∞
the solutions u ∈W 2,p(Ω) of (1.4.16). In fact the solutions u of (1.4.16) satisfy

7u = g(x), x ∈ Ω

u|∂Ω = 0

where g(x) is defined by (1.4.28), and by using Lp-estimates and the iteration,

one can obtain u ∈W 2,p(Ω) for any p <∞.

1.4.3. H3-strong solutions

In this subsection, we shall use Theorem 1.3.3 to discuss the existence of

H3-strong solutions for a class of fully nonlinear elliptic Dirichlet and Neumann

boundary value problems.

Let us first consider the elliptic Dirichlet boundary value problem given by

(1.4.29)


−f(x,7x) = g(x, u,∇u,D2u), x ∈ Ω

u|∂Ω = 0
According to Lemma 1.4.1, we denote by k > 0 the best constant which

satisfies

(1.4.30) k2nun2H3 ≤
]
Ω

[|∇7u|2 + |7u|2]dx

∀u ∈ H3(Ω) ∩H1
0 (Ω). For f(x, y) and g(x, z, ξ, η) we assume that f ∈ C1(Ω×

R), g ∈ C1(Ω×R×Rn ×Rn2), and

(1.4.31)


f 3y(x, y) ≥ α > 0

f(x, y)y ≥ c1|y|p − c2, p ≥ 2 (c1 ≥ α as p = 2)

(1.4.32)


|f(x, y)| ≤ c[|y|p−1 + 1]

|f 3x(x, y)| ≤ c[|y|p1 + 1], p1 < p/2

(1.4.33)


|g|+ |Dxg|+ |Dzg||ξ|+ |Dξg||η| ≤ c[|z|p1 + |ξ|p1 + |η|p1 + 1]

|Dηg|2 ≤ k21 < α2k2, k as in (1.4.30), p1 < p/2
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The spaces are taken as to write

X = {u ∈ C∞(Ω)|u|∂Ω = 0, ∂7u
∂n

|∂Ω = 0}

X1 = L
p(Ω), and

X2 = H
3(Ω) ∩W 2,p(Ω) ∩W 1,p

0 (Ω) (5)

and the linear mapping L : X → X1 is defined by

(1.4.34) Lu = 72u−7u
By the theory of linear elliptic equations, the problem

(1.4.35)


72u−7u = f(x), x ∈ Ω

u|∂Ω = 0, ∂7u∂n |∂Ω = 0

has an unique solution u ∈ c∞(Ω) provided f ∈ c∞(Ω). In fact, (1.4.35) is
equivalent to the system

(1.4.36)


7u = v

7v − v = f

u|∂Ω = 0, ∂v∂n |∂Ω = 0

and it is well known that (1.4.36) has an unique solution u ∈ c∞(Ω), v ∈
c∞(Ω),∀f ∈ c∞(Ω). Hence the linear mapping L : X → X1 is one to one and

dense.

Now we shall state and prove the existence theorem of H3-strong solution

for the problem (1.4.29).

Theorem 1.4.11. Under the condition (1.4.31)-(1.4.33), the problem (1.4.29)

has a strong solution u ∈ H3(Ω) ∩W 2,p(Ω) ∩W 1,p
0 (Ω).

Proof. We define the mapping G : X2 → X∗1 by

< Gu, v >=

]
Ω

[−f(x,7u)− g(x, u,∇u,D2u)]vdx

∀v ∈ X1 = Lp(Ω). By the compact embedding theorems and conditions

(1.4.32)(1.4.33), from Lemma 1.4.4 it is easy to see that G : X2 → X∗1 is
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weakly continuous. It remains to check the acute angle condition (1.3.1). We

see that ∀u ∈ X,

< Gu,Lu >=

]
Ω

[∇f(x,7u) ·∇7u+ f(x,7u)7u+

+∇g(x, u,∇u,D2u) ·∇7u+ g(x, u,∇u,D2u)7u]dx

≥
]
Ω

[α|∇7u|2 + c1|7u|p − c2 − |Dxf(x,7u)||∇7u|

−|∇g(x, u,∇u,D2u)||∇7u|− |g(x, u,∇u,D2u)||7u|]dx
(by (1.4.31))

≥
]
Ω

[
α

2
|∇7u|2 + c1

2
|7u|p − |Dxf(x,7u)||∇7u|− c2

− 1

2α
|∇g(x, u,∇u,D2u)|2 − ( 2

c1
)

1
p−1 |g(x, u,∇u,D2u)|p3 ]dx

We notice that

∇g(x, u,∇u,D2u) = ∇xg +Dzg ·∇u+Dzg ·∇Du+Dηg ·∇D2u

From (1.4.30)(1.4.32) and (1.4.33) it follows that

< Gu,Lu >≥ 1

2α
(α2k2 − k21)nun2H3 +

]
Ω

[
c1
2
|7u|p − α

2
|7u|2

−c
[
|β|≤2

|Dβu|p1p3 − |Dxf(x,7u)||∇7u|− c]dx

≥ knun2H3
+

]
Ω

[
c1
2
|7u|p − α

2
|7u|2 − c|7u|2p1 − c

[
|β|≤2

|Dβu|p1p3 − c]dx

where 0 < k < 1
2α(α

2k2 − k21). Due to 2p1 < p, p1p3 < p and α ≤ c1 as p = 2,
hence we obtain

< Gu,Lu >≥ 0 for nunX2 ≥ some constant.

This proof is complete.

In the following, we shall discuss the fully nonlinear elliptic Neumann

boundary value problem

(1.4.37)


−f(x,7u) = g(x, u,∇u), mod constant
∂u
∂n |∂Ω = 0,

U
Ω
udx = 0
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Suppose that f ∈ C1(Ω×R), g ∈ C1(Ω×R×Rn), and

(1.4.38)


|g|+ |Dxg|+ |Dzg||ξ| ≤ [|z|p1 + |ξ|p1 + 1]

|Dξg| ≤

k1 < kc1 as p = 2,

c[|z|p2 + |ξ|p2 + 1], p2 <
p−2
2 , p > 2,

where p1 <
p
2 , and p, c1 are as in (1.4.31), and k > 0 is the best constant which

satisfies

k2
]
Ω

|D2u|2dx ≤
]
Ω

|7u|2dx, ∀u ∈ H2
N(Ω)/R

H2
N (Ω) = {u ∈ H2(Ω)| ∂u

∂n
|∂Ω = 0}.

We have the below existence result.

Theorem 1.4.12. Let the conditions (1.4.31)(1.4.32) and (1.4.38) be ful-

filled. Then the problem (1.4.37) has a strong solution

u ∈ X2 = {v ∈ H3(Ω) ∩W 2,p(Ω)|∂u
∂n
|∂Ω = 0,

]
Ω

udx = 0}.

Proof. Let the spaces be taken as follows

X = {u ∈ c∞(Ω)
���� ∂u

∂n
|∂Ω = 0, ∂7u

∂n
|∂Ω = 0,

]
Ω

udx = 0}.

X1 = L
p(Ω)/R = {u ∈ Lp(Ω)|

]
Ω

udx = 0}

X2=the completion of the space Y under the norm

nunX2
= [

]
Ω

|∇7u|2dx] 12 + nunW 2,p .

Y = {u ∈ H3(Ω) ∩W 2,p(Ω)|∂u
∂n
|∂Ω = 0,

]
Ω

udx = 0}

The linear mapping L : X → X1 is defined by (1.4.34). It is known that the

operator L is one to one and dense. We define the mapping G : X2 → X∗1 by

< Gu, v >=

]
Ω

[−f(x,7u)− g(x, u,∇u)]vdx
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∀u ∈ X2, v ∈ X1. We know that
Lp(Ω) = X1

O
R

Lp
3
(Ω) = X∗1

O
R

namely X∗ = Lp
3
(Ω)/R = {f ∈ Lp3(Ω)| U

Ω
f(x)dx = 0}. Hence Gu = 0 in X∗1

implies that (1.4.37) holds for all x ∈ Ω.
Let un - u0 in X2. Then 7un - 7u0 in H1, by the compact embedding

theorems, we have

7un →7u0 in L2(Ω)
which implies, by (1.4.32) and (1.4.38), that G : X2 → X∗1 is weakly continu-
ous. The remaining proof is parallel to that of Theorem 1.4.11. The proof is

complete.

Remark 1.4.13. When g(x, z, ξ) = βz + g1(x, ξ),β 9= 0, then under the

conditions (1.4.31)(1.4.32) and (1.4.38) the problem
−f(x,7u) = βu+ g1(x,∇u), x ∈ Ω
∂u
∂n |∂Ω = 0

has a solution u = u0 + c, where u0 satisfies (1.4.37), and

c =
1

β

]
Ω

[−f(x,7u0)− g1(x,∇u0)]dx.

1.5. Nonlinear Elliptic Systems of Second Order

The nonlinear elliptic systems of second order are very different from the el-

liptic equations. First, we know that the maximum principle and the de Giovgi

estimates generally don’t hold true anymore for the nonlinear elliptic systems,

and next, a few elliptic systems have the monotonicity structure. Hence the

many traditional theories and methods, such as the Green expression method,

the method of super-lower solutions and the monotonicity theory, are unavail-

able. Now, the variational principle is the most widely used method in the

nonlinear elliptic systems. In this section we shall use the acute angle principle

to discuss the existence problem of nonlinear elliptic systems.
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1.5.1. Quasilinear elliptic systems

First, we consider the elliptic systems

(1.5.1)


−Di(aklij (x, u)Djul + bki (x, u)) + hkli (x, u)Diul

+ck(x, u) = fk(x), x ∈ Ω, k = 1, · · · ,m.

ui|∂Ω = 0, 1 ≤ i ≤ m.
where u = {u, · · · , un},Ω ⊂ Rn is bounded. We use the summation convention,
i.e. akuk =

Sm
k=1 a

kuk and aiDiu =
Sn

j=1 ajDju.

Let the system be elliptic, namely

(1.5.2)


λ|ξ|2 ≤ aklijξkiξlj , ∀(x, z) ∈ Ω×Rm, ξ ∈ Rmn

λ > 0 a constant, aij(x, z) = aji(x, z)

Suppose that the coefficients satisfy the Caratheodory condition, and

(1.5.3)



U
Ω
[bki (x, u)Diuk + h

kl
i (x, u)ukDiul + c

k(x, u)uk]dx

≥ U
Ω
αk|uk|pkdx− α, ∀u ∈ [c∞0 (Ω)]m

pk ≥ 0, αk,α > 0 be constants

(1.5.4)


|arlij(x, z)|, |hrli (x, z)| ≤ βk|zk|qk + β

0 ≤ qk < max{pk/2, n
n−2}, βk,β > 0

(1.5.5)


|cl(x, z)|, |bli(x, z)| ≤ γk|zk|hqk + γ

0 ≤ hqk < max{pk, 2n
n−2}, γ, γk > 0

Let X = C∞0 (Ω, Rm), and X1 be the completion of X under the norm
nunX1 = [

U
Ω
|∇u|2dx] 12 +Sm

k=1 δk[
U
Ω
|uk|pkdx]

1
pk

|∇u|2 =Sm
k=1 |∇uk|2, δk =


1, as pk > 1

0, as pk ≤ 1
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Let X2 = C
1
0(Ω, R

m).

u = (u1, · · · , um) ∈ X1 is said a weak solution of (1.5.1) if ∀v = (v1, · · · , vm) ∈
X2 we have

(1.5.6)

]
Ω

[aklij (x, u)DjulDivk + b
k
i (x, u)Divk+

+hkli (x, u)Diul · vk + ck(x, u)vk − fkvk]dx = 0

Theorem 1.5.1. Under the conditions (1.5.2)-(1.5.5), if f ∈ L2(Ω, Rm),
then the system (1.5.1) has a weak solution u ∈ X1.

Proof. Denote by < Gu, v > the left part of (1.5.6). It is not difficult to

verify that the inner product < Gu, v > defines a bounded mapping G : X1 →
X∗2 . In fact, ∀u ∈ X1 and v ∈ X2 we have

|
]
Ω

aklij (x, u)DjulDivkdx|

≤ [

]
Ω

|aklij (x, u)Djul|dx] · nvnX2

≤ [

]
Ω

(βk|uk|qk + β)|Du|dx] · nvnX2
(by (1.4.4))

≤ cnunqX1
· nvnX2

; q = max
1≤k≤m

{pk, 2n

n− 2} (by Holder inequality)

For the other terms in < Gu, v >, we can also get the similar inequality as

above in the same fashion.

Now we show the weak continuousness of G : X1 → X∗2 . Let un - u0 in

X1. For v ∈ X2 given, we only need to check that

(1.5.7) lim
n→∞

]
Ω

aklij (x, un)DjulnDivkdx =

]
Ω

aklij (x, u0)Djul0Divkdx

(1.5.8) lim
n→∞

]
Ω

hkli (x, un)Diulnvkdx =

]
Ω

hkli (x, u0)Djul0vkdx

(1.5.9) lim
n→∞

]
Ω

bki (x, un)Divkdx =

]
Ω

bki (x, u0)Divkdx
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(1.5.10) lim
n→∞

]
Ω

ck(x, un)vkdx =

]
Ω

ck(x, u0)vkdx

Thanks to Theorem 1.1.6, we have

ukn → uk0 in L
qk(Ω), ∀qk < max{pk, 2n

n− 2}

From Lemma 1.4.3, Lemma 1.4.4 and (1.5.5), one can deduce that (1.5.9) and

(1.5.10) hold true.

For the proof of (1.5.7), we take the form]
Ω

[aklij (x, un)Djuln − aklij (x, u0)Djul0]Divkdx

=

]
Ω

[aklij (x, un)− aklij (x, u0)]DjulnDivkdx

+

]
Ω

aklij (x, u0)(Djuln −Djul0)Divkdx

By the condition (1.5.4),

{aklij (x, un)} ⊂ Lp(Ω) bounded for some p > 2

and aklij (x, un) is convergent to a
kl
ij (x, u0) in measure. Hence we have

aklij (x, un)→ aklij (x, u0) in L
2(Ω)

which means that

lim
n→∞

]
Ω

[aklij (x, un)− aklij (x, u0)]DjulnDivkdx = 0

From the definition of weak convergence, it is evidently

lim
n→∞

]
Ω

[aklij (x, u0)Divk(Djuln −Djul0)]dx = 0

Thus we get

lim
n→∞

]
Ω

[aklij (x, un)Djuln − aklij (x, u0)Djul0]Divkdx = 0

i.e. (1.5.7) holds true. By the same fashion, one can also get the equality

(1.5.8).
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It remains to check the acute angle condition. Taking u ∈ X = C∞0 (Ω, Rm),
we have

< Gu, u > =

]
Ω

[aklij (x, u)DjulDiuk + b
k
i (x, u)Diuk

+hkli (x, u)Diuluk + c
k(x, u)uk − fk · uk]dx

≥ λ

]
Ω

|∇u|2dx+
]
Ω

αk|uk|pkdx−
]
Ω

fk · ukdx− α

(by (1.5.2) and (1.5.3))

≥ 1

2
λ

]
Ω

|∇u|2dx+
]
Ω

αk|uk|pkdx− c
]
Ω

|f |2dx− α

The last inequality is obtained by the Holder inequality and Young inequality

as follows]
Ω

fkukdx ≤ [

]
Ω

|f |p3dx] 1p3 [
]
Ω

|u|pdx] 1p

≤ �−
p3
p

]
Ω

|f |p3dx+ �

]
Ω

|u|pdx, 1

p
+
1

p3
= 1

as well as the Poincare inequality]
Ω

|u|pdx ≤ c
]
Ω

|∇u|pdx, ∀u ∈W 1,p
0 (Ω).

where � > 0 is an arbitrary number, and c > 0 a constant.

From the inequality above, one follows that

< Gu, u >≥ 0, ∀u ∈ X1 and nunX1
great enough

By Theorem 1.3.2, the system (1.5.1) has a weak solution in X1. The proof is

complete.

Next, we consider the quasilinear systems

(1.5.11)


−DiAki (x, u,Du) +Bk(x, u,Du) = fk(x),

uk|∂Ω = 0, k = 1, · · · ,m
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Suppose that

(1.5.12)


λ|ξ|p ≤ Aki (x, z, ξ)ξki, ∀(x, z) ∈ Ω×Rm, ξ ∈ Rnm

λ > 0, p > 1 be constants

(1.5.13)

]
Ω

Bk(x, u,Du)ukdx ≥
]
Ω

αk|uk|pkdx− α

pk ≥ 0,α,αk > 0.
(1.5.14) [Aki (x, z, ξ)−Aki (x, z, η)][ξki − ηki]

≥ λ1|ξ − η|q; for some q ≥ 1,λ1 > 0

(1.5.15)


|Ali(x, z, ξ)| ≤ ak|zk|qk + a|ξ|p−1 + a

0 ≤ qk < q∗, a, ak > 0

where 

q∗k = max{ (p−1)p pk,β}

β =


n(p−1)
n−p , as n > p

∞, as p ≥ n

(1.5.16)


|Bl(x, z, ξ)| ≤ bk|zk|qlk + b|ξ|sl + b

0 ≤ qlk < q∗lk, 0 ≤ sl < s∗l , b, bk > 0
where 

q∗lk = max{ (pl−1)pl
pk,

(np+p−n)
np pk,β1}

β1 =


np+p−n
n−p , as n > p

∞, as p ≥ n
s∗l = max{ (pl−1)pl

p,β2}

β2 =


p− n−p

n , as n > p

p, as p ≥ n
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Let X = C∞0 (Ω, Rm), and X1 be the completion of X with the norm

nunX1 = [

]
Ω

|∇u|pdx] 1p +
m[
k=1

δk[

]
Ω

|uk|pkdx]
1
pk

For u, v ∈ X1, we define an inner product

(1.5.17) < Gu, v >=

]
Ω

[Aki (x, u,Du)Divk +B
k(x, u,Du)vk − fkvk]

By the Sobolev embedding theorems and the definition of norm n · nX1 , from

conditions (1.5.15) and (1.5.16), one can deduce that the inner product (1.5.17)

defines a bounded continuous mapping G : X1 → X∗1 .
u ∈ X1 is said a weak solution of (1.5.11), if

< Gu, v >= 0, ∀v ∈ X1

Theorem 1.5.2Under the assumptions (1.5.12)-(1.5.16), if f ∈ Lp3(Ω, Rm), p3 =
p
p−1 , then the system (1.5.11) has a weak solution in X1.

Proof. We apply Theorem 1.3.4 to prove the theorem. To this end, first

of all we need to verify the acute angle condition.

For u ∈ X1, we have

< Gu, u > =

]
Ω

[Aki (x, u,Du)Diuk +B
k(x, u,Du)uk − fkuk]dx

≥
]
Ω

[λ|∇u|p + αk|uk|pk − fkuk]dx− c

(by conditions (1.5.12) and (1.5.13)

≥
]
Ω

[
λ

2
|∇u|p + αk|uk|pk ]dx− c

]
Ω

|f |p3dx− c

(by Holder − Y oung inequality and Poincare inequality)

≥ 0, ∀u ∈ X1 and nunX1
great enough

We are now in a position to verify that G : X1 → X∗1 satisfies the continuity
condition ii) in Theorem 1.3.4.
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Let un ∈ X1, un - u0 in X1, and

lim
n→∞ < Gun −Gu0, un − u0 >= 0

which is

(1.5.18) lim
n→∞

]
Ω

[(Aki (x, un,Dun)−Aki (x, u0,Du0))(Diukn −Diuk0)

+(Bk(x, un,Dun)−Bk(x, u0,Du0))(ukn − uk0)]dx = 0
In following, we need to show that

(1.5.19) lim
n→∞

]
Ω

[Bk(x, un,Dun)−Bk(x, u0,Du0)][ukn − uk0]dx = 0

(1.5.20) lim
n→∞

]
Ω

[Aki (x, un,Du0)−Aki (x, u0,Du0)][Diukn −Diuk0]dx = 0

Obviously, by un - u0 in X1, we have

lim
n→∞

]
Ω

Bk(x, u0,Du0)(ukn − uk0)dx = 0

By Holder inequality

(1.5.21) |
]
Ω

Bl(x, un,Dun)(uln − ul0)dx|

≤ [
]
Ω

|Bl(x, un,Dun)|r3ldx]
1
r3
l [

]
Ω

|uln − ul0]rrdx]
1
rl

here r3l = rl/(rl − 1).
By Theorem 1.1.2, Theorem 1.1.6 and the definition of the norm n·nX1

, uln, ul0 ∈
Lr
∗
l (Ω), r∗l = max{pl, r}, where

r =


np/n− p, n > p

arbitrary number > 0, n = p

∞, n < p
moreover,

(1.5.22) uln → ul0 in L
rl(Ω), ∀rl < r∗l
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From (1.5.16), we get that for any bounded sequence {un} ⊂ X1, {Bl(x, un,Dun)} ⊂
Lr
3
l(Ω) is bounded for some r3l > r∗3l = r∗l /(r

∗
l − 1). Hence from (1.5.21) and

(1.5.22) we derive

lim
n→∞

]
Ω

Bl(x, un,Dun)(uln − ul0)dx = 0

Therefore (1.5.19) holds true.

Let the Caratheodory mappings

Ali : L
N1(Ω)× · · · × LNm(Ω)→ Lp

3
(Ω), p3 =

p

p− 1
be defined by

Ali(u) = A
l
i(x, u,Du0), for u ∈ LN1(Ω)× · · · × LNm(Ω)

where Nk = qk · p3, 1 ≤ k ≤ m. The condition (1.5.15) means that Nk <

p∗k, p
∗
k = max{pk, p∗}, here

p∗ =


np
n−p , n > p

∞, p ≥ n
By Lemma 1.4.3, we know that the mappings Ali are continuous. On the other

hand, the compact theorems (Theorem 1.1.5 and Theorem 1.1.6) say that

un - u0 in X1 ⇒ un → u0 in L
N1(Ω)× · · · × LNm(Ω)

Thus we get

Ali(x, un,Du0)→ Ali(x, u0,Du0) in L
p3(Ω)

which implies the equality (1.5.20) holds true.

From (1.5.18)-(1.5.20), ones derive

lim
n→∞

]
Ω

[Aki (x, un,Dun)−Aki (x, un,Du0)][Diukn −Diuk0] = 0

and by condition (1.5.14), it implies

lim
n→∞

]
Ω

|∇un −∇u0|qdx = 0, for some q ≥ 1.

Hence we deduce that
∇un →∇u0 in LN (Ω),∀1 ≤ N < p

un → u0 in L
N1(Ω)× · · · × LNm(Ω), Nk < p

∗
k
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From the structural conditions (1.5.15) and (1.5.16) we get

lim
n→∞ < Gun, v >=< Gu0, v >,∀v ∈ X1

Then the theorem follows from Theorem 1.3.4. The proof is complete.

1.5.2. W 2,p-strong solutions of nonlinear elliptic systems.

In this subsection, we consider the existence of the W 2,p-strong solutions of

nonlinear elliptic system. Let Ω ⊂ Rn be bounded and C∞.
Given the semilinear elliptic systems

(1.5.23)


−Di(aklij (x)Djul) + bkli (x, u)Diul + ck(x, u) = fk(x)

u1|∂Ω = 0, · · · , um|∂Ω = 0

where aklij ∈ c1(Ω), and

(1.5.24) λ|ξ|2 ≤ aklij (x)ξkiξlj ,∀x ∈ Ω, ξ ∈ Rmn

Suppose that

(1.5.25)

]
Ω

[bkli (x, u)Diul · uk + ck(x, u)uk]dx

≥
]
Ω

αk|uk|pkdx− α, ∀u ∈ [c∞0 (Ω)]m

(1.5.26)


|bkli (x, z)| ≤ βk|zk|qk + β;

0 ≤ qk < max{pk/2, n/n− 2}

(1.5.27)

 |ck(x, z)| ≤ γk|zk|hqk + γ,

0 ≤ hqk < max{pk, 2n/n− 2}.
We denote

sk = min{tk/hqk, 2tk/tk + 2qk}
s = min

1≤k≤m
{sk}; (1 < s ≤ 2)

tk = max{pk, 2n/n− 2}
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Theorem 1.5.3. Let the conditions (1.5.24)-(1.5.27) be satisfied. If f ∈
L2(Ω, Rm), then the system (1.5.23) has a strong solution u ∈ W 2,s(Ω, Rm) ∩
X1,X1 as that in Theorem 1.5.1. Moreover, if aklij , b

kl
i , c

k, fk ∈ c∞(Ω × Rm)
and either n = 2 or s > ntk/(n+2tk) for n ≥ 3, (1 ≤ k ≤ m), then (1.5.23) has
a classical solution u ∈ C∞(Ω, Rm).

Proof. By Theorem 1.5.1, the equation (1.5.23) has a weak solution u ∈ X1.
Let

gk(x) = fk − ck(x, u)− bkli (x, u)Diul
Then gk ∈ Lsk(Ω)(by (1.5.26) and (1.5.27)). Using Theorem 10.5 of [ADN],

the weak solution in W 1,2
0 (Ω, Rm) of equation

(1.5.28)


−Di(aklij (x)Djvl) = gk(x),

vk|∂Ω = 0, k = 1, · · · ,m
is unique and v ∈ W 2,s(Ω, Rm). Because the solution u of (1.5.23) is also a

weak solution of (1.5.28), u = v ∈W 2,s(Ω, Rm).

When n = 2, s < ∞ is an arbitrary number. Take s > n, the gk ∈
c0,α(Ω)(by Theorem 1.1.3). Applying Theorem 9.3 in [ADN], the solution

u ∈ c2,α(Ω),which means gk ∈ c1,α(Ω), and u ∈ c3,α(Ω). We derive u ∈ c∞(Ω)
by iteration.

When n = 3, and s > ntk/(n+2tk),W
2,s(Ω) /→ Lsn/n−2s(Ω), sn/(n−2s) >

tk, which implies, by (1.5.26) and (1.5.27), that g
k ∈ Lhs(Ω) for some hs > s,

then ones obtain u ∈ c∞(Ω) by iteration.
The proof of Theorem 1.5.3 is complete.

Remark 1.5.4. For the equation in diagonal form
−7uk + bkli (x, u)Diul + ck(x, u) = fk(x)

uk|∂Ω = 0, k = 1, · · · ,m
if bkli , c

k satisfy (1.5.25)-(1.5.27), then the solution u = (u1, · · · , um) ∈ [W 2,s1(Ω)×
· · · ×W 2,sm(Ω)] ∩X1 for fk ∈ L2(Ω)(1 ≤ k ≤ m).

We consider the semilinear elliptic system

(1.5.29)


−Di(aklij (x)Djul) + bk(x, u,Du) = fk(x)

uk|∂Ω = 0, 1 ≤ k ≤ m
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aklij ∈ c1(Ω) satisfy (1.5.24), and

(1.5.30)

]
Ω

bk(x, u,Du)ukdx ≥
]
Ω

αk|uk|pkdx− α

(1.5.31) |bl(x, z, ξ)| ≤ bk|zk|qlk + b|ξ|rl + b
where

qlk < max{ (pl − 1)
pl

pk,
n

n− 2}

rl < max{2(pl − 1)
pl

,
n+ 2

2
}

We denote

p = min
1≤k,l≤m

{tk/qlk, 2/rl} > 1

tk = max{pk, 2n/n− 2}.

Theorem 1.5.5. Let the conditions (1.5.30)-(1.5.31) be satisfied. If f ∈
L2(Ω, Rm), then (1.5.29) has a strong solution u ∈ W 2,p(Ω, Rm) ∩X1. More-
over, if aklij , b

k, fk ∈ c∞(Ω×Rm×Rmn), and either N = 2 or p > ntk/(n+2tk)

for n ≥ 3(1 ≤ k ≤ m), then (1.5.29) has a classical solution u ∈ C∞(Ω, Rm).
The proof of Theorem 1.5.5, by applying Theorem 1.5.2, is similar to that

of Theorem 1.5.3, here we omit the details.

By using the de Giorgi estimates, we can obtain the c0,α regularity of weak

solutions of the quasilinear elliptic system in diagonal form

(1.5.32)



−Di(a1ij(x, u)Dju1 + b1i (x, u)) + c1(x, u,Du) = f1

...

−Di(am(x, u)Djum + bmi (x, u)) + cm(x, u,Du) = fm

u1|∂Ω = 0, · · · , um|∂Ω = 0
Before discussing the problem (1.5.32), it is necessary to introduce the de

Giorgi estimate theorem. Give the elliptic equations with divergence form

(1.5.33)


−Di(aij(x)Dju) = g(x) +Digi(x)

u|∂Ω = 0
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where aij ∈ L∞(Ω), and
λ|ξ|2 ≤ aij(x)ξiξj

Theorem 1.5.6(see [GT]). Let Ω ⊂ Rn be bounded and c∞. For some
q > n, gi ∈ Lq(Ω), g ∈ Lq/2(Ω), if u ∈ W 1,2

0 (Ω) is a weak solution of (1.5.33),

then u ∈ cα(Ω)(0 < α < 1), and

ncncα ≤ c[nunL2 + ngnLq/2 +
n[
i=1

nginLq ]

Now we return to consider the existence of regularity solution of (1.5.32).

Suppose that

(1.5.34) λ|ξ|2 ≤ akij(x, z)ξiξj , ∀1 ≤ k ≤ m,λ > 0

(1.5.35)

]
Ω

[bki (x, u)Diuk + c
k(x, u)uk]dx ≥ −c

(1.5.36)


|akij(x, z)| < c

|bki (x, z)| < c|z|p1 + c

|ck(x, z, ξ)| < c|z|p2 + c|ξ|p3 + c
where 0 ≤ p1, p2 <∞ are arbitrarily for n = 2, and 0 ≤ p1 < n

n−2 , 0 ≤ p2 <
4

n−2 for n ≥ 3, 0 ≤ p3 < 4
n for n ≥ 2.

Theorem 1.5.7. Let the conditions (1.5.34)-(1.5.36) hold. If f ∈ L q
2 (Ω, Rm)(q >

n), then (1.5.29) has a weak solution u ∈ W 1,2
0 (Ω, Rm) ∩ Cα(Ω, Rm) for some

0 < α < 1.

Proof. The existence of weak solution u ∈W 1,2
0 (Ω, Rm) follows from The-

orem 1.5.2, and by (1.5.36)

gk(x) = fk(x)− ck(x, u,Du) ∈ Lq/2(Ω), for some q > n.
gki (x) = b

k
i (x, u) ∈ Lq(Ω).

Thus we get from Theorem 1.5.6 that the weak solution u of (1.5.32) belongs

to Cα(Ω, Rm). The proof is complete.
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Remark 1.5.8. By the H2-estimates of quasilinear elliptic systems (see

[LU]), if u ∈ W 1,2
0 (Ω, Rm) ∩ C0(Ω, Rm) is a weak solution of (1.5.29), then

u ∈ H2
loc(Ω, R

m).

Remark 1.5.9. For the quasilinear elliptic systems with non-diagonal form,

M.Giaquinta [Gi] obtain some inner c0,α-regularity estimates, which amounts

to saying that a weak solution u ∈ W 1,2
0 (Ω, Rm) of the system below belongs

to cαloc(Ω)(0 < α < 1)
−Di(aklij (x, u)Djul + bki (x, u)) + ck(x, u,Du) = 0

uk|∂Ω = 0, 1 ≤ k ≤ m

where aklij , b
k
i , c

k satisfy the conditions of (1.5.34) and (1.5.35)

1.6. Keldys-Fichera Boundary Value Problem
for Degenerate Elliptic Equations

1.6.1. Background

An important example relating to degenerate elliptic equations is the fol-

lowing well known Tricomi equation, which is of especially interest in the aero-

dynamics

(1.6.1) y
∂2u

∂x2
+

∂2u

∂y2
= 0, (x, y) ∈ R2

The Tricomi equation is a mixed equation of elliptic-hyperbolic type. As y > 0,

(1.6.1) is elliptic and when y < 0 it is hyperbolic. The equation (1.6.1) can be

divided into two equations to be considered respectively as follows

(1.6.2) y
∂2u

∂x2
+

∂2u

∂y2
= 0, for (x, y) ∈ R2+

where R2+ = {(x, y) ∈ R2|y > 0}, and

(1.6.3)
∂2u

∂y2
− y∂

2u

∂x2
= 0, for (x, y) ∈ R2+

It is easy to see that the equation (1.5.2) is a degenerate elliptic equation and

(1.6.3) is a degenerate hyperbolic equation in R2+. If ui(x, y)(i = 1, 2) are
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respectively the solutions of (1.5.2) and (1.5.3), with

u1(x, 0) = u2(x, 0),∀x ∈ R1

then the function

u(x, y) =

�
u1(x, y), as y ≥ 0
u2(x,−y), as y ≤ 0

is a weak solution of Tricomi equation (1.6.1).

In general, most of the mixed equations of elliptic-hyperbolic type can be

divided into the degenerate elliptic and hyperbolic equations to be discussed

respectively.

For the degenerate elliptic equations, generally to say, the set of degener-

ate points on boundary ∂Ω is of nonzero measure on ∂Ω. It implies that the

Dirichlet boundary value problem for degenerate elliptic is not well posed any-

more, and instead of it the Keldys-Fichera boundary value problem works. On

the well posedness of Keldys-Fichera boundary value problem for degenerate

elliptic equations, the readers are referred to next section or O.A.Oleinik and

E.V.Radkevich [OR].

1.6.2 Existence of the quasilinear equation

In this subsection, we consider the existence of the Keldys-Fichera boundary

value problem for the following degenerate quasilinear elliptic equations

(1.6.4)

�
Lu = Di[aij(x, u)Dju+ b(x)u]− C(x, u) = f(x), x ∈ Ω
u(x) = 0, x ∈S2 ∪

S
3

where Ω ⊂ Rn is an open set, and Si(i = 1, 2, 3) are defined byS
3 = {x ∈ ∂Ω}|aij(x, 0)NiNj > 0}S
2 = {x ∈ ∂Ω}\S3 |bi(x) ·Ni > 0}S
1 = ∂Ω\(S2 ∪

S
3).

�N = (N1, · · · , Nn) is the unit outward normal vector on ∂Ω.

Suppose that the coefficients satisfy Caratheodory condition, and

(L1) Symmetry: aij(x, z) = aji(x, z),

(L2) There exist a constant β > 0 and a nonnegative

continuous function λ(x) on Ω such that

(1.6.5) β−1aij(x, 0)ξiξj ≤ aij(x, z)ξiξj ≤ βaij(x, 0)ξiξj

(1.6.6) λ(x)|ξ|2 ≤ aij(x, 0)ξiξj .

51



(L3)Ω
3 = {x ∈ Ω|λ(x) = 0} is a measure zero set in Rn, and there exist

bounded subdomains with the cone property Ωn ⊂⊂ Ω\Ω3, such that
Ωn ⊂ Ωn+1 and ∪∞n=1Ωn = Ω\Ω3.

(L4)bi ∈ C1(Ω)(1 ≤ i ≤ n), and

(1.6.7) |aij(x, z)| ≤ C

(1.6.8) C[|z|k + |z|2]− g1(x) ≤ C(x, z)z − 1
2
Dibi(x)z

2

(1.6.9) |C(x, z)| ≤ C|z|k−1 + g2(x)

where k > 1, C > 0 are constants, g1 ∈ L1(Ω), g2 ∈ Lk3(Ω), 1/k + 1/k3 = 1.

Remark 1.6.1. The condition (1.6.5) implies that the degenerate points

of (1.6.4) have nothing to do with z, hence
S
3 can be written asS

3 = {x ∈ ∂Ω|aij(x, z)NiNj > 0, ∀z ∈ R1}.

Remark 1.6.2. If Ω is a bounded domain, the condition (1.6.8) may be

weakened to read

C|z|k − g1(x) ≤ C(x, z)z − 1
2
Dibi(x)z

2

Denote by

X = {v ∈ C1(Ω) |v|S
3

= 0, and nvn2 <∞}

endowed with the norm

nvn2 = [
]
Ω

(|∇v|2 + |v|2)dx+
]
∂Ω

|v|2ds] 12 + [
]
Ω

|v|kdx] 1k

Let X1 be the completion of X under the norm

nvn1 = [
]
Ω

(aij(x, 0)DivDjv + |v|2)dx] 12+

+[

]S
1
∪
S

2

|�b · �N |v2ds] 12 + [
]
Ω

|v|kdx] 1k

where �b = {b1(x), · · · , bn(x)}.
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Let X2 be the completion of X under the norm n · n2. Obviously, X1 is
a reflexive Banach space, and X is separable endowed norm space. A weak

solution of (1.6.4) is defined to be a element u ∈ X1 such that]
Ω

[aij(x, u)DjuDiv + bi · uDiv + C(x, u)v + f · v]dx

(1.6.10) −
]S

1

�b · �Nuvds = 0, ∀v ∈ X2

Theorem 1.6.3. Under the conditions (L1) − (L4), if f ∈ Lk3(Ω), then
problem (1.6.4) has a weak solution in X1.

Proof. Let < Lu, v > be the left-hand side of (1.6.10). The first thing to

be checked is that the inner product < Lu, v > defines a bounded mapping

L : X1 → X∗2 .
Given u ∈ X1, let eaij(x) = aij(x, u), then (ãij(x)) is a symmetric semi-

positive definite matrix. Hence for any v ∈ X2 we have]
Ω

aij(x, u)DjuDivdx =

]
Ω

ãij(x)DjuDivdx

≤ [

]
Ω

ãij(x)DiuDju]
1
2 × [

]
Ω

ãij(x)DjvDivdx]
1
2

≤ β[

]
Ω

aij(x, 0)DiuDjudx]
1
2 [

]
Ω

aij(x, 0)DivDjvdx]
1
2

≤ Cnun1 · nvn2
where C > 0 is a constant.

By (1.6.9) and bi ∈ C1(Ω), from the definitions of n · n1 and n · n2 we can
deduce

|
]
Ω

[biuDiv + C(x, u)v + f · v]dx|

≤ CnunL2 · nDv}L2 + nfnLk3 nvnLk + Cnunk−1Lk
nvnLk + ng2nLk3 nvnLk

≤ [Cnunk−11 + C] · nvn2
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Furthermore, we have

|
]S

1

�b · �Nu · vds| ≤ [

]S
1

|�b · �N |u2ds] 12 [
]S

1

|�b · �N |v2ds] 12

≤ Cnun1 · nvn2.
It follows from the three inequalities above that L : X1 → X∗2 is a bounded
mapping.

Now we check the acute angle condition. Let u ∈ X, then

< Lu, u >=

]
Ω

[aij(x, u)DiuDju+ C(x, u)u− 1
2
Dibiu

2 + fu]dx

(1.6.11) +
1

2

]S
2

�b · �N · u2ds− 1
2

]S
1

�b · �Nu2ds

Since �b · �N > 0 on
S
2 and

�b · �n ≤ 0 on S1, from (1.6.5), (1.6.8) and (1.6.11)

we derive

< Lu, u > ≥
]
Ω

[β−1aij(x, 0)DiuDju+ C|u|k + C|u|2 − fu− g1]dx

+
1

2

]S
1
∪
S

2

|�b · �N |u2ds

≥
]
Ω

[β−1aij(x, 0)DiuDju+
1

2
C|u|k + Cu2]dx

+
1

2

]S
1
∪
S

2

|�b · �N |u2ds−
]
Ω

[
2

Ckk3
|f |k3 + |g1|]dx

which means that ther is a constant R > 0 such that

< Lu, u >≥ 0, ∀u ∈ X and nun1 = R.
It remains to show that L : X1 → X∗2 is weakly continuous. Suppose

that un - u0 in X1. We shall prove that un converges to u0 in measure

on any bounded subdomain Ω0 ⊂ Ω. According to (L3), there are bounded
subdomains with cone property Ωn ⊂⊂ Ω\Ω3,Ωn ⊂ Ωn+1,∪∞n=1Ωn = Ω\Ω3.
Since Ω3 is a set of measure zero in Rm, we only have to show that un converges
to u0 in measure on Ωk for any k.

For any integer k0 > 0, it follows from the continuity of λ(x) on Ω and

Ωk0 ⊂⊂ Ω\Ω3 that there exists �k0 > 0 such that λ(x) ≥ �k0 in Ωk0 . We
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denote by X1(Ωk0) the Banach space which is the completion of functions in

X1 restricted to Ωk0 under the norm

nun = [
]
Ω0

|∇u|2dx] 12 + [
]
Ωk0

|u|kdx] 1k

Clearly, X1 can be embedded into X1(Ωk0). We denote by I the embedding

operator, evidently Iun - Iu0 inX(Ωk0). By means of the compact embedding

theorems, un → u0 in L
2(Ωk0), which means that un converges to u0 in measure

on Ω0.

We only have to prove that for any v ∈ X2,

(1.6.12) lim
n→∞

]
Ω

aij(x, un)DjunDivdx =

]
Ω

aij(x, u0)Dju0Divdx

(1.6.13) lim
n→∞

]
Ω

C(x, un)vdx =

]
Ω

C(x, u0)vdx.

By the condition (1.6.9), {C(x, un)} ⊂ Lk3(Ω) is bounded. Because un con-
verges to u0 in measure on any bounded subdomain Ω0 ⊂ Ω, we get that

C(x, un)→ C(x, u0) in L
p(Ω0), ∀1 ≤ p < k3

Hence (1.6.13) holds true for any v ∈ C∞0 (Ω). On the other hand, C∞0 (Ω)
is dense in Lk(Ω), so by (1.6.9) we conclude that (1.6.13) is satisfied for any

v ∈ Lk(Ω).
Now we consider (1.6.12). It is possible that Du does not belong to any

Lp(Ω)(p ≥ 1), hence the proof of (1.6.12) cannot be as simple as that of (1.6.13).
Make the following decomposition]

Ω

[aij(x, un)DjunDiv − aij(x, u0)Dju0Div]dx

=

]
Ω

aij(x, u0)Div(Djun −Dju0)dx+

+

]
Ω

[aij(x, un)− aij(x, u0)]DjunDivdx

We know from (1.6.5) that the following two semi-norms are equivalent

|u|0 = [
]
Ω

aij(x, 0)DiuDjudx]
1
2 ,
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|u|u0 = [
]
Ω

aij(x, u0)DiuDjudx]
1
2 .

By un - u0 in X1, we get that

lim
n→∞

]
Ω

aij(x, u0)Div(Djun −Dju0)dx = 0

∀v ∈ X2. It is easy to verify that the following inner product defines a bounded
mapping A : X1 → L2(Ω, Rn)

< Au,w >=

]
Ω

[aij(x, u)− aij(x, u0)]Djuwidx

where w = (w1, · · · , wn) ∈ L2(Ω, Rn). If we can prove

(1.6.14) lim
n→∞ < Aun, w >= 0, ∀w ∈ L2(Ω, Rn)

then we will have finished the proof of (1.6.12).

Let hΩ = Ω\Ω3. Because Ω3 is of measure zero in Rn, C∞0 (hΩ, Rn) is dense in
L2(Ω, Rn). Hence it suffices to prove (1.6.14) for w ∈ C∞0 (hΩ, Rn).
Given a w ∈ C∞0 (hΩ, Rn), then there is a bounded subdomain Ω0 ⊂⊂ hΩ such

that supp w ⊂ Ω0, while un converges to u0 in measure in Ω0. From (1.6.7) we

obtain

aij(x, un)→ aij(x, u0) in L
2(Ω0)

On the other hand, there is a �0 > 0 such that λ(x) > �0,∀x ∈ Ω0. Hence {Dun}
is bounded in L2(Ω0, R

n), which implies (1.6.14) holds true for w ∈ C∞0 (hΩ, Rn).
Thus the weak continuousness of L is proved. The theorem follows from The-

orem 1.3.2. The proof is complete.

Example 1.6.4. We take the following quasilinear Keldys equation as an

example to illustrate the application of Theorem 1.6.3.

(1.6.15)


∂
∂x(x

pf1(u))
∂u
∂x ) +

∂
∂y (y

qf2(u)
∂u
∂y )− ∂u

∂x − u3 = f

u(x, y) = 0, (x, y) ∈S2 ∪
S
3

where 0 < p, q, (x, y) ∈ Ω ⊂ R2 as shown in Fig.1.1 below and f1, f2 ∈ C(R)
satisfy the condition

0 < C1 ≤ f1(z), f2(z) ≤ C2 <∞
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Fig. 1.1

It is easy to see that
S
2 = {(x, y)|x = 0, 0 < y ≤ 1},S3 = {(x, y)|x =

1, 0 < y ≤ 1 and y = 1, 0 < x ≤ 1}. Applying Theorem 1.6.3 we claim that if

f ∈ L4/3, then problem (1.6.15) has a weak solution u satisfying]
Ω

[xp|∂u
∂x
|2 + yq|∂u

∂y
|2 + u4]dxdy ≤ C

where C > 0 is a constant dependent on f .

1.6.3 Maximum principle and L∞-modular estimates

In this subsection, we mainly discuss the maximum principle, L∞-modular
estimates and the comparison principle for weak solutions of degenerate elliptic

Keldys-Fichera boundary value problem.

Let Ω ⊂ Rn be a bounded domain, we first consider the linear case. Give
the following operator

L1u = Di(aij(x)Dju+ bi(x)u)− C(x)u

bi ∈ C1(Ω) and aij(x) = aji(x), furthermore

0 ≤ aij(x)ξiξj , ∀x ∈ Ω, ξ ∈ Rn.

Let hX1 be the completion of C1(Ω) with the norm
nunhX1

= [

]
Ω

(aij(x)DiuDju+ u
2)dx+

]S
1
∪
S

2

|b̄ · N̄ |u2ds] 12

We say u ∈ hX1∩W 1,p(Ω)∩Lq(Ω)(1 < p ≤ 2, 1p+ 1
q = 1) satisfies L1u ≥ 0(or

≤ 0) in weak sense, if ∀v ∈ hX1 ∩W 1,p(Ω) ∩ Lq(Ω) with v|S
2
∪
S

3

= 0, v ≥ 0
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in Ω, the following inequality holds]
Ω

[aij(x)DiuDjv + bi(x)u ·Div + Cu · v]dx

(1.6.16) −
]S

1

�b · �Nu · vds ≤ 0 (or ≥ 0)

Theorem 1.6.5. Let
S
2 ∪
S
3 9= φ, and

(1.6.17) b∗(x) < C(x), ∀x ∈ Ω

where b∗(x) = max{Dibi(x), 12Dibi(x)}. If u ∈ hX1∩W 1,p(Ω)∩Lq(Ω)( 1p+ 1
q = 1)

satisfies L1u ≥ 0(or ≤ 0) in weak sense, then the nonnegative maximum (non-

positive minimum) of u must be achieved in
S

2 ∪
S

3.

Proof. Let

k = supS
2
∪
S

3

u (or k = infS
2
∪
S

3

u)

By the claims of the theorem, we may assume k ≥ 0(k ≤ 0). Let v0 = [u−k]+(or
v0 = [k − u]+), where for a function f, [f ]+ is defined by

[f ]+ =


f(x) if f(x) > 0

0 if f(x) ≤ 0

From the chain rule for weak derivative (see [GT]) and the assumptions on u,

we obtain that v0 ∈ hX1 ∩W 1,p(Ω) ∩ Lq(Ω), v0|S
2
∪
S

3

= 0, v0 ≥ 0 on Ω, and

(1.6.18) Div0 =


Diu, u(x) > k

0, u(x) ≤ k
Now we only need to deal with the case of k ≥ 0, as for the case of k ≤ 0, the
proof is the same as the case of k ≥ 0.
Putting v = v0 in (1.6.16), by (1.6.18) and the integration by parts, we

obtain the inequality]
Ω

[aij(x)DjuDiv0 − bi(x)Diuv0 + c(x)uv0 −Dibi(x)uv0]dx
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=

]
Ω

[aij(x)Djv0Div0 − bi(x)Div0 · v0 + c(x)uv0 −Dibiuv0]dx

=

]
Ω

[aij(x)Div0Djv0 + (c−Dibi)uv0 + 1
2
Dibiv

2
0 ]dx

≤ 1

2

]S
1

�b · �Nv20ds

Let Ω+ = {x ∈ Ω|u(x) > k}. Because u = v0 + k on Ω+ and �b · �n ≤ 0 on
S
1,

from the above inequality, we have]
Ω+
[aij(x)Div0Djv0 + (c(x)− 1

2
Dibi(x))v

2
0 + (c−Dibi)v0k]dx ≤ 0

which implies by (1.6.17) that Ω+ is a set of measure zero. The proof is com-

plete.

Now we consider the modular estimate theorem for weak solutions of equa-

tion (1.6.4). The condition (L2) is changed to read

(1.6.19) 0 ≤ aij(x, 0)ξiξj , ∀x ∈ Ω, ξ ∈ Rn.

Theorem 1.6.6. Assume that
S
2 ∪
S
3 9= φ and L satisfies (L1), (L3),

(1.6.19) and

(1.6.20) b∗(x) < c(x, z)z−1, for (x, z) ∈ Ω×R

If u ∈ hX1 ∩W 1,p(Ω) ∩ Lk(Ω)( p
p−1 ≤ k) satisfies (1.6.10) ∀v ∈ hX1 ∩W 1,p(Ω) ∩

Lk(Ω) with v|S
2
∪
S

3

= 0, then

|u| ≤ max{sup
Ω
| f
c∗
|, supS

2
∪
S

3

|u|} =M

whe c∗(x) = infz∈R1 [c(x, z)z−1 −Dibi(x)].

Proof. First, we assume that L is a linear operator. Let w =M ± u, then
w|S

2
∪
S

3

≥ 0. Taking v ∈W 1,p(Ω) ∩ hX1 ∩ Lk(Ω) with v|S
2
∪
S

3

= 0, v ≥ 0
on Ω, we have]

Ω

[aij(x)DjwDiv + bi(x)Divw + cwv]dx−
]S

1

biNiwvds
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=

]
Ω

±[aij(x)DjuDiv + bi(x)Divu+ cuv]dx

−
]S

1

±[b̄ · N̄uv]ds+
]
Ω

[c(x)M −Dibi(x)M ]vdx

=

]
Ω

[(c(x)−Dibi(x))M ± f ]vdx ≥ 0

By Theorem 1.6.5, w ≥ 0 on Ω. Then we have |u| ≤M on Ω a.e.

For the case that L is a nonlinear operator, we take ãij(x) = aij(x, u), b̃i(x) =

bi(x), and c̃(x) = c(x, u)/u(x), then u satisfies (1.6.10) with respect to the lin-

ear operator Lu = Di[ãij(x)Dju + b̃(x)u] − c̃(x)u. From the above result the

theorem follows. The proof is complete.

Remark 1.6.7. If k = supS
2
∪
S

3

u = 0(or k = infS
2
∪
S

3

u = 0), and

the set Ω3 = {x ∈ Ω|aij(x)ξiξj = 0, for some ξ ∈ Rn, |ξ| 9= 0} has measure zero
in Rn, the conditions (1.6.17) and (1.6.20) can be weakened respectively as

b∗(x) ≤ c(x) ∀x ∈ Ω, and b∗(x) ≤ c(x, z)z−1, ∀(x, z) ∈ Ω×R1.

Applying Theorem 1.6.6, ones can obtain the L∞-modular estimates of weak
solutions of (1.6.4) as follows.

Corollary 1.6.8. Under the hypotheses of Theorem 1.6.3, let f ∈ L∞(Ω)
and b∗(x) ≤ c(x, z)z−1,∀(x, z) ∈ Ω×R1, if the weak solution u ∈ X1 of (1.6.4)
belongs to W 1,p(Ω) for some 1 < p and p/(p− 1) ≤ k, then we have

sup
Ω
|u| ≤ sup

Ω
| f(x)
c∗(x)

|

Finally, we consider the comparision principle.

Definition 1.6.9. We say that Lu1 ≥ Lu2 in weak sense, if]
Ω

[aij(x, u1)Dju1Div + biu1Div + c(x, u1)v]dx−
]S

1

�b · �Nu1vds

≤
]
Ω

[aij(x, u2)Dju2Div + biu2Div + c(x, u2)v]dx−
]S

1

�b · �Nu2vds

∀v ∈ hX1 ∩W 1,p(Ω) with v|S
2
∪
S

3

= 0 and v ≥ 0 on Ω.
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Theorem 1.6.10. Assume that aij(x, z) = aij(x), c ∈ c1(Ω×R1), and
b∗(x) < c3z(x, z), ∀(x, z) ∈ Ω×R1

If u1, u2 ∈ hX1 ∩W 1,p(Ω) ∩ Lk(Ω)(p/p − 1 ≤ k)Lu1 ≥ Lu2 in weak sense, and
u1|S

2
∪
S

3

≤ u2|S
2
∪
S

3

, then u1 ≤ u2 on Ω.

Proof. Let w = u1 − u2, then w|S
2
∪
S

3

≤ 0. From Lu1 ≥ Lu2 we have]
Ω

[aij(x)DjwDiv + biDivw + (c(x, u1)− c(x, u2))v2]dx

−
]S

1

�b · �Nwvds ≤ 0

for v ∈ hX1 ∩ W 1,p(Ω) ∩ Lk(Ω), v|S
2
∪
S

3

= 0, v ≥ 0 on Ω. Let c(x, u1) −
c(x, u2) = c

3
z(x, ũ)w, where ũ is a suitable mean value function of u1 and u2.

From Theorem 1.6.5 we deduce w ≤ 0 as required. The proof is complete.

Corollary 1.6.11. Under the assumptions of Theorem 1.6.10, if the prob-

lem (1.6.4) has a weak solution inX1∩W 1,p(Ω) for some p > 1 and p/(p−1) ≤ k,
then this weak solution must be unique.

In the same fashion as the proof of Theorem 1.6.6, one can obtain the fol-

lowing theorem.

Theorem 1.6.12. Let b∗(x) ≤ c(x, z)z−1,∀(x, z) ∈ Ω × R1. If f(x) ≤ 0
and u is a weak solution of (1.6.4) in X1 ∩W 1,p(Ω)(1 < p, p/(p− 1) ≤ k), then
u(x) ≥ 0 on Ω.

Remark 1.6.13. In the degenerate elliptic equations, if the termsDi(bi(x)u) ≡
0, 1 ≤ i ≤ n, then in all the theorems of this subsection, the condition u ∈hX1 ∩W 1,p(Ω)∩Lk(Ω)( 1p + 1

k = 1) can be relaxed as that u ∈ hX1(or u ∈ X1 in
Corollary 1.6.8).

1.6.4 W 1,p-solutions of the quasilinear equations

We start with an abstract regularity result which is useful for the existence

problem of Wm,p(Ω)-solutions of degenerate quasilinear elliptic equations of

order 2m.

Let X,X1,X2 be the spaces defined in Theorem 1.3.2, and Y be a reflective

Banach space, Y /→ X1.
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Lemma 1.6.14. Under the hypotheses of Theorem 1.3.2, there exists a

sequence of {un} ⊂ X,un - u0 in X1 such that < Gun, un >= 0, furthermore

if we can derive that nunnY < c, c is a constant, then the solution u0 of Gu = 0
belongs to Y .

The proof of Lemma 1.6.13 is obviously.

Now we return to discuss the existence ofW 1,p-solutions of equation (1.6.4).

Let Ω ⊂ Rn be bounded and C∞.

Theorem 1.6.15. Under the assumptions of Theorem 1.6.3, if there is a

real number β > 1 such that]
Ω

|λ(x)|−βdx <∞, λ(x) defined as in (1.6.6)

then (1.6.4) has a weak solution u ∈ X1 ∩W 1,p(Ω), p = 2β/1 + β > 1. More-

over, if
S

2 ∪
S
3 9= φ, and when bi 9≡ 0, for some 1 ≤ i ≤ n, k ≥ 2β/β −

1, c(x, z)z−1 −Dibi ≥ α > 0,∀(x, z) ∈ Ω × R1, otherwise c(x, z)z−1 ≥ α > 0,

then the solution u ∈ L∞(Ω) provided f ∈ L∞(Ω).

Proof. According to Lemma 1.6.14, it suffices to prove that there is a

constant c > 0 such that for any u ∈ X(X is as that in Theorem 1.6.3) with

< Lu, u >= 0, we have

(1.6.21) nunW 1,p ≤ c, p =
2β

1 + β
.

From (1.6.10) we know

< Lu, u >=

]
Ω

[aij(x, u)DiuDju+ bi(x)uDiu

+c(x, u)u+ f · u]dx−
]S

1

�b · �Nu2ds = 0, u ∈ X

Due to (L2) and (1.6.8) we have

< Lu, u >=

]
Ω

[aij(x, u)DiuDju+ c(x, u)u− 1
2
Dibiu

2

+f · u]dx+ 1
2

]S
2

�b · �Nu2ds− 1
2

]S
1

�b · �Nu2ds

≥
]
Ω

[β−1λ(x)|∇u|2 + c|u|k − f · u− g1]dx
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+
1

2

]S
1
∪
S

2

|�b · �N |u2ds

Consequently we have

(1.6.22)

]
Ω

[g1 + c1|f |k3 ]dx ≥
]
Ω

[β−1λ(x)|∇u|2 + c

2
|u|k]dx

By the reversed Holder inequality (see [Ad])

(1.6.23)

]
Ω

λ(x)|∇u|2dx ≥ [
]
Ω

|λ|−βdx]− 1
β [

]
Ω

|∇u| 2β1+β dx]
1+β
β

From (1.6.22) and (1.6.23), the estimates (1.6.21) follows.

The second conclusion follows from Theorem 1.6.6 and Remark 1.6.13. The

proof is complete.

Example 1.6.16. We consider the W 1,p-solutions of the following Keldys

equation.

(1.6.24)


∂
∂x(x

α1f1(u)
∂u
∂x1
) + ∂

∂y (y
α2f2(u)

∂u
∂y )− u = f(x), x ∈ Ω

u|S
3

= 0

where
S
2 = φ, and Ω = (0, 1) × (0, 1),S3, f1, f2 are defined as in Example

1.6.4. It is easy to see that

λ(x, y) = min{c1xα1 , c2yα2},
here c1 > 0 is the constant defined as in Example 1.6.4. If 0 < α1,α2 <

1
2 ,

then for β = 2, we have] 1

0

] 1

0

|λ|−2dx ≤ c21
] 1

0

x−2α1dx ·
] 1

0

y−2α2dy <∞

Furthermore we have

c(x, z)z−1 = 1 > 0

Therefore, by Theorem 1.6.15, the equation (1.6.24) has a weak solution u ∈
W 1, 43 (Ω) ∩ L∞(Ω) provided f ∈ L∞(Ω).
Next we investigate theW 1,p-solutions of the degenerate quasilinear elliptic

equations as follows

(1.6.25)


−Di(aij(x, u)Dju+ bi(x)u) + c(x, u,∇u) = f(x),

u|S
2
∪
S

3

= 0
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Suppose that

A1). The conditions (L1)(L2) in Theorem 1.6.3 hold,
S
i(i = 1, 2, 3) is the

same as that in (1.6.4), and the measure of
S
2 ∪
S
3 is nonzero on ∂Ω.

A2). For the function λ(x) in (L2), there exist β0 > 1, such that]
Ω

|λ(x)|−β0dx <∞.

A3).bi ∈ c1(Ω) and there is a g ∈ L1(Ω) such that

(1.6.26) g(x) ≤ c(x, z, ξ)z − 1
2
Dibi · z2

(1.6.27)


|aij(x, z)| ≤ c

|c(x, z, ξ)| ≤ c[|z|α1 + |ξ|α2 + 1]

0 ≤ α1 <
n(β0 − 1) + 2β0
n(1 + β0)− 2β0 ; 0 ≤ α2 <

2β0 + n(β0 − 1)
n(1 + β0)

Let X = {u ∈ c1(Ω)|u|S
3

= 0}, and Y be the completion of X with the

norm

nunY = [
]
Ω

aij(x, 0)DiuDjudx]
1
2 + [

]
Ω

|∇u|pdx] 1p

+[

]S
1
∪
S

2

|�b · �N |u2ds] 12

Since mes
S
2 ∪
S
3 9= 0, by the generalized Poincare inequalities (see [Te]), we

know that nunY ≥ cnunW 1,p , i.e. Y /→W 1,p(Ω). For the equation (1.6.25), we

always take p = 2β0/1 + β0, and

(1.6.28) β0 ≥

1, if bi ≡ 0, ∀1 ≤ i ≤ n

n, if bi 9≡ 0, for some 1 ≤ i ≤ n
u ∈ Y is called a weak solution of (1.6.25), if ∀v ∈ Y

(1.6.29)]
Ω

[aij(x, u)DjuDiv + biuDiv + c(x, u,∇u)v − fv]dx−
]S

1

�b · �Nuvds = 0

By applying Theorem 1.3.4, Theorem 1.6.5 and Remark 1.6.13, we can ob-

tain the following theorem.
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Theorem 1.6.17. Let the conditions (A1) − (A3) be satisfied and f ∈
Lp
3
(Ω)( 1p3 +

1
p) = 1). Then (1.6.25) has a weak solution u ∈ Y . Moreover, if

f ∈ L∞(Ω), and

(1.6.30) inf
z∈R1,ξ∈Rn

[c(x, z, ξ)z−1 −Dibi(x)] ≥ α > 0

then the solution u ∈ L∞(Ω).

Proof. Denote by < Gu, v > the left part of equality (1.6.29). It is easy to

show that the inner product < Gu, v > defines a bounded continuous mapping

G : Y → Y ∗ owing to (1.6.27) and (1.6.28). First we check the acute angle
condition. Let u ∈ Y , we have

< Gu, u > =

]
Ω

[aij(x, u)DiuDju− 1
2
Dibiu

2 + c(x, u,∇u)u

−fu]dx+ 1
2

]S
2

�b · �Nu2ds− 1
2

]S
1

�b · �Nu2ds

≥
]
Ω

[β−1aij(x, 0)DiuDju+ g − fu]dx+ 1
2

]S
1
∪
S

2

|�b · �N |u2ds

(due to (1.6.5) and (1.6.26))

≥ β−1

2

]
Ω

λ(x)|∇u|2dx+ β−1

2

]
Ω

]
Ω

[aij(x, 0)DiuDju+ g − fu]dx

+
1

2

]S
1
∪
S

2

|�b · �N |u2ds, (by (1.6.6))

≥ β−1

2
[

]
Ω

|λ|−β0dx]− 1
β0 [

]
Ω

|∇u|p] 2p + β−1

2

]
Ω

aij(x, 0)DiuDju

+
1

2

]S
1
∪
S

2

|�b · �N |u2ds− c
]
Ω

|u|pdx− c
]
Ω

[|g|+ |f |p3 ]dx

(thanks to the reversed Holder inequality)

According to (A2) and p < 2, from the above inequality we can derive

< Gu, u >≥ 0, ∀u ∈ Y, nunY = R great enough.

Next we need to verify the continuous condition ii) in Theorem 1.3.4. Let
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un - u0 in Y ( as β0 = 1, let un →∗ u0 in Y ), and

lim
n→∞ < Gun −Gu0, un − u0 >= 0

From the condition (1.6.27), by using the same manner as the proof of Theorem

1.5.2, ones can show that

lim
n→∞ < Gun, v >=< Gu0, v >, ∀v ∈ Y

Here we omit the details of proof. Therefore the first conclusion of the theorem

follows from Theorem 1.3.4.

Finally, by (1.6.30) we can obtain the second conclusion from Theorem 1.6.5

and Remark 1.6.13 by using the same method as the proof of Theorem 1.6.6.

The proof is complete.

1.6.5. Interior regularity

In this subsection, we concern the interior regularity of weak solutions of

equations (1.6.25), here a weak solution u of (1.6.25) means that u satisfies

(1.6.29) for any v ∈ C1(Ω) with v|S
3

= 0. We always assume that

0 ≤ aij(x, z)ξiξj , ∀(x, z) ∈ Ω×R, ξ ∈ Rn

and the set Ω3 = {x ∈ Ω|aij(x, z)ξiξj = 0, for some ξ ∈ Rn and |ξ| 9= 0} is
independent of z, mes Ω3 = 0 in Rn.
Suppose that aij , bi, c ∈ c1(Ω×R×Rn), and

(1.6.31) |c(x, z, ξ)| ≤ g(x, z), g ∈ c(Ω×R1)

Theorem 1.6.18. Let (1.6.31) hold and f ∈ c1(Ω). If u ∈ hX ∩ L∞(Ω)
is a weak solution of (1.6.25), hX defined as that in section 1.6.3, then u ∈
cα(Ω\Ω3) ∩H2

loc(Ω\Ω3), (0 < α < 1).

Proof. Because Ω\Ω3 is open, for any x0 ∈ Ω\Ω3 there is a close ball
B2δ(x0) = {x ∈ Ω|x − x0| ≤ 2δ} ⊂ Ω\Ω3 for some δ > 0. It suffices to verify
that u ∈ cα(Bδ(x0)) ∩H2

loc(Bδ(x0)).

Take η ∈ c∞0 (Ω) such that supp η ⊂ B2δ(x0), and

0 ≤ η(x) ≤ 1, η(x) = 1, as x ∈ Bδ(x0)

Let w = η · u, then

(1.6.32)

]
Ω

aij(x, u)DjwDivdx =

]
Ω

η(x)aij(x, u)DjuDivdx
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+

]
Ω

aij(x, u)uDjη ·Divdx

Puting η · v in (1.6.29), we have

(1.6.33)

]
Ω

ηaij(x, u)DiuDjvdx = −
]
Ω

[aij(x, u)DiuDjη · v+

+biuDiη · v + biuη ·Div + c(x, u,∇u)ηv − fη · v]dx
On the other hand

−
]
Ω

aij(x, u)DiuDjη · vdx =
]
Ω

Aij(x, u)Djη ·Divdx+

+

]
Ω

[
∂Aij
∂xi

Diη +Aij(x, u)Dijη]vdx

where

Aij(x, z) =

] z

0

aij(x, y)dy.

Since supp η ⊂ B2δ(x0), from (1.6.32) and (1.6.33), we have]
B2δ

aij(x, u)DjwDivdx =

]
B2δ

[Aij(x, u)Djη + biu · η

(1.6.34) +aij(x, u)uDjη]Divdx+

]
B2δ

[
∂Aij(x, u)

∂xi
Djη

+Aij(x, u)Dijη + fη − biDiη · u]vdx
Denote by

gi(x) = Aij(x, u)Djη + aij(x, u)Djηu+ bi(x)uη,

g(x) =
∂Aij(x,u)

∂xi
Djη +Aij(x, u)Dijη + f · η − biDiηu− c(x, u,∇u)η

Because B2δ ⊂ Ω\Ω3, there exists a constant � > 0 such that

�|ξ|2 ≤ aij(x, z)ξiξj , ∀(x, z) ∈ B2δ(x0)×R

Hence w ∈W 1,2(B2δ) ∩ L∞(B2δ) is a weak solution of the following equation
−Di(aij(x, u)Djw) = g −Digi, x ∈ B2δ(x0)

w|∂B2δ
= 0
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Owing to u ∈ L∞(B2δ) and (1.6.31), g, gi ∈ L∞(B2δ), and thanks to the de
Giorgi estimates (Theorem 1.5.6), we get that w ∈ cα(B2δ), which implies that
u ∈ cα(Bδ), for some 0 < α < 1.

Noticing that (1.6.34) holds true for any v ∈ H1
0 (Bδ), and Dw = Du in Bδ,

therefore we obtain]
Bδ

[aij(x, u)Dju−Aij(x, u)Djη − aij(x, u)Djηu− biuη]Divdx

−
]
Bδ

[
∂Aij
∂xi

Djη +Aij(x, u)Dijη + fη − biDiηu− c(x, u,∇u)η]vdx

= 0, ∀v ∈ H1
0 (Bδ).

Thus, u restricting on Bδ is a weak solution of the equation

DiAi(x, u,∇u) +B(x, u,∇u) = 0, x ∈ Bδ(x0)

where
Ai(x, u,∇u) = aij(x, u)Dju−Aij(x, u)Djη − aij(x, u)Djηu− biuη

B(x, u,∇u) = ∂Aij

∂xi
Djη +Aij(x, u)Dijη + fη − biDiηu− c(x, u,∇u)η

According to the assumptions, it is easy to see thatAi, B ∈ c1(Bδ×R×Rn), and
u ∈ W 1,2(Bδ) ∩ cα(Bδ). By means of the H

2-regularity of quasilinear elliptic

equations (see [LU]), we derive that u ∈ H2
loc(Bδ). Thus the theorem is proven.

Next, we consider the interior W 2,p-regularity of (1.6.25). Assume that

aij(x, z) ∈ c1(Ω) are independent of z, and
(1.6.35) |c(x, z, ξ)| ≤ c(|z|k + |ξ|q + 1).
where 0 ≤ k, 0 ≤ q < 2.

Theorem 1.6.19. Let (1.6.35) be satisfied, and bi ∈ c1(Ω), f ∈ Lk∗(Ω), k∗ =
k+1/k. If u ∈ hX∩Lk+1(Ω) is a weak solution of (1.6.25), then u ∈W 2,p

loc (Ω\Ω3), p =
min{2, k+1/k, 2/q}. Furthermore, if aij , b, c ∈ c∞(Ω×R×Rn), and np/(n−
2p) > k + 1, np/(n− p) > 2, then u ∈ c∞(Ω\Ω3).

Proof. As the proof of Theorem 1.6.18, we can get that w = η · u ∈
W 1,2(B2δ) ∩ Lk+1(B2δ) is a weak solution of the equation

−Di(aij(x)Djw) = g −Digi, x ∈ B2δ

w|∂B2δ
= 0
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where 
gi = 2aij(x)Djηu+ biη · u,

g = DiaijDjηu+ aijDijηu+ fη − biDiηu− c(x, u,∇u)η

By (1.6.35) and hX ∩ Lk+1(Ω) /→ W 1,2(B2δ) ∩ Lk+1(B2δ), we can see that
g ∈ Lhk(B2δ),Digi ∈ L2(B2δ),hk = min{k+1k , 2q}. According to the Lp-estimates
(Theorem 1.1.11), ones obtain that w ∈ W 2,p(B2δ), i.e. u ∈ W 2,p(Bδ), p =

min{2, (k + 1)/k, 2/q}. The first conclusion is proven.
By iteration, similar to the proof of Theorem 1.5.3, one can derive the

second conclusion of this theorem. The proof is complete.

1.7. The Boundary Value Problem of the

Equations with Nonnegative Characteristic
Form

1.7.1. Formulation of the boundary value problem

For second order equations with nonnegative characteristic form, Keldys[Ke]

and Fichera[Fi] presented a kind of boundary condition, with that the associ-

ated problem is of well posedness. However, for higher order ones, the dis-

cussion of well posed boundary value problem has not been seen. Here we

shall give a kind of boundary value condition, which is consistent with Dirich-

let problem if the equations are elliptic, and coincident with Keldys-Fichera

boundary value problem when the equations are of second order.

We consider the linear partial differential operator

(1.7.1) Lu =
[

|α|=|β|=m,|γ|=m−1
(−1)mDα(aαβ(x)D

βu+ bαγ(x)D
γu)

+
[

|θ|,|λ|≤m−1
(−1)|θ|Dθ(dθλ(x)D

λu).

where x ∈ Ω,Ω ⊂ Rn is an open set, the coefficients of L are bounded measur-
able functions, and aαβ(x) = aβα(x).

Let {gαβ(x)} be a series of functions with gαβ = gβα, |α| = |β| = k. If in cer-
tain order we put all multiple indexes α with |α| = k into a row{α1, · · · ,αNk},
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then {gαβ(x)} can be made into a symmetric matrix (gαiαj ). By this rule, we
get a symmetric matrix

(1.7.2) M(x) = (aαiαj (x))i,j=1,···,Nm

Suppose that the matrix M(x) is semi-positive, i.e.

(1.7.3) 0 ≤ aαiαj (x)ξiξj , ∀x ∈ Ω, ξ ∈ RNm ,

and the odd order part of (1.7.1) can be written as

(1.7.4)[
|α|=m,|γ|=m−1

(−1)mDα(bαγ(x)D
γu) =

n[
i=1

[
|λ|=|θ|=m−1

(−1)mDλ+δi(biλθ(x)D
θu)

where δi = {δi1, · · · , δin}, δij is the Kronecker symbol. Assume that for all
1 ≤ i ≤ n, we have

biλθ(x) = b
i
θλ(x), x ∈ Ω

We introduce another symmetric matrix

(1.7.5) B(x) =

#
n[
k=1

bkλiλj (x) · nk
$
i,j=1,···,Nm−1

, x ∈ ∂Ω

where �n = {n1, · · · , nn} is the outward normal at x ∈ ∂Ω. Let the following

matrices be orthogonal

CM (x) = (CMij (x))i,j=1,···,Nm
, x ∈ Ω

CB(x) = (CBij (x))i,j=1,···,Nm−1 , x ∈ ∂Ω

satisfying

CM (x)M(x)CM (x)3 = (ei(x)δij)i,j=1,···,Nm

CB(x)B(x)CB(x)3 = (hi(x)δij)i,j=1,···,Nm−1 .

where C(x)3 is the transposed matrix of C(x), ei(x) are the eigenvalues ofM(x)
and hi(x) the eigenvalues of B(x). Denote bySM

i = {x ∈ ∂Ω|ei(x) > 0}, 1 ≤ i ≤ NmSB
i = {x ∈ ∂Ω|hi(x) > 0}, 1 ≤ i ≤ Nm−1SC
1 = ∂Ω\SB

i ; 1 ≤ i ≤ Nm−1.
For multiple indices α,β,α ≤ β means that αi ≤ βi,∀1 ≤ i ≤ n. Now let us
consider the following boundary value problem,

(1.7.6) Lu = f(x), x ∈ Ω
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(1.7.7) Dαu|∂Ω = 0, |α| ≤ m− 2

(1.7.8)

Nm−1[
j=1

CBij (x)D
λju|SB

i

= 0, |λj | = m− 1, 1 ≤ i ≤ Nm−1

(1.7.9)

Nm[
j=1

Cmij (x)D
αi−δkj u · nkj |SM

i

= 0,

for all δkj ≤ αj , |αj | = m, and 1 ≤ i ≤ Nm where δkj = {0, · · · , 1� ~} �
kj

, · · · , 0}.

We can see that the item (1.7.9) of boundary value condition is determined

by the leading term matrix (1.7.2), and (1.7.8) is defined by the odd term

matrix (1.7.5). Moreover, if the operator L is not elliptic, then the item (1.7.7)

implies that the operator

L3u =
[

|θ|,|λ|≤m−1
(−1)|θ|Dθ(dθλ(x)D

λu)

is elliptic.

In order to illustrate the boundary value condition (1.7.7)-(1.7.9), in follow-

ing we give an example.

Example 1.7.1. Give the differential equation

(1.7.10)
∂4u

∂x41
+

∂4u

∂x21∂x
2
2

+
∂3u

∂x32
−7u = f, x ∈ Ω ⊂ R2.

here Ω = {(x1, x2) ∈ R2|0 < x1 < 1, 0 < x2 < 1}. let α1 = {2, 0},α2 =
{1, 1},α3 = {0, 2} and λ1 = {1, 0},λ2 = {0, 1}, then the leading and odd term
matrices of (1.7.10) respectively are

M =

 1 0 0

0 1 0

0 0 0

 ; B =

�
0 0

0 n2

�

and the orthogonal matrices are

CM =

 1 0

1

0 1

 , CB =

�
1 0

0 1

�
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We can see that
SM
1 = ∂Ω,

SM
2 = ∂Ω,

SM
3 = φ, and

SB
1 = φ,

SB
2 as shown

in Fig 1.2 below

Fig. 1.2

The item (1.7.8) is

2[
j=1

CB2jD
λju|SB

2

= Dλ2u|SB

2

=
∂u

∂x2
|SB

2

= 0

and the item (1.7.9) is

3[
j=1

CM1jD
αi−δkj u · nkj |SM

1

= Dα1−δk1unk1 |SM

1

= 0

3[
j=1

CM2jD
αj−δkj u · nkj |SM

2

= Dα2−δk2u · nk2 |SM

2

= 0

∀δk1 ≤ α1 and δk2 ≤ α2. Since only δk1 = {1, 0} ≤ α1 = {2, 0}, hence we have

Dα1−δk1u · nk1 |SM

1

=
∂u

∂x1
· n1|∂Ω = 0

however, δk2 = {1, 0} < α2 = {1, 1} and δk2 = {0, 1} < α2, therefore

Dα2−δk2u · nk2 |SM

2

=


∂u
∂x2

· n1|∂Ω = 0

∂u
∂x1

· n2|∂Ω = 0
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Thus the associated boundary value condition of (1.7.10) is as follows

u|∂Ω = 0, ∂u

∂x2
|∂Ω/Γ = 0, ∂u

∂x1
|∂Ω = 0

which implies that ∂u
∂x2

is free on Γ = {(x1, x2) ∈ ∂Ω|0 < x1 < 1, x2 = 0}.

Remark 1.7.2. In general the matrices M(x) and B(x) arranged are not

unique, hence the boundary value conditions relating to the operator L may

be not unique.

Remark 1.7.3. When all leading terms of L are zero, the equation (1.7.6)

is an odd order one. In this case, only (1.7.7) and (1.7.8) remain.

Now we return to discuss the relations between the condition (1.7.7)-(1.7.9)

with Dirichlet and Keldys-Fichera boundary value conditions.

It is easy to verify that the problem (1.7.6)-(1.7.9) is the Dirichlet prob-

lem provided the operator L being elliptic. In this case,
SM

i = ∂Ω for all

1 ≤ i ≤ Nm. Besides, (1.6.9) run over all 1 ≤ i ≤ Nm and δkj ≤ αj , moreover

CM (x) is non-degenerate for any x ∈ ∂Ω. Solving the system of equations, we

get Dαu|∂Ω = 0,∀|α| = m− 1.

When m = 1, namely L is of second order, the condition (1.7.8) is the form

u|SB = 0,
SB = {x ∈ ∂Ω|Sn

i=1 bi(x)ni > 0}.
and (1.7.9) is

n[
j=1

CMij (x)nju|SM

i

= 0, 1 ≤ i ≤ n

Noticing
n[

i,j=1

aij(x)ninj =
n[
i=1

ei(x)(
n[
j=1

CMij (x)nj)
2

thus the condition (1.7.9) is the form

u|SM = 0,
SM = {x ∈ ∂Ω|aij(x)ninj > 0}.

It shows that when m = 1, (1.7.8) and (1.7.9) are coincident with Keldys-

Fichera boundary value condition.

Next, we shall give the definition of weak solutions of (1.7.6)-(1.7.9). Let

(1.7.10) X = {v ∈ C∞(Ω) |Dαv|∂Ω = 0, |α| ≤ m− 2, and

v satisfy (1.7.9), nvn2 <∞}.
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where n · n2 is defined by

nvn2 = [
]
Ω

[
|α|≤m

|Dαv|2dx+
]
∂Ω

[
|γ|=m−1

|Dγv|2ds] 12

We denote by X2 the completion of X under the norm n · n2 and by X1 the
completion of X with the following norm

nvn1 = [
]
Ω

(
[

|α|=|β|=m
aαβ(x)D

αvDβv +
[

|γ|≤m−1
|Dγv|2)dx

+

]
∂Ω

Nm−1[
i=1

|hi(x)|(
Nm−1[
j=1

CBijD
γjv)2ds]

1
2

Definition 1.7.4. u ∈ X1 is a weak solution of (1.7.6)-(1.7.9) if for any
v ∈ X2, the following equality holds]

Ω

[
[

|α|=|β|=m,|γ|=m−1
(aαβ(x)D

βu+ bαγ(x)D
γu)Dαv

(1.7.11) +
[

|θ|,|λ|≤n−1
dθ,λ(x)D

λuDθv]dx−
Nm−1[
i=1

]SC

i

h(x)·

×(
Nm−1[
j=1

CBijD
γju)(

Nm−1[
j=1

CBijD
γjv)ds =

]
Ω

f(x) · vdx

We need to check the reasonableness of the boundary value problem (1.7.6)-

(1.7.9) under the definition of weak solutions, i.e., the solutions in the classical

sense are necessarily the solutions in weak sense, and conversely when a weak

solution satisfies certain regularity conditions, it will surely satisfy the given

boundary value conditions. Here we assume that all coefficients of L are suffi-

ciently smooth.

Let u be a classical solution of (1.7.6)-(1.7.9). Denote by < Lu, v > the left

part of (1.7.11), we want to show

(1.7.12) < Lu, v >=

]
Ω

Lu · vdx, ∀v ∈ X
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Thanks to integration by part, we have]
Ω

Lu · vdx =
]
Ω

[
[

|α|=|β|=m,|γ|=m−1
(aαβ(x)D

βu+ bαγ(x)D
γu)Dαv

+
[

|θ|,|λ|≤m−1
dθλ(x)D

λuDθv]dx−
]
∂Ω

[
[

|α|=|β|=m
aαβ(x)D

βu ·

×Dα−δkv · nk +
[

|λ|=|θ|=m−1

n[
i=1

biλθ(x) · niDθuDλv]ds

Since v ∈ X, we have]
∂Ω

[
|α|=|β|=m

aαβ(x)D
βuDα−δkv · nkds

=

]
∂Ω

Nm[
i=1

ei(x)(

Nm[
j=1

CMij D
αju)(

Nm[
j=1

CMij D
αj−δkv · nk)ds = 0

Because u satisfies (1.7.8),]
∂Ω

[
|λ|=|θ|=m−1

n[
i=1

biλθ(x) · niDθuDλvds

=

]
∂Ω

Nm−1[
i=1

hi(x)(

Nm−1[
j=1

CBijD
γju)(

Nm−1[
j=1

CBijD
γjv)ds

=

Nm−1[
i=1

]SC

i

hi(x)(

Nm−1[
j=1

CBijD
γju)(

Nm−1[
j=1

CBijD
γjv)ds

From the three equalities above we obtain (1.7.12).

Let u ∈ X1 be a weak solution of (1.7.6)-(1.7.9). Then the boundary value
condition (1.7.7) and (1.7.9) can be reflected by the space X1. In fact, we can

show that if u ∈ X1, then u satisfies

(1.7.13)

Nm[
i=1

]SM

i

ei(x)(

Nm[
j=1

CMij D
αj−δkj u ·Nkj )×

×(
Nm[
j=1

CMij D
αjv)ds = 0, ∀v ∈ X1 ∩Wm+1,2(Ω).
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Evidently, when u ∈ X, v ∈ X1 ∩Wm+1,2(Ω), we have]
Ω

[
|α|=|β|=m

aαβ(x)D
βuDαvdx

(1.7.14) = −
]
Ω

[
|α|=m,|β|=m

Di(aα,βD
αv)Dβ−δiudx

If we can verify that for any u ∈ X1, (1.6.14) holds true, then we get]
∂Ω

[
|α|=|β|=n

aαβ(x)D
αvDβ−δiu ·Nids = 0

which means that (1.7.13) holds true. Since X is dense in X1, for u ∈ X1 given,
let uk ∈ X and uk → u in X1. Then

lim
k→∞

]
Ω

[
|α|=m,|β|=m

aαβD
βukD

αvdx =

]
Ω

[
|α|=m,|β|=m

aαβD
βuDαvdx

lim
k→∞

]
Ω

[
|α|=m,|β|=m

Di(aαβD
αv)Dβ−δiukdx =

]
Ω

[
|α|=m,|β|=m

Di(aαβD
αv)Dβ−δiudx

Due to uk satisfying (1.7.14), hence u ∈ X1 satisfies (1.7.14) Thus (1.7.13) is
verified.

Remark 1.7.5. When (1.7.2) is a diagonal matrix, then (1.7.9) is the form

Dγu|SM

γ

= 0, for |γ| = m− 1

where
SM

γ = {x ∈ ∂Ω|Sn
i=1 aγ+δiγ+δi(x) · n2i > 0}. In this case, the corre-

sponding trace embedding theorems can be set, and the boundary value con-

dition (1.7.9) is naturally satisfied. On the other hand, if the weak solution u

of (1.7.6)-(1.7.9) belong to X1 ∩Wm,p(Ω) for some p > 1, then by the trace

embedding theorems, the condition (1.7.9) also holds true.

It remains to verify the condition (1.7.8). Let u0 ∈ X1 ∩Wm+1,2(Ω) satisfy

(1.7.11). Since Wm+1,2(Ω) /→ X2, hence we have]
Ω

[
[

|α|=|β|=m,|γ|=m−1
(aαβ(x)D

βu0 + bαγ(x)D
γu0)D

αu0

(1.7.15) +
[

|θ|,|λ|≤m−1
dθλ(x)D

λu0D
θu0 − fu0]dx−
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−
Nm−1[
i=1

]SC

i

hi(x)(

Nm−1[
j=1

CBijD
γju0)

2ds = 0

On the other hand, by (1.7.11), for any v ∈ C∞0 (Ω), we get

(1.7.16)

]
Ω

[−
[

|α|=|β|=m
Di(aαβ(x)D

αu0)D
β−δiv +

[
|θ|,|λ|≤m−1

dθλ(x)D
λu0D

θv

−fv −Di(
[

|θ|=|γ|=m−1
biθγ(x)D

γu0)D
θv]dx = 0

Because the coefficients of L are sufficiently smooth, and C∞0 (Ω) is dense in
Wm−1,2
0 (Ω), the equality (1.7.16) also holds for any v ∈Wm−1,2

0 (Ω). Therefore,

due to u0 ∈Wm−1,2
0 (Ω) we have]

Ω

[−
[

|α|=|β|=m
Di(aαβ(x)D

βu0)D
α−δiu0 +

[
|θ|,|λ|≤m−1

dθλ(x)D
λu0D

θu0

(1.7.17) −fu0 −Dk(
[

|θ|=|γ|=m−1
bkθγ(x)D

γu0)D
θu0]dx = 0

From (1.7.13) one derives

−
]
Ω

[
|α|=|β|=m

Di(aαβ(x)D
αu0)D

β−δiu0dx =
]
Ω

[
|α|=|β|=m

aαβ(x)D
αu0D

βu0dx

Furthermore

−
]
Ω

Dk(
[

|θ|=|γ|=m−1
bkθγ(x)D

γu0)D
θu0dx =

]
Ω

[
|α|=m,|γ|=m−1

bαγ(x)D
γu0D

αu0dx

−
Nm−1[
i=1

]SC

i
∪
SB

i

hi(x)(

Nm−1[
j=1

CBijD
γju0)

2ds

From (1.7.15) and (1.7.17) one can see that

Nm−1[
i=1

]SB

i

hi(x)(

Nm−1[
j=1

CBijD
γju0)

2ds = 0

Noticing hi(x) > 0 in
SB
i , one deduces that u0 satisfies (1.6.8) provided

u0 ∈ X1 ∩Wm+1,2(Ω).
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Finally, we discuss the well posedness of the boundary value problem (1.7.6)-

(1.7.9).

Theorem 1.7.6(Existence Theorem). Let Ω ⊂ Rn be an arbitrary open
set, f ∈ L2(Ω) and bαγ ∈ C1(Ω). If there exist a constant C > 0 and g ∈ L1(Ω)
such that

(1.7.18) C
[

|γ|=m−1
|ξγ |2 + C|ξi|2 − g ≤

[
|λ|,|θ|≤m−1

dθλ(x)ξθξλ

−1
2

n[
i=1

[
|γ|=|β|=m−1

Dib
i
γβ(x)ξγξβ .

where ξα is the component of ξ ∈ RNm−1 corresponding to Dαu, then the

problem (1.7.6)-(1.7.9) has a weak solution in X1.

Proof. Let < Lu, v > be the inner product as in (1.7.12). It is easy to

verify that < Lu, v > defines a bounded linear operator L : X1 → X∗2 . Hence
L is weakly continuous. From (1.7.18), for u ∈ X we drive that

(1.7.19) < Lu, u >=

]
Ω

[
[

|α|=|β|=m
aαβ(x)D

αuDβu+

+
n[
i=1

[
|λ|=|θ|=m−1

biλθ(x)D
θuDλ+δiu+

[
|γ|,|α|≤m−1

dγα(x)D
γuDαu]dx

−
Nm−1[
i=1

]SC

i

hi(x)(

Nm−1[
j=1

CBijD
γju)2ds

=

]
Ω

[
[

|α|=|β|=n
aαβ(x)D

αuDβu+
[

|γ|,|α|≤m−1
dγα(x)D

γuDαu

−1
2

n[
i=1

[
|γ|=|β|=m−1

Dib
i
γβ(x)D

γuDβu]dx+

+
1

2

Nm−1[
i=1

[

]SB

i

−
]SC

i

hi(x)(

Nm−1[
j=1

CBijD
γju)2ds

≥
]
Ω

[
[

|α|=|β|=m
aαβ(x)D

αuDβu+ C
[

|γ|=m−1
|Dγu|2 + Cu2 − g(x)]dx

+
1

2

Nm−1[
i=1

[

]SB

i
∪
SC

i

|hi(x)|(
Nm−1[
j=1

CBij (x)D
γju)2]ds
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Hence we obtain

< Lu, u >≥ Cnun21 − C, ∀u ∈ X
Thus by Holder inequality we have

< Lu− f, u >≥ 0, ∀u ∈ X, nun1 = R great enough.

By Theorem 1.3.2, the theorem is proven.

Theorem 1.7.7(Uniqueness Theorem). Under the assumptions of Theo-

rem 1.7.6 with g(x) = 0 in (1.7.18). If the problem (1.7.6)-(1.7.9) has a weak

solution in X1 ∩Wm,p(Ω) ∩Wm−1,q(Ω)( 1p +
1
q = 1), then such a solution is

unique. Moreover, if bαγ(x) = 0 in L,∀|α| = m, |γ| = m − 1, then the weak
solution u ∈ X1 of (1.7.6)-(1.7.7) is unique.

Proof. Let u0 ∈ X1∩Wm,p(Ω)∩Wm−1,q(Ω) be a weak solution of (1.7.6)-
(1.7.9). We can see that (1.7.11) holds for all v ∈ X1 ∩Wm,p(Ω)∩Wm−1,q(Ω).
Hence < Lu0, u0 > is well defined. Let u1 ∈ X1∩Wm,p(Ω)∩Wm−1,q(Ω). Then
from (1.7.19) it follows that < Lu1 − Lu0, u1 − u0 >= 0 ⇒ u1 = u0, which

means that the solution of (1.7.6)-(1.7.9) in X1 ∩ Wm,p(Ω) ∩ Wm−1,q(Ω) is
unique. If all the odd terms bαγ(x) = 0 of L, then (1.7.11) holds for all v ∈ X1,
in the same fashion we know that the weak solution of (1.7.6)-(1.7.9) in X1 is

unique. The proof is complete.

Remark 1.7.8. In subsection 1.7.3, we can see that under certain assump-

tions, the weak solutions of degenerate elliptic equations are in X1∩Wm,p(Ω)∩
Wm−1,q(Ω)( 1p +

1
q = 1).

1.7.2. Existence of higher order quasilinear equations

Give the quasilinear differential operator

(1.7.20) Au =
[

|α|=|β|=m,|γ|=m−1
(−1)mDα(aαβ(x,

a
u)Dβu+ bαγ(x)D

γu)

+
[

|γ|=|θ|=m−1
(−1)m−1Dγ(dγθ(x,

a
u)Dθu)

+
[

|λ|≤m−1
(−1)|λ|Dλgλ(x,

a
u)

where m ≥ 2 and Yu = {Dαu}|α|≤m−2.
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Let aαβ(x, ξ) = aβα(x, ξ), the odd order part of (1.7.20) be as that in

(1.7.4), bαγ ∈ C1(Ω) and
SB

i ,
SC
i be the same as those in subsection 1.7.1.

The leading matrix is

M(x, ξ) = (aαiαj (x, ξ))i,j=1,···,Nm

and the eigenvalues are ei(x, ξ). We denoteSM
i = {x ∈ ∂Ω|ei(x, 0) > 0}, 1 ≤ i ≤ Nm.

We consider the following problem

(1.7.21) Au = f(x), x ∈ Ω

(1.7.22)
a
u|∂Ω = 0.

(1.7.23)

Nm−1[
j=1

CBij (x)D
λju|SB

i

= 0, |λj | = m− 1, 1 ≤ i ≤ Nm−1.

(1.7.24)

Nm[
j=1

CMij (x, 0)D
αj−δkj u ·Nkj |SM

i

= 0,

∀δkj ≤ αj , |αj | = n, 1 ≤ i ≤ Nm, δkj = {0, · · · , 1� ~} �
kj

, · · · , 0}.

Denote the anisotropic Sobolev space by

W pα
|α|≤k(Ω) = {u ∈ Lp0(Ω)|p0 ≥ 1,Dαu ∈ Lpα(Ω), ∀1 ≤ |α| ≤ k, and pα ≥ 1, or = 0}.

whose norm is

nun =
[
|α|≤k

sign pαnDαunLpα .

when all pα = p for |α| = k, then the space is denoted by W p,pα
k,|α|≤k−1(Ω).

qθ(|θ| ≤ k) is termed the critical embedding exponent from W pα
|α|≤k(Ω) to

Lp(Ω), if qθ is the largest number of the exponent p in whereDθu ∈ Lp(Ω),∀u ∈
W pα
|α|≤k(Ω), and the embedding is continuous.
For example, when Ω is bounded, the space X = {u ∈ Lk(Ω)|k ≥ 1,Diu ∈

L2(Ω), 1 ≤ i ≤ n} with norm nun = n∇unL2 + nunLk is an anisotropic
Sobolev space, and the critical embedding exponents from X to Lp(Ω) are

qi = 2(1 ≤ i ≤ n), q0 = max{k, 2n
n−2}.
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Suppose that

(A1). The coefficients of the leading term of A satisfy one of the following two

conditions

i). aαβ(x, η) = aαβ(x)

ii). aαβ(x, η) = 0, as α 9= β.

(A2). There is a constant M > 0 such that

(1.7.25) 0 ≤M
[

|α|=|β|=m
aαβ(x, 0)ξαξβ ≤

[
|α|=|β|=m

aαβ(x, η)ξαξβ

≤M−1
[

|α|=|β|=m
aαβ(x, 0)ξαξβ .

(A3). There are functions Gi(x, η)(i = 0, 1, · · · , n) with Gi(x, 0) = 0,
∀1 ≤ i ≤ n, such that

[
|γ|=m−1

gγ(x,
a
u)Dγu =

n[
i=1

DiGi(x,
a
u) +G0(x,

a
u).

(A4). There is a constant c > 0 such that

(1.7.26) c|ξ|2 ≤
[

|α|=|β|=m−1
[dαβ(x)ξαξβ − 1

2

n[
i=1

Dib
i
αβ(x)ξαξβ ]

(1.7.27) c
[

|λ|≤m−1
signpλ|ηλ|pλ − f1 ≤

[
|θ|≤m−2

gθ(x, η)ηθ +G0(x, η).

where f1 ∈ L1(Ω), p0 > 1, pλ > 1 or = 0,∀1 ≤ |λ| ≤ m− 2.
(A5). There is a constant c > 0 such that

(1.7.28) |aα,β(x, η)| ≤ c

(1.7.29) |dγθ(x, η)| ≤ c[
[

|β|≤m−2
|ηβ|sβ + 1]

(1.7.30) |gγ(x, η)| ≤ c[
[

|β|≤m−2
|ηβ |Sβ + 1].

where 1 ≤ Sβ < qβ/2, 1 ≤ Sβ < qβ, qβ is critical embedding exponent
from W 2,pλ

m−1,|λ|≤m−2(Ω) to L
p(Ω).
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Let X be defined by (1.7.10) and X1 be the completion of X under the

norm

nvn1 = [
]
Ω

(
[

|α|=|β|=m
aαβ(x, 0)D

αvDβv +
[

|γ|=m−1
|Dγv|2)dx

+

]
∂Ω

Nm−1[
i=1

|hi(x)|(
Nm−1[
j=1

CBijD
γjv)2ds]

1
2 +

[
|γ|≤m−2

signpγnDγvnLpγ

and X2 be the completion of X with the norm

nvn2 = nvnWm,p + nvnWm,2 + [

]
∂Ω

[
|γ|=m−1

|Dγv|2ds] 12

where p ≥ max{2, qβ(qβ − Sβ)−1, 2qβ(qβ − 2Sβ)−1}.

u ∈ X1 is a weak solution of (1.7.21)-(1.7.24), if for any v ∈ X2, we have]
Ω

[
[

|α|=|β|=m
aαβ(x,

a
u)DαuDβv +

[
|α|=m,|γ|=m−1

bαγ(x)D
γuDαv

(1.7.31) +
[

|γ|=|θ|=m−1
dγθ(x,

a
u)DθuDγv +

[
|λ|≤m−1

gλ(x,
a
u)Dλv − fv]dx

−
Nm−1[
i=1

]SC

i

hi(x)(

Nm−1[
j=1

CBijD
γju)(

Nm−1[
j=1

CBijD
γjv)ds = 0

Theorem 1.7.9. Under the condition (A1)−(A5), if f ∈ Lp30(Ω), ( 1p0+ 1
p30
=

1), then the problem (1.7.21)-(1.7.24) has a weak solution in X1.

Proof. Denote by < Au, v > the left part of (1.7.31). It is easy to verify

that the inner product < Au, v > defines a bounded mapping A : X1 → X∗2 by
the condition (A5).

Let u ∈ X, by (A2)− (A4), one can deduce that

< Au, u >≥
]
Ω

[M
[

|α|=|β|=m
aαβ(x, 0)D

αuDβu+ C
[

|γ|=m−1
|Dγu|2

(1.7.32) +C
[

|θ|≤m−2
|Dθu|pθ ]dx+ 1

2

Nm−1[
i=1

[

]SB

i

−
]SC

i

hi(x)
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×(
Nm−1[
j=1

CBij (x)D
γju)2ds]−

]
Ω

[f · u+ |f1|]dx

Noticing hi|SB

i

> 0, hi|SC

i

≤ 0,SB
i ∪

SC
i = ∂Ω, by Holder and Young in-

equalities, from (1.6.32) we can get

< Au, u >≥ 0, ∀u ∈ X, nunX1 large enough.

By using the same method as in Theorem 1.5.1 and Theorem 1.6.3, we can

prove that the mapping A : X1 → X∗2 is weakly continuous. By Theorem 1.3.2,
this theorem is proven.

In the following, we take an example to illustrate the application of Theorem

1.7.9.

Example 1.7.10. We consider the boundary value problem of odd order

equation as follows

(1.7.33)
∂3u

∂x3
+

∂3u

∂y3
−7u+ u3 = f(x, y), (x, y) ∈ Ω ⊂ R2

where Ω is an unit ball in R2, see Fig. 1.3 below

Fig. 1.3

The odd term matrix is

B(x, y) =

�
nx 0

0 ny

�
=

�
x 0

0 y

�
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It is easy to see thatSB
1 = {x ∈ ∂Ω|nx = x > 0} = {−π

2 < θ < π
2 }SB

2 = {x ∈ ∂Ω|ny = y > 0} = {0 < θ < π}.
The boundary value condition associated with (1.7.33) is

(1.7.34) u|∂Ω = 0

(1.7.35)
∂u

∂x
|SB

1

=
∂u

∂x
(cosθ, sinθ) = 0, −π

2
< θ <

π

2

(1.7.36)
∂u

∂y
|SB

2

=
∂u

∂y
(cosθ, sinθ) = 0, 0 < θ < π.

Applying Theorem 1.7.9, if f ∈ L4/3(Ω), then the problem (1.7.33)-(1.7.36) has
a weak solution u ∈W 1,2(Ω).

1.7.3. Wm,p-solutions of degenerate elliptic equations

In the following, we give some existence theorems of Wm,p-solutions for the

boundary value condition (1.7.22)-(1.7.24) of higher order degenerate elliptic

equations.

First we consider the quasilinear equations

(1.7.37)
[

|α|=|β|=m,|γ|=m−1
(−1)mDα(aαβ(x,Du)D

βu+ bαγ(x)D
γu)

+
[

|γ|≤m−1
(−1)|γ|Dγgγ(x,Du) = f(x), x ∈ Ω.

where Du = {Dαu}|α|≤m−1. The boundary value condition associated with
the equation (1.7.37) is given by (1.7.22)-(1.7.24). Suppose that Ω ⊂ Rn is

bounded, and

(B1) The condition (1.7.25) holds, and there is a continuous function λ(x) ≥ 0
on Ω such that

λ(x)|ξ|2m ≤
[

|α|=|β|=m
aαβ(x, 0)ξ

αξβ , ∀ξ ∈ Rn

where ξα = ξα11 · · · ξαnn ,α = (α1, · · · ,αn).
(B2).Ω

3 = {x ∈ Ω|λ(x) = 0} is a measure zero set in Rn, and there is a sequence
of subdomains Ωk with cone property such that Ωk ⊂⊂ Ω/Ω3,Ωk ⊂ Ωk+1
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and ∪kΩk = Ω/Ω3.
(B3) The positive definite condition

C
[

|λ|≤m−1
|ξλ|pλ − f1 ≤

[
|θ|≤m−1

gθ(x, ξ)ξθ − 1
2

n[
i=1

[
|γ|=|α|=m−1

Dib
iξαξγ

where p0 > 1, pλ > 1 or = 0 for 1 ≤ |λ| ≤ m− 1; f1 ∈ L1(Ω)
(B4). The structural conditions

|aαβ(x, ξ)| ≤ c

|gγ(x, ξ)| ≤ c[
[

|θ|≤m−1
|ξθ|Sθ + 1]

where 0 ≤ Sθ < qθ, qθ is the critical embedding exponent fromW pλ
|λ|≤m−1(Ω)

to Lp(Ω).

Let X be define by (1.7.10) and hX1 be the completion of X with the norm

nun = [
]
Ω

[
|α|=|β|=m

aαβ(x, 0)D
αuDβudx]

1
2 +

[
|α|≤m−1

signpαnDαunLpα

+[

Nm−1[
i=1

]
∂Ω

|hi(x)|(
Nm−1[
j=1

CBij (x)D
γju)ds]

1
2

Theorem 1.7.11. Under the assumptions (B1)− (B4), if f ∈ Lp30(Ω), then
the problem (1.7.37)(1.7.22)-(1.7.24) has a weak solution u ∈ hX1. Moreover, if
there is a δ ≥ 1 such that ]

Ω

|λ(x)|−δdx <∞

then the weak solution u ∈Wm,p(Ω) ∩ hX1, p = 2δ
1+δ .

The proof of Theorem 1.7.11 is parallel to that of Theorem 1.6.15, here we

omit the details.

Next, we consider the quasilinear equation

(1.7.38)
[

|α|=|β|=m,|γ|=m−1
(−1)mDα(aαβ(x,Du)D

βu+ bαβ(x)D
γu)

+
[

|γ|≤m−1
(−1)|γ|Dγgγ(x, u) = f(x), x ∈ Ω
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where u = {u, · · · ,Dmu}.
Suppose that

(B34) There is a δ ≥ 1 such that]
Ω

|λ(x)|−δdx <∞.

(B35) The structural conditions

|aαβ(x, η)| ≤ c

|gγ(x, ξ)| ≤ c[
[

|θ|≤m−1
|ξθ|Sγθ +

[
|α|=m

|ξα|tγ + 1]

where 0 ≤ Sγθ < qγ−1
qγ
qθ, 0 ≤ tγ < p(qγ − 1)/qγ , p = 2δ/1 + δ, qγ , qθ are the

critical embedding exponents from W pλ
|λ|≤m−1(Ω) to L

q(Ω).

Theorem 1.7.12. Let the conditions (B1) − (B3) and (B34)(B35) be sat-
isfied. If f ∈ Lp30(Ω), then the problem (1.7.38)(1.7.22)-(1.7.24) has a weak

solution u ∈Wm,p(Ω)cap hX1, p = 2δ/(1 + δ).

The proof of Theorem 1.7.12 is parallel to that of Theorem 1.6.17.
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