Chapter I
Existence and Regularity of
Nonlinear Stationary Equations

The existence of nonlinear stationary equations is very important for the un-
derstanding of dynamical properties of nonlinear evolution equations, and only
under the existence conditions of nonlinear stationary equations, can the sta-
bility and bifurcation problems of nonlinear evolution equations be effectively
researched. On the other hand, the stationary equations (i.e. the equations
independent of time) themselves are also of important significance in mathe-
matical and the other fields.

Because the majority of infinite dimensional evolution equations describing
the motion in nature is of the dissipative structure, and the dissipative structure
are always connected with the elliptic differential operators. Naturally, the
theory of elliptic equations and elliptic systems is a core subject in the field of
partial differential equations.

In this chapter, we present a basic theory for the abstract operators, which
can generally treat the existence problem of not only a large class of elliptic
equations and elliptic systems which can not be treated by the traditional meth-
ods, i.e. the monotone operator theory, variational principle and the Green ex-
pression method (fixed point theory+priori estimates), but also a large class of
the fully nonlinear elliptic boundary value problems, the degenerate equations,
and the equations with nonnegative characteristic form in general domains.
Combining with the acute-angle principle and L’-estimates, we can obtain
some regularity results on elliptic equations and degenerated elliptic equations
in general domains.

1.1. Preliminary Material
1.1.1. Sobolev spaces

Let Q C R™ be an open set. We denote by CF(Q)(resp. C*(Q)), k =integer>



0, the space of all k times continuously differentiable functions on Q(resp. on
Q), and
CE(Q) = {u e CkQ)| supp u C Q}
{ supp u = the closure of {x € Qu(x) # 0}

The spaces C*(Q) are Banach spaces endowed with the norm

luller = ) sup|D*l

la| <k ¥€Q
where a = {a1,- -+, o}, a;=integer> 0,1 < i < n,|a| = > a;. We always
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For 1 < p < oo, LP(Q) is the space of all measurable functions on € which
are of LP integrability. It is a Banach space with the norm

lullze = [ / jupda]?
Q

For 1 < p < oo and nonnegative integer k, we introduce the Sobolev space
which is denoted by

WEP(Q) = {u € LP(Q)|D%u € LP(Q),V|a| < k}

endowed with the norm
1
fullwer =[S [ IDuPdal?
laf<k S

When p = 2, we write W*2(Q) = H*(Q) which is a Hilbert space with the
scalar product

< UV > Hr= Z /Do‘u-Do‘vdx
la<k S

The space WEP(Q) is defined by
WEP(Q) = the closure of C3°() in WhP(Q),

HE(Q) = Wy (92).



A equivalent norm of WE*(Q) is
_ oy Pyl B
g =13 JRERRE
al=

The space C*(Q), k=integer> 0,0 < a < 1, is a Banach space, which is
defined by (without confusion, we always denote C%(Q) by C%(Q)).

Cr(Q) = {u € C*(Q)|[DPuls < o0, |B| = k}
[ullor.a = lJullex + Z [DPu]q
|18]=k
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For the Sobolev spaces, there are the following important properties, and
the reader can be referred to [Ad] and [Mj] for the details.

Density Theorem.

Theorem 1.1.1. For k > 1 and 1 < p < oo, WE?(Q) is dense in WF ™7 (Q);
and when 0 C R is of class Lipschitz, then C*(Q) and W*?(Q) are dense re-
spectively in WHP(Q) and WF=1P(Q).

Embedding Theorems.

Theorem 1.1.2. Let 2 C R™ be a bounded domain, and 1 < p < oo, then

WHP(Q) € LUQ),V1 < g < 222 n > kp
Wéf’p(ﬂ) C L1(Q),V1 <g<oo,n=kp

WP () € C™(Q),Vkp > n,m + o =k — 2

moreover, the inclusions are continuous, namely

np
(L.1.1) lullze < Cllullypr, g < —— o
(1.1.2) [l cma < Cllallyrmm+a=k—— kp>n.
0 p

where ¢ = ¢(n,Q, q).



Theorem 1.1.3. Let 2 C R™ be a Lipschitz domain, not necessarily
bounded, then

n—kp’

WEP(Q) € L9(©),q = 220 > kp,
WhP(Q) c C™(Q),m+a =k — S kp > n.
and the inclusions are continuous.
Trace Theorem (see [Te 1]).
Theorem 1.1.4. Let Q be a domain of class C™*!. For any u € W;"?(Q),p >

1, we have
D%lpn =0, a.e., V|a| <m—1.

Compactness Theorems.

Theorem 1.1.5. Let 2 be a bounded domain. Then the embeddings are
compact

Wy P(Q) = LUQ),q < 2, n > p
W,y P(Q) — LI(Q),q < co,n=p
Wyt (Q) = C%*(Q),a <1-2,n<p

Theorem 1.1.6. Let Q be a bounded domain. Then the embedding is
compact
Wh2(Q)N LP(Q) — LYQ),1 < q < p.

The theorem follows from Theorem 8.22 in [Ad. 1].
Interpolation Theorems.

Theorem 1.1.7. For p < ¢ < r, we have the LP interpolation inequality

lulla < ellullr + €7 |[ull Lo
(1.1.2)

where € > 0 is an arbitrary real number.
The interpolation theorem can be found in [GT]



Theorem 1.1.8. There is a constant C' = C'(m, p,n), for any Q@ C R", e > 0
and u € WP (Q), we have

(1.13) { [tlip < Clelthmp + € *lull 0]

[l = [ jaji Jo D7 ulPda]?

where 0 <j<m—1,u=j/(m—j).

Theorem 1.1.9. Suppose that 2 C R™ is of Lipschitz and ¢y > 0 given.

Then there is a constant C' = C(eg, m,p,Q2), for any €,0 < € < ¢ and u €
WmP(Q)
luljp < Clelulmp + € #[|ullzr]

where 0 <j<m—1,u=j/(m—j).
From Theorem 1.1.9, we can get an equivalent norm of W*?(2) as follows

ludwns = el ([ 3 IDoupasl?

o=k

1.1.2 Regularity estimates

We consider the linear elliptic equations

— >t im1 @i Diju+ 370 biDiu + cu = f(x),x € Q
uloo = ¢

(1.1.4) {
where 2 C R"™ is a bounded domain, and
aij(‘r)gigj > )‘|£|2aV$ € ﬁag € Rna A>0.

For the equations (1.1.4), we introduce the Schauder global estimate the-
orem and LP-estimate theorem, which are very important for the theory of
nonlinear elliptic equations.

Schauder Global Estimate Theorem (see [GT]).

Theorem 1.1.10. Let Q C R" be of class C>¢, and a;j, b;, ¢, f € C**(Q), ¢ €
C**(Q). If u € C%(Q) is a solution of (1.1.4), then

(1.1.5) [ullgz.e < Clllullco + [|@llc2.e + [fllco.e]

where C' is a constant only depending on n, a, 2, A and the Holder modular of
az-j, bi, C(LE)



LP-Estimates of Strong Solutions (see [ADN]).

Theorem 1.1.11. Suppose that © is of class C?,a;; € C°(Q),b;,c €
L>(Q),¢ € W2P(Q), f € LP(Q),1 < p < co. If u € W?P(Q) is a strong
solution of (1.1.4), then

(1.1.6) lullw=r < ClIfllze + 1@llw=2r + [[ullzr]

where C'is a constant depending on n, p, 2, A and the modulars ||a;; || o, ||| Loe, ||C]| oo

Now, we consider the linear elliptic equations of order 2m(m > 1),

(1.1.7) Au = Z (—1)!*' D, (a0.5Dsu) = f(x),z € Q.

lael,|B]<m

where Q2 C R™ is bounded, and

AEP™ < Y ap(@)e*e’ Ve e Q

|| =[B]=m

E= (&1, ++,&) € R", &> = &7 - €2, The adjoint operator of A is defined by

A*u = Z (=) Ds(ag p(x) Dou).

lal,[B]<m

Agmon’s Theorem (see [Ag] and [Au]).

Theorem 1.1.12. Let Q be C?™ and a, 3 € C™(Q). Let u € L(Q) and
f € LP(Q),q,p> 1. If for any v € C?™(Q) N WP (),

/Qu-A*(v)dat:/Qf~vdx

then u € W2mP(Q) N WP (Q) is a strong solution of (1.1.7), and
ullwzmr < Cll|fllze + [lull o]

where C'= C(n,p,Q, A).
1.1.3. Maximum principle

Hopf Maximum Principle (see [GT]).



Theorem 1.1.13. We denote

n n
Lu=— Z a;jDiju + ZbiDz-u + cu, x € Q.

i,j=1 i=1

where a;;,b;,¢ € C(Q),c(z) <0, and Q is of class C2. Suppose that L is uni-
formly elliptic in 2, and u € C?(Q) satisfies that Lu > 0. If 2o € 09, u(x) <0
and u(z) > u(xo)Vr € €, then

Ou(xp)

o <0

(1.1.8)

where n is the outward normal at zg € 9€.
In the following, we give the maximum principle of quasilinear elliptic equa-
tions in divergence form, referred to [GT].

(1.1.9) fZDiAi(:v,u,Du)+B(x,u,Du) =0,z €0
i=1
where 2 is bounded, and

n

(1.1.10) > Ai(x,z,p)pi = Alpl — bo
i=1
(1.1.11) —B(z,2,p) - signz < bi[p|* ! + by

where k > 1, A, by, b1,bs > 0 are constants.

Theorem 1.1.14. Let u € WH2(Q) be a weak solution of (1.1.9), i.e. u

satisfies
n

/ [Z A;i(x,u, Du)Dv + B(x,u, Du)v]dz = 0
Q

=1

Vv € ¢}(©2). Then, under the conditions (1.1.10) and (1.1.11), we have the
estimate

sup [u| < sup [u| + c(bo + b2)

Q o0

where ¢ = ¢(n, k, A, Q, b1).

1.2. Basic Theories and Methods



1.2.1. Green expression method

In this subsection, we illustrate the ideal of Green expression method by
discussing the existence of the following equation

—Au+ |uPu = f(z),z € QC R"
u|aQ :0

(1.2.1) {

where f € C%(Q)(0 < a < 1), is bounded and C*.

First, we transfer from the existence problem of (1.2.1) to the existence of
fixed points of an abstract operator as follows. By the theory of linear elliptic
equations, for any u € C*(Q), the linear equation

{ —Av = f(z) — [ufPu

U|aQ =0

has an unique solution v € C%%(€2). Then we define a mapping 7 : C*(Q) —

C*(Q) by
(1.2.2) Tu=w,

Obviously, the existence of equation (1.2.1) is equivalent to the fixed point

existence of the operator equation (1.2.2) in C*(Q).
It is well known that the embedding is compact

C?**(Q) — C*(Q).
From the Schauder estimate theorem (Theorem 1.1.10) one can deduce
lollcze = [ Tullc2a < Cllifllee + ullEh]

which means that the operator T' is compact.
Next, we consider the homotopical completely continuous field

id—Ty:C*(Q) - C*(),0< A< 1
where T is defined by that Thu = v is the unique solution of the equation

{ —Av = f — AulPu,
U|aQ = 0

It is easy to see that 77 = T and Tp : C*(Q2) — C%(Q) is a constant value
mapping. Therefore, by the topological degree theory, we have

deg(id — Ty, U,0) = 1



where U C C*(Q) is an arbitrary open set including the Tp value.
Let uy(z) be the solution of the equation

—Au=f—AufPu, 0<A<1
ulan =0

(1.2.3) {

For the solution uy of (1.2.3) if we can get the uniform Holder estimate
(124) Hu/\HCa § C

where C is a constant independent of A, then for all 0 < A < 1 the operator
equations

(1.2.5) u—Thu=0, ueCN)

have no solutions on the boundary oU for U Cc C*(Q) great enough. By the
homotopy invariability of the topological degree, we have

deg(id — T1,U,0) = deg(id — Tp, U, 0) = 1.

Therefore the equations (1.2.5) have solutions in C*(Q) for all 0 < X < 1,
which implies that (1.2.2) has fixed point.

Finally, we show the uniform Holder estimate (1.2.4). By the Sobolev em-
bedding theorem (Theorem 1.1.2)

n
2

And by the LP-estimate theorem (Theorem 1.1.11), the solution of (1.2.3) sat-
isfies

(1.2.6) lulloe < Cllullwea, >

lurllw=a < Cllluallze + [1f = Mud ™| 24]

(1.2.7) < Ol e + llua 122

where C is independent of A(0 < A < 1).

Obviously, the nonlinear term B(x, u, Du) = A|u|Pu— f(x) in (1.2.3) satisfies
(1.1.10) with by = by = 0,bs = supg, |f|. Therefore, from Theorem 1.1.14 one
deduce

(1.2.8) lluallco < %g) |u| + eba = ¢l fl|co

where C is independent of \.
From the inequalities (1.2.6)-(1.2.8), we get

lurllca < CllIfllza + I fllco + 1 11E6")



which is the estimate (1.2.4).

Remark 1.2.1. By using the Green expression method, one can also dis-
cuss the quasilinear elliptic equations, see [GT].
=>4 =1 i (%, u, Du) Diju + bz, u, Du) = 0
ulon = ¢

(1.2.9) {

In this case, we transform the problem (1.2.9) into the fixed point problem of
operator

(1.2.10) T:CY(Q) - ChH(Q),
where, for u € C1%(Q), Tu = v is the solution of the equation
{ — >4 j=1 @ij(x,u, Du)Dijv + b(x, u, Du) = 0
vlon = ¢

And the homotopical operator T)(0 < A < 1) is defined by that Thu = v is the
solution of the equation

{ = >0 =1 @i (@, Au, ADu) Dijv + Ab(2, u, Du) = 0
vlog = ¢

Thus, the existence of (1.2.9) in C%%(Q) is reduced to the proof of the uniformly
estimate of solutions of (1.2.9)

(1.2.11) ullcre < C.

In the proof of (1.2.11), the De Giorgi estimates and the maximum principle
for quasilinear equations are crucial.

The operator T of (1.2.10) can be expressed by the Green function, e.g. for
¢ =0,ucCHQ)

Tu= / G, )by, u(y), Duly))dy
Q

where G, (z, y) is the Green function of the elliptic operator — 221:1

It is why we call the method above the Green expression method.

a;j(x,u, Du)D;j;.

Virtue of Green Expression Method.

i). The existence of solutions is in the C%® classical sense.

ii). Many of the existence results of quasilinear elliptic equations of second
order obtained by this method can not be covered by the other methods and

10



theories.

For example, for the quasilinear elliptic equations with divergence form as
follows

(12.12) { — > DiAi(z,u, Du) + B(z,u, Du) =0

ulon = ¢

by using the Green expression method, we have the following results, which
can not be obtained by the other methods. Suppose that

Z?:l Ai($v Z7p)pi > b |p|k —bo

—B(x, z,p) - signz < bs|p|* ™ + by

A(Iy Zap)|p‘2 S ZZj:l DPiAj(I7 Zap)pipj7
(1.2.13)
lp|” < 0(A(z, 2,p))

DyA(z,z,p) = 0(|p|")

|p|DZZ, DZZ, B= 0<‘p|k)

as p — oo uniformly for x € Q and z < 00,0 < A(z, z,p)V(z, 2,p) € Q x R x
R k=2+71,7>—-1,A={A,---,A,}.

Theorem 1.2.2. Let Q C R" be C*% and bounded, 4; € OV (2 x R x
R"),BeC"(Qx Rx R"),0<r < 1,¢ € C?*). Then under the condition
(1.2.13), the problem (1.2.12) has a solution u € C?7(Q).

Imperfection of Green Expression Method.
i). It is too tedious for the proof of uniformly boundedness of C1:**-modular.
ii). It is unavailable for the cases of unbounded domains; higher order equa-
tions; elliptic systems and degenerate elliptic equations.

1.2.2 Monotone operator theory

Let X be a Banach space. Mapping G : X — X* is a monotone operator,
if

(1.2.14) < Gu—Guv,u—v>>0,Yu,v e X.

11



Theorem 1.2.3. Let X be a reflective Banach space. Suppose that G :
X — X* is continuous and monotone, and

< Gu,u >
[[u

(1.2.15)

— 00, as [jul| — oo
then, for any f € X*, Gu = f has a solution in X.

We shall show the use of Theorem 1.2.2 by discussing the quasilinear elliptic
equations

(1.2.16) { = 2iz1 Di(|DiulP Diw) + |ulfu = f(z),x € Q

ulon =0
where Q C R" is an arbitrary domain, p,q > 0, and f € L12(Q). Let
X = WyP(Q) n L2 (Q).

Definition 1.2.4. u € X is called a weak solution of (1.2.16), if for any
v € X, we have

/ [i |D;ulP DiuDjv + |ulfuv — f - v]jde =0
i=1
We define a mapping G : X — X* by
< Gu,v >= /Q[Zn: |D;u|? DyuDyiv + |u|%u - v]dz
i=1
Obviously, the existence of solutions of the equation

Gu=f feX"

is equivalent to the existence of weak solution of (1.2.16). It is easy to check
that G : X — X* is continuous, and

< Gu,u >= / [Z | Diu|PT2 + |u|9?]dx
Q=1

which means (1.2.15) holds.
We know that, for a monotone increase function g(z), ¢’(z) > 0. Therefore,
by the mean value theorem,

(g9(z1) — g(x2)) (21 — 22) = ¢/ (F) (21 — 22)* > 0

12



Since g(z) = |z|Pz(p > 0) is a monotone increase function, hence we have

n
<Gu—Gu,u—v>= / [Z(|Diu\pDiu — |Dw|PD;v) x
Q

i=1
« (D — Div)]dz + / (Julu — [0]0) (u — v)dz > 0
Q
Thus, from Theorem 1.2.3, we obtain the existence of weak solution of (1.2.16).

Virtue of Monotone Operator Theory

i). It is simple and easy to understand.

ii). It is a generally method, which can treat a large class of quasilinear
elliptic equations of order 2m(m > 1) in general domains.

Imperfection of Monotone Operator Theory.

i). The monotone condition is sharper for the general differential equations,
especially, for the nonlinear elliptic systems.

ii). The solutions obtained are in weak sense.

1.2.3. Variational principle.

Let Q C R™ be a bounded domain, and F € C*(2 x R x R") be a given
function. We consider the equation

(1.2.17) { y Sy DiAi(w,u, Du) + B(z,u, Du) = 0
ulgn = 0
where
Aiw, 2,€) = 2=t
(1.2.18)

Bla,2,) = 2520

z

The equation (1.2.17) with condition (1.2.18) is called to be of variational
structure.

The existence problem of weak solutions of (1.2.17) can be reduced to the
existence problem of minimum points of the below functional in VVO1 P(Q),p>1,

(1.2.19) I(u) = /QF(J:,U,Du)dx, ue WyP(Q)

where
F(x,2,6) = O(|§)P), for x € Q and |z| < co.

13



Suppose that ug € Wol’p(Q) is a minimum point of (1.2.19), namely there
is a neighborhood O C Wol’p(Q) of ug such that

I(ug) < I(u),Yu € O C WyP(Q)
then we have
I(ug £ ev) — I(ugp)
€

Yo € WyP() and € > 0 small enough.
From (1.2.19) and (1.2.18), one deduces that

. T(ug £ ev) — I(ugp) -
1 =+ A; Dug)D;
€—1>I(I]1+ € \/Q[Z l(xa an UO) lv

i=1

>0

+B(x, up, Dug)vldz > 0,%v € Wy P (Q)

Thus, we obtain

n

/ [Z A;i(x,up, Dug)Dsv + B(x, ug, Dug)vlde =0
Q

=1

Vo € WP (), which says that ug is a weak solution of (1.2.17)

Now, we give an existence theorem of minimum points of abstract func-
tional on a Banach space.

Definition 1.2.5. Let X be a Banach space, and I : X — R! be a C!
functional. We say that I is weakly inferior semi-continuous, if as x,,,zg € X,
and x,, — xo(— is weakly convergent), we have

lim I(xy) > I(xp)

—n—00

Theorem 1.2.6. Let X be a reflective Banach space, and I : X — R!
be a C! functional. Suppose that I is weakly inferior semi-continuous, and
I(x) — oo as ||z|| — oo, T has at least a minimum point in X.

In the following, we shall show how to apply Theorem 1.2.6 to the partial
differential equations by the given example

— >y Di(|Diwa [P Dyun) + wyu3 = fi(x)
(1220) - Z?:l Di(lDiUleQDiUQ) + 'U/%UQ = fg(.’L‘), r e
u1lon = 0,uzlsn =0

14



where p1,p2 > 0 and Q C R? is bounded.

The elliptic system (1.2.20) is of the variational structure, in fact, if we
write the system (1.2.20) in this form

— > DiA} (@, u, Du) + B'(z,u, Du) =0
=" D;A%(x,u, Du) + B?*(x,u, Du) = 0

u = (u1,ug) € WyPT2(Q) x Wy P*72(Q), then we have

Flx,21,22,6,m) = Y0, (Gl 2 4 s mal P 2) + 52823 — fizn — foze

Azl<w7217227£777) = gg = |€i|p1€i,
Alz(va15227£;n) = g—f; = |rrh|l727h

Bl (x,21,20,6,m) = 85 = 2123 — 1

OF
B2(3372172275777) = 3_22 = Z%ZQ - f2

Let X = WP t2(Q) x Wy ?>"2(Q). The functional corresponding to (1.2.20)
is as follows

n

1 1 1
I(u) = Dijui P2+ —— | Dyus|P2 ) + Zu2ul — frug — fousldx
0= [ DG P4 S glDal )+ guded — o — e

u = (u1,uz) € X. Obviously, X is reflective, I : X — R' is C'!, and
I(u) — 00, as ||ul]|x — oo (by Holder inequality).

Next we check the weak inferior semi-continuousness of the functional I.
Let u, € X and u,, — v in X. We notice that

2 2
1) = a2, + 242 4+ T )

1
7 = [ [geded = frus = fwlde
By the compact embedding theorem (Theorem 1.1.5), we have

lim J(u,) = J(v)

n—oo

Hence

. . 2 2
h—mnﬂool(u’lﬂ = h—mnﬂoo[”u?”;l/thr? + ||ug|‘€;ip1+2] + J(”)
0 0

15



By the Mazur theorem, it is known that the functionals ||uk||p . pk+2 (k=1,2)
0

are weakly inferior semi-continuous. Therefore the functional

|U1||p11 pi+2 T ||“2||p21 po+2

is also weakly inferior semi-continuous. Thus, I(u) is weakly inferior semi-
continuous.

Theorem 1.2.6 tells us that I(u) has a minimum point in X, which implies
that the system (1.2.20) has a weak solution.

In the applications of variational principle, the variational structure is of
great restriction. But, in some spacial problems, the variational is a strong
means.

We notice that the two conditions below are the same in essential:
i). function f(z, z 5) is convex on variable &;
ii). functional I(u fQ x,u, Du)dz is weakly inferior semi-continuous.

1.3. Abstract Theory of the Inner Product
Operators

1.3.1. Upward weakly continuous operators

Let X be a linear space, X1, Xo be the completion of X respectively with
the norms || - ||; and || - [|2. Suppose that X; is a reflexive Banach space, and
Xs is a separable Banach space.

Definition 1.3.1. A mapping G : X; — X is called to be weakly contin-
uous, if for any z,,xo € X1,2x, — 2o in X7, we have

lim < Gzp,y >=< Gxo,y >, Yy € Xo

n—oo

Theorem 1.3.2. Suppose that G : X1 — X3 is weakly continuous, if there
exists a bounded open set 2 C X7, such that

< Gu,u>>0, YuedNdnX

then the equation Gu = 0 has a solution in X;.

16



This theorem is a corollary of the following theorem (Theorem 1.3.3), here
we specially state it in order to emphasize the difference between the upward
operators and the downward operators in the later applications.

In some problems of partial differential equations, the space X5 should be
taken to be embedded in X1, i.e. X9 — X;, which means that the regularity
of u € X5 is higher than that of u € X;. Therefore the mapping G : X1 — X3
maps the lower differentiability elements into the dual space of a higher differ-
entiability space. In general, the degenerate elliptic equations and the equa-
tions with nonnegative characteristic form correspond to the upward mappings,
hence, Theorem 1.3.2 is a basic tool to treat these equations.

1.3.2. Downward weakly continuous operators.

Let X be a linear space, X5 be a reflexive Banach space and X; be a
separable Banach space. Let X C X, and there exist an one to one linear

mapping
L:X—-X;

which is dense.

Theorem 1.3.3. Let G : X2 — X} be weakly continuous and Q C Xs be
a bounded open set. If
(1.3.1) < Gu,Lu>>0, Yue dQNX

then Gu = 0 has a solution in X5.

Proof. Because X7 is separable, and LX C X; is dense, there exists a
sequence {e,} C X7 N L(X) such that span{e, } is dense in X;. Denote by

Zn, = spani{ér, -, ent,

Y, =span{e1,---,e}, e =L¢g (1)
We define a mapping A,, : Z,, — Y, by
< Apu,v >=< Gu,v >, Yu € Z,,v €Y,
Since LZ, =Y,, by (1.3.1) we have
< Apu, Lu >=< Gu, Lu >> 0, Yu e QN Z,
Thanks to the Poincare-Bohl theorem of the Brouwer degree (cf. [Ze]), we get
deg(An, Q,,0) = deg(L,Q,,0), Q,=QNZ,
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provided A, u # 0,Vu € 052,. Because L : Z,, — Y, is a linear homeomorphism,
hence
deg(L,©,,0) £ 0

Thus, it implies that A, u = 0 has a solution u,, € Q,, ie.
(1.3.2) < Gup,v>=0, Yvey,

Because {u,} C Q C X, is bounded, and X5 is reflexive, there is a ug € Xo
such that w, — ug in X5. Then from (1.3.2) it follows

lim < Gup,v >=< Gug,v >, Yv €Y,

n—oo

Due to the denseness of U2 Y, C Xi, it follows that Gug = 0. The proof is
complete.

Remark 1.3.4. When X C X3, and L = id : X — X; is a inclusion
mapping, then Theorem 1.3.2 is a corollary of Theorem 1.3.3. When L # id
and Xs — X, the mapping G : Xo — X7 is downward, which can treat a

class of fully nonlinear elliptic boundary value problems.

1.3.3. Downward operators with monotone
structure.

Let X1, X5 be separable and reflexive Banach spaces, and L : Xo — X is
an one to one and dense linear bounded operator. In the following, we shall
state and prove the existence theorems for the operators G : Xo — X7, which
are of some monotone structure.

Definition 1.3.5. A bounded mapping G : Xy — X} is called to be
coerceively continuous, if for any w,, — ug in Xo, and

lim < Gu, — Gug, Lu,, — Lug >=10

n—oo
then we have
lim < Gup,v >=< Gug,v >, Yv € X;.

n—oo

Theorem 1.3.6. Let 2 C X2 be a bounded open set. Suppose that
G : X9 — X7 is coerceively continuous, and

(1.3.3) < Gu, Lu >> 0, Yu € 00
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then Gu = 0 has a solution in X5.

Theorem 1.3.7. If G : X3 — X7 is continuous, which satisfies (1.3.3) and
(1.3.4) < Gu—Gv,Lu—Lv >>0, Yu,v € Xy

then Gu = 0 has a solution in X5.

Theorem 1.3.8. Let G : [0,1] x X3 — X3 be bounded continuous. Suppose
that there exists a constant R > 0 such that

i).< Gou, Lu >> 0,Vu € X5 with ||ul|x, > R.

ii).Ghu=0=|ul|x, < R,¥0 <A <1, and

iii).for any u,, — ug in Xo, A\;, — Ao

lim < Gy, un — Grouo, Luy, — Lug >=0

n—00,An— Ao
= u, — ug in Xo

then Giu = 0 has a solution in X5.

Proof of Theorem 1.3.6. In the same manner as the proof of Theorem
1.3.3. there exists a sequence {u,} C Q such that u, — ug in Xa, and

(1.3.5) < Gup,v>=0, Yvey,

which implies that

(1.3.6) < Gy, Lu, >=0, and
(o)
(1.3.7) lim < Gup,v>=0, Yv e U Y.
n—oo nel

Because | J. 7, Y, is dense in X7, the equality (1.3.7) holds true for all v € Xj.

n=1

From (1.3.6) and (1.3.7) one obtains
lim < Guy, — Gug, Lu, — Lug >=10
Due to the coerceive continuity of G, from (1.3.7) it follows

< Gug,v >=0, Yv e X;

The proof of Theorem 1.3.6 is complete.
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Proof of Theorem 1.3.7. It is known that there exists u,, € Q which
satisfies (1.3.5). By the condition (1.3.4) is follows that for any v € Z,, and
k>n

0 < < Gv-—Guy,Lv— Lu >
= < Gv,Lv— Luy >
Letting ur — ug in X5, then
klim < Gu,Lv — Luy, >=< Gv, Lv — Lug >
oo

Hence

o0
(1.3.8) < Gu,Lv — Lug >>0, Yv € U Z,

n=1

Because L : X5 — X is one to one and dense, and (J,2 Y, = L(U,~, Z,)
is dense in X1,J,—; Z, is dense in X,. Hence (1.3.8) holds for all v € Xo.
Replacing v by ug + Av in (1.3.8). We can obtain

< G(ug + W), Lv >>0, Yv € X9, A >0
Passing to A — 0% we get
< Gug, Lv >> 0, Yv € X,

which implies that Gug = 0. The proof is complete.

Proof of Theorem 1.3.8. For any 0 < A < 1, we define a mapping
AN Z, = Y by

< Au, v >=< Ghru,v >, Yu € Z,,v €Y,
Letting 2 = {u € Xs|||u|]|x, < R}, from the condition i) we get
(1.3.9) deg(Ay, Q, 0) = deg(L,Q,,0) #0
Now, we need to verify that
(1.3.10) M #£0, VO<A<1ue .

If (1.3.10) is not true, then there exist sequences {u,} C 9 and {\,} C [0, 1],
such that A’;n Uy = 0. Letting u,, — ug in X2, \;;, — Ag, in the same fashion as
the proof of Theorem 1.3.6, one can deduce that

lim < Gy, up — Grouo, Luy, — Lug >=0

n—00,An— Ao
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From the condition iii), it follows that w, — uy € 02, which means that
G up = 0, and a contradiction to the condition ii). Hence (1.3.10) holds true.
By the homotopy invariance of the Brouwer degree, from (1.3.9) we get

deg(AT,Qy,0) = deg(Ag, 2,,0) #0
It implies that there is a u,, € €2, such that
< Giup,v>=0, YveY,.

Letting u, — wg, as the proof of Theorem 1.3.6, from the condition iii), one
can derive that
< Giug,v >=0, Yv € X;

The proof is complete.

Remark 1.3.9. As X; = Xs and L = id : X5 — X7 is an identity map-
ping, Theorem 1.3.7 is the well known monotone operator theorem.

1.3.4. Remarks and examples.

It is known that the monotone operator theory and variational principle
have a common character that the operators involved are the mappings which
map a Banach space to its own dual space, namely

G: X — X*

which are termed to be horizontal operators. In applications to nonlinear par-
tial differential equations this condition makes the both theories to have the
limitations that they only can efficiently deal with the elliptic quasilinear prob-
lems, and the solutions obtained are in the weak sense.

In fact, a complete theory of the inner product operators should include the
upward and downward operators, which can treat a lot of nonlinear problems
which can not be solved by the horizontal operator theory. Example, the the-
ory of upward operators may efficiently treat the degenerate elliptic nonlinear
problems and the equations with nonnegative characteristic form, and the the-
ory for downward operators can deal with the existence of strong solutions of
a large class of fully nonlinear elliptic boundary value problems.

In the following, we shall illustrate how to apply the basic theorems to the
problems of partial differential equations by some simple examples.

We first introduce a lemma which is useful for the later discussion,. (Cf.[Te]).
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Lemma 1.3.10. Assume that the operator ), _,, aa(2)D* is elliptic,

ie.
NEP™ < Y7 aa()e®, VEe R
|a|=2m
where A > 0 is a constant, & = £ -+ &0m, a0 = {ag, - ,an},m > lia, €
C°(€), then

(1.3.11) [/Q(| 3" aa(a)Dul?)dz]?

|a|=2m
is a norm on the space
D™ = {u e WQm’p(Q”u‘aQ =0,---, Dm_1u|ag =0}

1 < p < oo, which is equivalent too the W2™P-norm.
In fact, if the LP-estimate theorems hold for the boundary value problem,
which has unique solution

2 laj=2m Ga()Du = f(z),z € Q
Bulsn =0
then the norm (1.3.11) on the space
B?™ = {u € W?™P(Q)|Bulsq = 0}
is equivalent to the W2™P-norm.
Example 1.3.11. Consider the degenerate elliptic equations

(1.3.12) Fle TR+ T+ B —u=f(@)

u|aQ =0

where Q = {(z,y) € R?|0 < x < 1,0 < y < 1} is a square, and (x,y) = (0,0) is
a degenerate point of (1.3.12) on 0f.
As usual, the weak solution u of (1.3.12) is defined as to satisfy the inte-

gration
<Guv>*/[e miy@@+@@+u@+uv
B P Oz dx Oy dy Ox

+fuldz =0, Yo e W 2(Q).
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For the problem (1.3.12), if we choose X; = X, = W,*(Q), then although
the inner product < Gu,v > defines a bounded linear mapping G : X; — X3,
but G doesn’t satisfy the acute angle condition

< Gu,u >>0, Yu € 09

for some bounded open set Q2 C W,2(9).
Let X = C§°(€?), and X; be the completion of X with the norm

_ 1
llullx, = [/ C “yl
Q

If we take Xo = X7, then the term fQ u%dl’ in < Gu,v > maybe has no sense
for some u,v € X;. Hence it is a basic requirement that X, # X; for the
degenerate elliptic equations.

We take Xy = I/V1 %(Q), thus the inner product < Gu,v > define a linear
bounded mapping G': X; — X35, and

Uy |8”\2 u?)dal}

<Guu> — /[e—m|—\2 |—|2 217 P)da
Q X

> 0, Vue X =C5°(Q) and |julx, = R.

where R = ||f||p2. From Theorem 1.3.2 it follows that (1.3.12) has a weak
solution u € Xj.
The next example shows the usage of downward operators.

Example 1.3.12. We consider the fully nonlinear elliptic equation as fol-
lows

—|AuP2Au+u=fr e QC R, p>2
(1.3.13)
U|aQ = 0

where © is C*° and bounded, f € LPI(Q)(pi +1=1).
Let Xy = W2P(Q) N W, %(Q), X; = LP(Q) and L : X5 — X, be defined by

Lu = Au.

It is known that L is a homeomorphism. The mapping G : Xo — X7 is defined
by

< Gu,v >= / [[AulP2Au —u + flude.
Q
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It is easy to see that G : X9 — Xy is continuous, and satisfies the acute
condition (1.3.3) and the monotone condition (1.3.4). Then by Theorem 1.3.7,
the problem (1.3.13) has a strong solution u € W2P(2) N W,"(Q).

1.4. Strong Solutions of A Class of Fully
Nonlinear Elliptic Equations

1.4.1. Some lemmas

Before our discussion, it is necessary to introduce three lemmas which are
helpful to the later contents.

Lemma 1.4.1. For any a > 0, the functional
[/ (|VAul* + a\Auﬁdw]é
Q

is a norm on the space
{u € H*(Q)|ulpa = 0}

which is equivalent to the H3-norm.
Proof. We consider the equations
Au=f, xe€q
u|aQ =0

By the L?-regularity estimates (Cf.[GT]), for any f € H', the solution u obeys
the estimate

A

lullzs < Clllfllar + llull 2]

el / VA + | AuPde]t + Jull 2
Q

From Lemma 1.3.10, this lemma follows.
The following lemmas are basic in the nonlinear functional analysis (Cf.[Ch]),[ZFC]
and [CH)).
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Definition 1.4.2. A function f : @ x RN — R is called to satisfy the
Caratheodory condition, if i) for any £ € RY, f(x, &) is a measurable function
with respect to x € Q;and ii) for almost all = € Q, f(x,&) is a continuous func-
tion with respect to £ € R™.

Lemma 1.4.3. Let f: Q x RY — R satisfy the Caratheodory condition
and Q2 C R™ be bounded. If

N
(1.4.1) [f(@,8)] < a) 1677 + b(a)

i=1

where a > 0,p;,p > 1,b € LP(Q), then the mapping
F:LP(Q) x -+ x LPN(Q) — LP(Q)

defined by F(uqy,---,un) = f(x,uq, -, uy) is continuous.

Lemma 1.4.4. Let Q@ C R"™ be an open set (not necessarily bounded),
and f : Q x RN — R satisfy the Caratheodory condition and the condition
(1.4.1) with p;,p > 1. If {u;} C LPi(2)(1 < ¢ < N) is bounded, and for any
bounded subdomain Qg C €, u;, converges to u; in measure on g, then for
any v € LP' (), we have

lim /f(a;,ulk,-~-,u1vk)vdx:/f(w,u1,~--,uN)vdx.
Q Q

k—oo

1.4.2. W?P-strong solutions

Let us consider the fully nonlinear elliptic Dirichlet boundary value problem
given by
F(z,u,Vu, Au) = g(z,u, Vu, D*u), z €
(1.4.2)

where Q2 C R™ is C* and bounded.

We shall apply Theorem 1.3.6 to investigate the existence of W?2P-strong
solutions of (1.4.2).

According to Lemma 1.3.10, we denote by K > 0 the best constant which
satisfies

(1.4.3) K2||u||2 §/|Au|2dx.
Q
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The following assumptions are imposed. Let F(z,z,¢,y) and g(x, 2,£,7)
satisfy the Caratheodory condition, and

(1.4.4) F(z,2,6y)y = Clylf —C2y p=2,
(145) (F(I7Za€7y1) - F(ZE?ngayQ))(yl - y2) Z k|y1 - y2|2

|g(xa2’7£a771) _g(xﬂzvgan2)| S K1|771 - "72|
(1.4.6)
K? < K?-k? K is as in (1.4.3),k > 0 as in (1.4.5).

a(z, z,8)(lylP~ +1), asn <p
(1.,4.7) |F(2,2,&9)] < bz, 2)(JyP~ L+ [€]9 +1), asp<n<2p

ClyP~t +1€]9 + [2|% +1), as 2p <n

(1.48) lg(a, 2 Em)| < Cllnp™ + g1 + |2 + 1
where ¢1 < —ng’:pl),qg < —nézfzzlj),pl <p—1,and a € C°(Q2 x R x R"),b €

C°(QY x R),C > 0 is a constant.

Theorem 1.4.5. Under the conditions (1.4.4)-(1.4.8), the problem (1.4.2)
has a strong solution u € W2P(Q) N W, ?(Q).

Proof. We shall use Theorem 1.3.10 to prove this theorem. Let
Xy = WHP(Q) N W, P(9),
X, = LP(Q). (2)
and the linear mapping L : Xo — X7 be as to read
Lu = Au.

We define the mapping G : X9 — X§ by

< Gu,v >= / (F(x,u, Vu, Au) — g(x, u, Vu, D*u))vda
Q
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u € Xo,v € X;. By the conditions (1.4.7)(1.4.8) it is clear that G : Xy — X7
is a bounded mapping.
According to (1.4.4) and (1.4.8), we see that

< Gu,Lu> = /[F(x,u, Vu, Au)Au — g(z,u, Vu, D*u) Auda
Q

> /[01|Au|p — Cy — |g(w, u, Vi, D?u)|| Aul]dx
Q
G P 2, \1p
> [7|Au| - Clg(z, u, Vu, D*u)|P — Cldz
Q
>

Cl/ P / ’
— Aul"dx — C D%ulPPrdy — C
> [ 1o S

la]<2
Because p'p1 < p, by Lemma 1.3.10 it follows that
< Gu, Lu >> al/ |AulPdx — a2,  a1,as > 0 are constnts
Q
which implies that the condition (1.3.4) is fulfilled.

We are now in a position to check the coerceive continuity of G : Xy — X7.
Let u,, — ug in W2P(Q) N W, ?(Q), and

(1.4.9) lim < Gu, — Gug, Lu,, — Lug >=0

n— oo

We notice that

(1.4.10) < Guy, — Gug, Lu, — Lug >= / [(F(z,upn, Vg, Auy,)
Q

—F(z,tun, Vg, Aug))(Du, — Aug) —

_(g(xa Unp, vun; D2un) - g(‘r7 U, Vun, D2u0))(Aun - AUO)]d.T

+ / [(F (2, upn, Vg, Dug) — F(z,ug, Vug, Aug)) (Du, — Aug)
Q

—(g(2, tn, Vi, D*ug) — g(z, up, Vg, D*ug))(Au, — Aug)ldz
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Because

C(Q)x C(RY), asn <p
{tn, Vun} — {ug, Vug} in C(Q) x L1 (Q,R™), asp<n <2p

L2 (Q) x L™ (Q, R™), as 2p < n.

where g1 < 75, ¢ < 78, by Lemma 1.4.3 and Lemma 1.4.4, from (1.4.7)

and (1.4.8) one obtain

lim [ [F(x,un, Vg, Dug) — F(z,up, Vug, Aug)]|[Du, — Dugl =0

n—oo Q

lim [ [9(z,wn, Vi, D*up) — g(x, uo, Vg, D*ug)|[Au, — Augldr = 0

n—oo O

On the other hand, by (1.4.5) and (1.4.6).

/ [(F (2, upn, Vp, Auy) — F(z,un, Vg, Aug))(Du, — Aug)
Q

—(g9(x, un, Vuy, DQUn) — 9(x, Un, Vi, DQUO))(AUTL — Aug)]dx

> /[k|Aun — Awgl? — K1|D?*u,, — D*ugl|Au,, — Aug|]dx
Q
k K2
> /[—|Aun — Augl? — =~ |D?u,, — D?up|?|dx
02 2%

K2]<}2 _ K2
= Tl/ |D2un _D2u0|2dx
Q

Hence, from (1.4.9)(1.4.10) it follows that
lim [ |D%*u, — D*ug|*dz =0
n—oo Q

namely, D?u,, converges to D?ug in measure on 2. Thus, by Lemma 1.4.4,
from (1.4.7) and (1.4.9) we get

lim [ [F(2,un, Vg, Auy) — g(2, U, Vg, D*u,)]vde

n—oo Q

= / [F(x,ugp, Vug, Aug) — g(x, ug, Vug, D2u0)]vd1’
Q
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Yv € X7 = LP(Q), which shows that G : X — X7 is coerceively continuous.
The proof is complete.

Example 1.4.6. According to Theorem 1.4.5, it is easy to see that the
below equation

(1+|Au) Au = ke~ 1Pl 4 g(2), g € L2 ()
u|aQ =0

has a strong solution u € W24(Q) N Wy* () provided 0 < |k| < K, where K
is the constant as in (1.4.3), and

|D?u| = Z | Dowl?.
|| =2

Next, we investigate the below equations

F(z,u, Vu, D*u, Au) = g(z),2 € Q

(1.4.11)
u|aQ = O
Assume that
(1.4.12) F(z,2,6n,9)y > a1|y[’ —c2,p > 1,

(1.4.13) / [F(x,u, Vu, D*u, Au) — F(x,v, Vv, D*v, Av)][Au — Av]dx
Q
>0, Yu,v e WP(Q)NW, ()

|F(2,2,&m,9)| < cllylP~h + |2t + [P + [P~ + 1]
(1.4.14)

n(p—1)
PSS

Applying Theorem 1.3.7, we can deduce the following theorem.
Theorem 1.4.7. Under the conditions (1.4.12)-(1.4.14), if g € L? (),
then the problem (1.4.11) has a strong solution u € W2?(Q) N W, ?(Q).

The proof of Theorem 1.4.7 is similar to that of Theorem 1.4.5, here we
omit the details.
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Example 1.4.8. We consider the following example

Au+e 8o’ = f(z), zeQ, felL*Q)
(1.4.15)
u‘ag = 0

Let F(z,y) = y + eV’ It is easy to verify that F' satisfies conditions
(1.4.12) and (1.4.14). We notice

Fé(:c,y) =1- 2ye’y2 >1-v2e 7 > 0, YyeR
which implies that
[F(z,91) — F(z,92)][y1 — y2] >0, Yyi,92 € R.

Hence the condition (1.4.13) is satisfied. By Theorem 1.4.7, the problem
(1.4.15) has a strong solution u € H?(Q) N H ().
Finally, we shall apply Theorem 1.3.8 to discuss the equation given by

F(z,u,Vu, Au) = B(x,u, Vu),z € Q

(1.4.16)
ulag =0
We assume that
(1.4.17) F(z,2,&y)y > ky*, k>0

(1418) (F($M£)y1)_F(‘rvzvfayQ))(yl_y2> Za‘y1—92|2, a>0

a(z, z)(lyl + ¢ +1), n<4
(1.4.19) |F(z,2,&y)| <
clyl+ €1 +[21* +1), 4<n

where a € ¢(Q x R), q1 < 225,¢2 < =25, and
(1.4.20) —B(, 2,§)signz < c(|¢] +1)
blz,z)(g"* +1), n<4
(1.4.21) |B(z,2,&)| <
cllgfr + 22 +1], 4<n
where b € ¢(Q x R),p; < 22 py < 1.

n ?
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Theorem 1.4.9. Under the assumptions (1.4.17)-(1.4.21), the problem
(1.4.16) has a strong solution u € H?(Q) N H ().

Proof. Let the spaces be taken by
Xo = H*(Q) N Hy (),

X1 = L*(Q). (3)
and the linear operator L : Xo — X, be defined as in Theorem 1.4.5. Define
the mapping G : [0,1] x X5 — X by

< Gru,v >= / [F(z,u, Vu, Au) — AB(z,u, Vu)|vdz
Q

A€ 0,1],u € Xy, and v € X;.

In the same fashion as the proof of Theorem 1.4.5, the conditions i) and iii)
in Theorem 1.3.8 are readily checked, and we only need to check the condition
ii). To this end, it suffices to verify that there exists a constant C' > 0 such
that for all solution u € H2(2) N H} () of (1.4.16), we have the estimate

(1.4.22) ull gz < C.

Let up € H?(Q) N H(Q) be a solution of (1.4.16). Then wug satisfies the
equation

Ay —b(z,u, Vu) =0
(1.4.23)
u|aQ = O

where
b(x,u, Vu) = B(z,u, Vu)G ™~ (z)

G(l’) = F(l’, Ug, VU'Ov AU'O)/AU'O
Due to (1.4.17),¥(z, 2,&,y) € 2 x R x R™ x R,

(1.4.24) F(z,2z,&y)/y>k>0
From (1.4.20) and (1.4.24) one gets
(1.4.25) —b(x, 2,&)signz < Ck1(|¢] 4+ 1)

Thanks to the maximum principle of elliptic equations (Cf.[GT]), the solution
ug of (1.4.23) satisfies

(1.4.26) suplug| < ck™!
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where C' > 0 is a constant only dependent on §2,n and k. Besides, ug satisfies

0 = /[|VU0|2—i—b(a:,uo,Vuo)uo}d:c
Q

%

/[|VUJ0|2 — Ck™ Y Vugl|uo) — Ck™Y]dx  (by (1.4.25)
Q

1 1
/[§|vu0|2 — 5Ok uof? — ks
Q
Hence we have

(1.4.27) / |Vuo|?dz < 20k +Ck*1/ luo|?dx
Q Q

<20k7HQ + C]RT3Q; (by (1.4.26))
By (1.4.21)(1.4.26) and (1.4.27), one can see that there is a constant C; > 0
such that for all solutions u € H?(2) N H}(Q) of (1.4.16), we have

2
geLi), ¢q=—, and
Y41

lgllze < Ch (4)
where
(1.4.28) g(x) = B(x,u, Vu)Au - F~ (z,u, Vu, Au).
By the LP-estimates of elliptic equations, it implies

lullweze < Cllgllne < CCh

n+2

Because p; < “£=, we have 2 < ng/n — ¢, and by the Sobolev embedding

theorems
nq

n—q

IVuller < Cllullwaa <C, ¢ =
Consequently, for r = ng/(n — q)p1 > q = 2/p1,

g€ L"(Q) and

lgllr <C, C >0 independent of u

By iteration, one can deduce that (1.4.22) holds true. The proof is complete.
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Remark 1.4.10. Under the conditions (1.4.17)-(1.4.21), for any p < oo
the solutions u € W2P(Q) of (1.4.16). In fact the solutions u of (1.4.16) satisfy

Au=g(z), ze€
ulag =0

where g(z) is defined by (1.4.28), and by using LP-estimates and the iteration,
one can obtain u € W2P(Q) for any p < oo.

1.4.3. H3-strong solutions

In this subsection, we shall use Theorem 1.3.3 to discuss the existence of
H3-strong solutions for a class of fully nonlinear elliptic Dirichlet and Neumann
boundary value problems.

Let us first consider the elliptic Dirichlet boundary value problem given by

—f(x, Ax) = g(z,u, Vu, D*u), x €
(1.4.29)
u‘ag = 0

According to Lemma 1.4.1, we denote by k& > 0 the best constant which
satisfies

(1.4.30) 12|l < /[\VAu|2+|Au|2}dx
Q

Yu € H3(Q) N HY(Q). For f(x,y) and g(x, 2,£, 1) we assume that f € C1(Q x
R),g € CY(Q x R x R" x R""), and

folx,y) >a>0

(1.4.31)
flx,y)y >calylP —ca, p>2 (a>aasp=2)
|flz,y)| < cllylP~t +1]
(1.4.32)
[folz,y)] < cllylPr +1], p1 <p/2
9| + |D2gl + | Dgll&| + [Deglin| < cfl2P* 4 [£[P* + [n|P* 4 1]
(1.4.33)

|D,gl* <k} <a®k?,  kasin (1.4.30), p1 < p/2
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The spaces are taken as to write

= N
X = {u e C*@lulog = 0. o0 = 0}

X1 =LP(Q), and

Xy = H3(Q) N W2P(Q) N Wy P (Q) (5)
and the linear mapping L : X — X is defined by
(1.4.34) Lu = N*u— Au
By the theory of linear elliptic equations, the problem

Ny — Au= f(z),r €0
(1.4.35)

ulog =0, 254 |p0 = 0
has an unique solution u € ¢>®(Q) provided f € ¢*(Q). In fact, (1.4.35) is
equivalent to the system

Au=v
(1.4.36) Dv—v=f

ulog =0, %90 =0

and it is well known that (1.4.36) has an unique solution u € ¢>*(Q),v €
c®(Q),Yf € ¢(Q). Hence the linear mapping L : X — X is one to one and
dense.

Now we shall state and prove the existence theorem of H3-strong solution
for the problem (1.4.29).

Theorem 1.4.11. Under the condition (1.4.31)-(1.4.33), the problem (1.4.29)
has a strong solution u € H3(Q) N W?2P(Q) N WyP(Q).

Proof. We define the mapping G : X3 — X7 by
< Gu,v >= / [—f(z, Au) — g(z,u, Vu, D*u)]vdxr
Q

Vv € X1 = LP(Q). By the compact embedding theorems and conditions
(1.4.32)(1.4.33), from Lemma 1.4.4 it is easy to see that G : Xy — X7 is
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weakly continuous. It remains to check the acute angle condition (1.3.1). We
see that YVu € X,

< Gu, Lu >= /[Vf(a:, Au) - VAU f(z, Au)Au+
Q

+Vg(x,u, Vu, D*u) - VAu + g(x,u, Vu, D*u)Au]dx
> [ alVauP + aldul - & = D e SV
—|Vg(z,u, Vu, D*u)||VAu| — |g(x,u, Vu, D*u)||Aul]dz
(by (1.4.31))
> [ [§IVAuR + G100 = Do (o SV 0] —

1 2 /
5| V9 (@ w, Y, D) P = ()7 g, w, Vu, D2u)|P ]
1

We notice that
Vo(z,u, Vu, D*u) = Vo9 + D.g-Vu+ D,g-VDu + Dyg - VD%y

From (1.4.30)(1.4.32) and (1.4.33) it follows that
1 c1 «
< Gu, Iu>> o (@K — ) Jullys + /Q[Emu\? 2 |nu?

—c Y |DPuP? — D, f(w, Au)||V Au| — cJdx
|8]<2

c o ,
> k:||u||%[3 + / [51|Au\1’ — §‘Au|2 —c|Au?Pr — ¢ Z |DPulP?’ — oda
& |61<2
where 0 < k < 5=(a?k? — k7). Due to 2p; <p, p1p/ <pand o <c; as p =2,
hence we obtain

< Gu, Lu>> 0 for |lul|x, > some constant.

This proof is complete.
In the following, we shall discuss the fully nonlinear elliptic Neumann
boundary value problem

—f(z, Au) = g(z, u, Vu), mod constant
(1.4.37)

g—:”ag =0, [oudr =0
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Suppose that f € C*(Q x R),g € C'(Q x R x R"), and
9] + [Dagl + |D2gll€] < [[2]P* + [€]P* +1]
(1.4.38) k1 < kcpasp=2,
[Deg| <
cllzlP + €2 +1], pp <2, p>2,

where p; < §, and p, ¢; are as in (1.4.31), and k > 0 is the best constant which
satisfies

kQ/ \D2u|2d:c§/ (Aulde,  Yu e HA(Q)/R
Q Q

H3(@) = {u € HHQ)] Gelon =0}

We have the below existence result.

Theorem 1.4.12. Let the conditions (1.4.31)(1.4.32) and (1.4.38) be ful-
filled. Then the problem (1.4.37) has a strong solution

u€ Xy ={ve H}Q) ﬂWQ’p(Q)|g—Z|aQ = 0,/ udx = 0}.
Q

Proof. Let the spaces be taken as follows
— ou 0N

X = *(Q —loa =0,——|sq = dx = 0}.

{u € c™( )‘ 8n|39 0, o lag 0,/Qu x =0}

X1 = IP(Q)/R = {u e LP(Q)|/Qudx _0)

Xo=the completion of the space Y under the norm

lullxs = | / IV AufPda)? + Juflwes.

Y ={uec H*Q)N W“(QM%\W = o,/ udr = 0}
Q

The linear mapping L : X — X; is defined by (1.4.34). It is known that the
operator L is one to one and dense. We define the mapping G : Xy — X7 by

< Gu,v >= / [—f(z, Au) — g(z,u, Vu)|vdx
Q
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Yu € Xo,v € X1. We know that

LP(Q) =X, PR
() =X:PR

namely X* = L¥ (Q)/R = {f € L¥ ()| [, f(x)dx = 0}. Hence Gu = 0 in X
implies that (1.4.37) holds for all z € Q.
Let u, — ug in X2. Then Au,, — Aug in H', by the compact embedding
theorems, we have
A, — Nug in L2(Q)

which implies, by (1.4.32) and (1.4.38), that G : X5 — X7 is weakly continu-
ous. The remaining proof is parallel to that of Theorem 1.4.11. The proof is
complete.

Remark 1.4.13. When g(z,2,§) = 8z + g1(x,£), 8 # 0, then under the
conditions (1.4.31)(1.4.32) and (1.4.38) the problem

—f(z, Au) = Pu+ g1 (xz, Vu),z € Q
oo =0

has a solution u = ug + ¢, where ug satisfies (1.4.37), and

c= %/Q[—f(x,Auo) — g1(z, Vug)]dz.

1.5. Nonlinear Elliptic Systems of Second Order

The nonlinear elliptic systems of second order are very different from the el-
liptic equations. First, we know that the maximum principle and the de Giovgi
estimates generally don’t hold true anymore for the nonlinear elliptic systems,
and next, a few elliptic systems have the monotonicity structure. Hence the
many traditional theories and methods, such as the Green expression method,
the method of super-lower solutions and the monotonicity theory, are unavail-
able. Now, the variational principle is the most widely used method in the
nonlinear elliptic systems. In this section we shall use the acute angle principle
to discuss the existence problem of nonlinear elliptic systems.
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1.5.1. Quasilinear elliptic systems

First, we consider the elliptic systems

—Di(aif}(fr, w)Dju; + bF(z,u)) + h¥ (z,u) Dy
(151) —|—ck(aj7u):fk(q;)7ajeg7k:1’...7m.

Ui|QQ:0,1§i§m.

where u = {u, -, u,},2 C R" is bounded. We use the summation convention,
ie. abu, =371, a*uy and a; Dju = Z;.Lzl a;Dju.
Let the system be elliptic, namely

MNEP < afiéni&y, V(x,z) € Qx R™ & e R™
(1.5.2)
A >0 a constant, a;;(x,z) = a;;i(z, 2)

Suppose that the coefficients satisfy the Caratheodory condition, and

Jo [F (2, u) Diug + hF (2, w)ur Dy + & (@, w)ug]da
(1.5.3) > [q ¥ lugPrde —a,  Vu € [e(Q)]™

pr >0, of a> 0 be constants

lagi (@, 2)I, B! (2, 2)] < B¥ || + 5
(1.5.4)

0<gqr< mam{pk/Q, nilg ) ﬁkvﬁ >0

|Cl(x7z)‘7 ‘bi(I,Z” < 'yk‘zk|zlvk + v
(1.5.5)
0 < gp < maz{pr, 25}, 7,7¥ >0

Let X = C§°(Q, R™), and X; be the completion of X under the norm
1 m 1
lullx, = [ [VulPda]z + 3250 8kl fq P da] 7
1, aspr >1

[Vul? = 3250 Vg, 6, =
03 as pr < 1
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Let Xo = CL(Q, R™).
u=(u1,",un) € X; is said a weak solution of (1.5.1) if Vo = (v1, -+, vm) €
X5 we have

(1.5.6) / [af} (2, w)Dju Divy + b (x,u) Do+
Q

—l—hfl(az, w)D;uyg - vy, + &z, u)vp — fkvk]dx =0

Theorem 1.5.1. Under the conditions (1.5.2)-(1.5.5), if f € L?(Q2, R™),
then the system (1.5.1) has a weak solution u € Xj.

Proof. Denote by < Gu,v > the left part of (1.5.6). It is not difficult to

verify that the inner product < Gu,v > defines a bounded mapping G : X7 —
X3. In fact, Vu € X; and v € X3 we have

| / af} (x,w)Djw Djvidz|
Q

< 1l Dsulda) - ol
< [/Q(/Bkluqu + B8)|Duldx] - ||vllx,  (by (1.4.4))
< cllullk, - lvllx,; ¢ = max {px, l } (by Holder inequality)

1<k<m n—2

For the other terms in < Gu,v >, we can also get the similar inequality as
above in the same fashion.

Now we show the weak continuousness of G : X; — X3. Let u,, — up in
X;. For v € X, given, we only need to check that

(1.5.7) lim aff(a:,un)DjulnDivkda::/aff(a:,uo)DjuloDivkda:
n—oo Jo : Q :

(1.5.8) lim hfl(x,un)Diumvkdx:/hfl(x,uo)Djukadx

(1.5.9) lim bf(x,un)Divkdx:/bf(aj,uo)Divkdw
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(1.5.10) lim ck(%un)vkdx:/ck(x,uo)vkdx

Thanks to Theorem 1.1.6, we have

2
Ukn, — Uk in LI (), Vg < max{py, n—fQ}

From Lemma 1.4.3, Lemma 1.4.4 and (1.5.5), one can deduce that (1.5.9) and
(1.5.10) hold true.
For the proof of (1.5.7), we take the form

/[af;(x, Un) Djug, — af’}(m,uo)Djulo]Divkdx
Q
_ ki Kl Do Divwd
= [aij (z,un) Qjj (z,up)] jUin Va4
Q

+/ af}(x,uo)(D]—um — Djuo)D;vpdx
Q
By the condition (1.5.4),

all(z,un)} € LP(Q) bounded for some p > 2
i

and aj!(z,uy,) is convergent to aff(x,uo) in measure. Hence we have

aff (T, up) — af;(x,uo) in L*(Q)

which means that

lim | [af(z,u,) — af}(m, u0)]Djury, Divedz = 0

n—oo [o i
From the definition of weak convergence, it is evidently
lim [a,fjl (x, uO)Divk(Djuln - Djulo)]dl‘ =0
n—oo Q
Thus we get

kl

i (T, un) Djury, — af! (@, up) Djugo] Dyvgdr = 0

lim | [a j

n—oo Q

i.e. (1.5.7) holds true. By the same fashion, one can also get the equality
(1.5.8).
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It remains to check the acute angle condition. Taking u € X = C§°(Q2, R™),
we have

)

< Gu,u> = /[a’d(az,u)DjulDiuk + 0¥ (, u) Dyuy,
Q
—&—hf’l(a:, w) Diuguy, + ck(:c, w)up — fk. ug]dx

/\/ |Vu|2dx+/ak|uk\pkdx—/fk-ukda:—a
Q Q )

(by (1.5.2) and (1.5.3))

1
> —)\/ \Vu\2dx+/ak\uk|pkdx—c/ |f|?dx — «
2 Jo Q Q

The last inequality is obtained by the Holder inequality and Young inequality
as follows

/ frupde
Q

v

A
S~
=
=
N
3,

e
S~
=
=
L
B,

k-

INA
(e
|
k]
—_
=
3
=y
8
+
@)
—
=
3
iy
8
|
+
|
|
—_

as well as the Poincare inequality
/ |ulPdr < c/ \VulPdz, Yue WyP(Q).
Q Q

where € > 0 is an arbitrary number, and ¢ > 0 a constant.
From the inequality above, one follows that

< Gu,u>>0, Yue X; and ||u|lx, great enough

By Theorem 1.3.2, the system (1.5.1) has a weak solution in X;. The proof is
complete.

Next, we consider the quasilinear systems

—DiAi-f<.’L',u, Du) + Bk(xvua D’LL) = fk<w)7
(1.5.11)
uglog =0,k =1,---,m
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Suppose that
NEP < Af(a, 2,68k, V(x,2) € Qx R™, € € R

(1.5.12)
A>0,p > 1 be constants
(1.5.13) /Bk(x7u,Du)ukdx > / ¥ lug|[PEdr —
Q Q

pr > 0,a,af > 0.
(1.5.14) [AF (2, 2,6) = AF (2, 2,m)] € — 0]

> ME—n%  for someq>1,A1 >0

|Al(z, 2,6)| < a¥|z|% + al¢P~ +a

(1.5.15)
0<aqr<q*, a,a">0
where X
g;, = maz{L=2py, B}
—nglp:pl), asn>p
/8 p—
00, asp=>mn
|B!(x, 2,€)| < bF|zp |9 + bJE|* + b
(1.5.16)
0<qix <qj,0<s <s,b0">0
where X N
ap, = maz{{tp, ey, 3
%, asn>p

b=

0o, asp=>n
—1
sf = max{%p, B2}

p— =L asn>p

B2 =
D, aspz=mn
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Let X = C§°(Q2, R™), and X; be the completion of X with the norm

Jullx, = ([ [Vupdal? + el [ undal
Q = Ja

For u,v € X7, we define an inner product
(1.5.17) < Gu,v >= /[Af(a:,w Du) Dy, + B*(z,u, Du)vy, — fFup]
Q

By the Sobolev embedding theorems and the definition of norm || - ||x,, from
conditions (1.5.15) and (1.5.16), one can deduce that the inner product (1.5.17)
defines a bounded continuous mapping G : X; — X7.

u € X7 is said a weak solution of (1.5.11), if

< Gu,v>=0, Yvwe X,

Theorem 1.5.2 Under the assumptions (1.5.12)-(1.5.16), if f € L? (Q, R™),p’ =
527, then the system (1.5.11) has a weak solution in X;.

Proof. We apply Theorem 1.3.4 to prove the theorem. To this end, first
of all we need to verify the acute angle condition.
For u € X, we have

< Gu,u> = /Q[Af(x, u, Du)Djuy + Bk(x, w, Du)uy, — fkuk]da:
= /QWVUV’ +affugl — frugldr —c
(by conditions (1.5.12) and (1.5.13)
>

A /
/ [Z|Vul? + o [ug |PF]da — c/ |f|P dz — ¢
o 2 Q
(by Holder — Young inequality and Poincare inequality)

> 0, YueX;and |ulx, great enough

We are now in a position to verify that G : X; — X7 satisfies the continuity
condition ii) in Theorem 1.3.4.
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Let u, € X1,u, — up in X7, and

lim < Gu, — Gug,u, —ug >=0

n—oo

which is

(1518) lim [(AféliC (l’, Unp,, Dun) — Af (1‘, Uuop, DUQ))(DﬂLkn — Dz‘uko)

n—oo Q

+(Bk(x,un, Du,) — Bk(x,uo, Dug))(ugn — ugo)]de =0

In following, we need to show that

(1.5.19) lim [ [B*(x,u,, Du,) — B*(z,uo, Duo)][tugn — uroldz =0

n—oo Q
(1.5.20)  lim [ [A¥(z,u,, Dug) — A¥(x,uo, Dug)][Ditign — Diugo]dz = 0
n—oo Q

Obviously, by u,, — ug in X7, we have

lim Bk(a:, wo, Dug) (tgn — ugo)dz =0

n—oo 0

By Holder inequality

(1.5.21) I/ B (2, D) (i — i) d|
Q

a1
/ |B X, Up, Duy,)| Tlda; f / [wn — wio] dx}
here rj; = /(r — 1).
By Theorem 1.1.2, Theorem 1.1.6 and the definition of the norm ||-|| x, , %in, w0 €
L7 (Q),r; = max{p;, 7}, where

np/n —p,n>p

r= arbitrary number > 0,n=1p
00, n<p
moreover,
(1.5.22) Uy, — o in L™(Q), Vrp <rf
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From (1.5.16), we get that for any bounded sequence {u,,} C X1, {B!(x, un, Du,)} C
L"1(Q) is bounded for some 7, > r#' = r/(rf — 1). Hence from (1.5.21) and
(1.5.22) we derive

lim Bl(z,un, Duy,) (ugn — wyo)dz =0

n—oo Q

Therefore (1.5.19) holds true.
Let the Caratheodory mappings

AL IN(Q) x - x LY (Q) = P (Q), p = -

be defined by
Al(u) = Al(z,u, Dug), for u € LN (Q) x --- x LN"(Q)

where N, = ¢ - p',1 < k < m. The condition (1.5.15) means that Ny <
Py, Py = max{py, p*}, here

By Lemma 1.4.3, we know that the mappings Aé are continuous. On the other
hand, the compact theorems (Theorem 1.1.5 and Theorem 1.1.6) say that

Up — ug in X1 = Uy — ug in LYN(Q) x -+ x LN (Q)

Thus we get
AL(x, up, Dug) — Al(x, ug, Dug) in LP (Q)
which implies the equality (1.5.20) holds true.
From (1.5.18)-(1.5.20), ones derive

lim [Ai—“(x, Up, Duy) — Af(x, Up, Dug)|[Diugn — Dijuro] =0

n—oo Q

and by condition (1.5.14), it implies
lim |V, — Vug|?dx =0, for some q > 1.
n—oo

Hence we deduce that

Vun, — Vug in LN(Q),V1 < N <p

Uy — ug in LN1(Q) x -+« x LN (Q), N}, < p;
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From the structural conditions (1.5.15) and (1.5.16) we get

lim < Gup,v >=< Gug,v >,Yv € X3

n—oo

Then the theorem follows from Theorem 1.3.4. The proof is complete.
1.5.2. W?2P-strong solutions of nonlinear elliptic systems.

In this subsection, we consider the existence of the W?%P-strong solutions of
nonlinear elliptic system. Let {2 C R™ be bounded and C*°.
Given the semilinear elliptic systems

—Dj(aff(x) Djw) + b (z,u) Diwg + * (z,u) = f*(2)
(1.5.23)
uiloa = 0, umloa =0
where af! € ¢'(€), and
(1.5.24) NéP? < aff (@)rilyy, Vo € Q,€ € R™
Suppose that

(1.5.25) / (b8 (2, u) Dy - wp, + F(x, w)ug)de
Q
> / FluglPrdz — o, Vu € [ @)]"
Q

b5 (2, 2)] < B*|2]% + 55

(1.5.26)

0 < qx < mazx{px/2,n/n — 2}

e (@, 2)] < 7* |zl + 7,
(1.5.27)

0 < gr < max{pg,2n/n — 2}.
We denote

S = min{tk/ak, th/tk + 2q;€}

s 1£glm{sk}, (1<s<2)

tr = max{pg,2n/n — 2}
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Theorem 1.5.3. Let the conditions (1.5.24)-(1.5.27) be satisfied. If f €
L2(2, R™), then the system (1.5.23) has a strong solution u € W%*(, R™) N
X1, X, as that in Theorem 1.5.1. Moreover, if af},bfl,ck,f’“ € ¢ (Q x R™)

and either n = 2 or s > nty/(n+2t;) for n > 3, (1 < k < m), then (1.5.23) has
a classical solution u € C*°(2, R™).

Proof. By Theorem 1.5.1, the equation (1.5.23) has a weak solution u € Xj.
Let
g"(x) = ¥ =k (z,u) — b (2, u) Dyuy
Then g% € L**(Q)(by (1.5.26) and (1.5.27)). Using Theorem 10.5 of [ADN],
the weak solution in W, (2, R™) of equation

—Dj(aff(z) Dju) = g* (=),

(1.5.28)
Uk|89 :Oak:17"'7m

is unique and v € W?25(2, R™). Because the solution u of (1.5.23) is also a
weak solution of (1.5.28), u = v € W2*(Q, R™).

When n = 2,5 < oo is an arbitrary number. Take s > n, the g* €
%(Q)(by Theorem 1.1.3). Applying Theorem 9.3 in [ADN], the solution
u € c>%(Q),which means g% € (), and u € ¢>*(Q). We derive u € ¢>(Q)
by iteration.

When n = 3, and s > nty./(n+2t;,), W?5(Q) — LS”/":QS(Q), sn/(n—2s) >
t, which implies, by (1.5.26) and (1.5.27), that g¥ € L*(2) for some § > s,
then ones obtain u € ¢ (Q) by iteration.

The proof of Theorem 1.5.3 is complete.

Remark 1.5.4. For the equation in diagonal form

—Auy, + b (2, u) Dy + F(z,u) = fF ()

uk|69 :O,k: 1a"'7m
if B cF satisfy (1.5.25)-(1.5.27), then the solution u = (u1, -+, um) € [W251(Q)x
CoxX WES(Q)] N Xy for fF e L2(Q)(1 <k <m).
We consider the semilinear elliptic system

—Di(af}(x)Djul) + ¥ (2, u, Du) = fF(x)
(1.5.29)
uglon =0,1 <k <m
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afl € ¢*(Q) satisfy (1.5.24), and

(1.5.30) /bk(ax,u,Du)ukdw > / ¥ lug[PEdr —
Q Q
(1.5.31) |6 (2, 2, €)| < b |25 9 + bJE[™ + b
where ( N
— n
qui < max{ plpl P 51
2 —1) n+2
r < maxy——,
< max A=) 22
We denote

p= 1§I]£1’}I%m{tk/%k72/7"l} > 1

tr, = max{py, 2n/n — 2}.

Theorem 1.5.5. Let the conditions (1.5.30)-(1.5.31) be satisfied. If f €
L?(Q, R™), then (1.5.29) has a strong solution u € W2P(Q, R™) N X;. More-
over, if aj!, b%, f¥ € > (@ x R™ x R™"), and either N = 2 or p > nty/(n+2t)
for n > 3(1 < k < m), then (1.5.29) has a classical solution u € C*(Q2, R™).

The proof of Theorem 1.5.5, by applying Theorem 1.5.2, is similar to that
of Theorem 1.5.3, here we omit the details.

By using the de Giorgi estimates, we can obtain the % regularity of weak

solutions of the quasilinear elliptic system in diagonal form

—Di(a}j (z,u)Djuy + b} (z,u)) + ' (z,u, Du) = f!

(1.5.32)
—D;(a™(x,u)Djup, + 07" (x,w)) + " (x, u, Du) = f™

u1‘39207"'7um|5ﬂ =0

Before discussing the problem (1.5.32), it is necessary to introduce the de
Giorgi estimate theorem. Give the elliptic equations with divergence form

—Di(aij(z)Dju) = g(z) + Digi()
(1.5.33)
U|aQ =0
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where a;; € L*>(), and
AP < aij(@)&;

Theorem 1.5.6(see [GT]). Let Q C R™ be bounded and ¢*. For some
q>n,g; € LYN), g € LY2(Q), if u € Wy*(Q) is a weak solution of (1.5.33),

then u € ¢*()(0 < @ < 1), and
lelee < elllullzz + Nlgllza + Y llgillza]
i=1

Now we return to consider the existence of regularity solution of (1.5.32).
Suppose that

(1.5.34) MNEP < afj(w,2)&&5, V1<k<m,A>0
(1.5.35) /[bf(x, w)Dyuy + c* (z,u)uy]de > —c
Q
\afj(aj,zﬂ <c
(1.5.36) bF (2, 2)| < c|z|Pr + ¢

¢ (x, 2, )| < clz[P* +cl¢|Ps + ¢
where 0 < p;, p2 < oo are arbitrarily for n =2, and 0 <p; < -5, 0<p2 <

ﬁforn23,0§p3<%forn22.

Theorem 1.5.7. Let the conditions (1.5.34)-(1.5.36) hold. If f € L% (Q, R™)(¢q >
n), then (1.5.29) has a weak solution u € W,*(2, R™) N C*(Q, R™) for some
0<a<l

Proof. The existence of weak solution u € W, *(Q, R™) follows from The-
orem 1.5.2, and by (1.5.36)

g"(x) = f*¥(x) — *(x,u, Du) € LY%(Q), for some q > n.
g; () = bf (z,u) € LI(Q).

Thus we get from Theorem 1.5.6 that the weak solution u of (1.5.32) belongs
to C%(Q, R™). The proof is complete.
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Remark 1.5.8. By the HZ?-estimates of quasilinear elliptic systems (see
[LU)), if w € Wy* (2, R™) N CO(Q, R™) is a weak solution of (1.5.29), then
€ H? .(Q,R™).

Remark 1.5.9. For the quasilinear elliptic systems with non-diagonal form,
M.Giaquinta [Gi] obtain some inner ¢*regularity estimates, which amounts
to saying that a weak solution u € W&’2(Q, R™) of the system below belongs
to et ()0 < a<1)

—Di(af} (2, u)Djuy + bf (z,u)) + ¥ (z,u, Du) = 0

uplon = 0,1 <k <m

where al!, bF, c¥ satisfy the conditions of (1.5.34) and (1.5.35)

177 71

1.6. Keldys-Fichera Boundary Value Problem
for Degenerate Elliptic Equations

1.6.1. Background

An important example relating to degenerate elliptic equations is the fol-
lowing well known Tricomi equation, which is of especially interest in the aero-
dynamics

0%u  0%u

(1.6.1) yw + 8—y2 =

0, (z,y)€R?

The Tricomi equation is a mixed equation of elliptic-hyperbolic type. Asy > 0,
(1.6.1) is elliptic and when y < 0 it is hyperbolic. The equation (1.6.1) can be
divided into two equations to be considered respectively as follows

0?u  0%u 9
y@—&-a—yQ—O, for (xz,y) € R

where R% = {(z,y) € R?*|ly > 0}, and

(1.6.2)

0%u 8%u

=0, for (z,y) € R%

It is easy to see that the equation (1.5.2) is a degenerate elliptic equation and
(1.6.3) is a degenerate hyperbolic equation in R3. If u;(z,y)(i = 1,2) are
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respectively the solutions of (1.5.2) and (1.5.3), with
u1(z,0) = uz(z,0),Ve € R
then the function

_ U1($7y); GSyZO
ulwy) = { up(z, —y), asy<0

is a weak solution of Tricomi equation (1.6.1).

In general, most of the mixed equations of elliptic-hyperbolic type can be
divided into the degenerate elliptic and hyperbolic equations to be discussed
respectively.

For the degenerate elliptic equations, generally to say, the set of degener-
ate points on boundary 0 is of nonzero measure on 0€). It implies that the
Dirichlet boundary value problem for degenerate elliptic is not well posed any-
more, and instead of it the Keldys-Fichera boundary value problem works. On
the well posedness of Keldys-Fichera boundary value problem for degenerate
elliptic equations, the readers are referred to next section or O.A.Oleinik and
E.V.Radkevich [OR].

1.6.2 Existence of the quasilinear equation

In this subsection, we consider the existence of the Keldys-Fichera boundary
value problem for the following degenerate quasilinear elliptic equations

Lu = D;laij(x,u)Dju+ b(x)u] — C(z,u) = f(x), x€Q
aod { 7o reYLUT,

where 2 C R" is an open set, and ) . (i = 1,2,3) are defined by
23 = {ZE S GQ}\az—j(x,O)NiNj > 0}
Do = {2 € OQ}\ 5 [bi(x) - Ni > 0}
21 =0\ (25U 3)-
N = (Ny, -+, N,) is the unit outward normal vector on 9.
Suppose that the coefficients satisfy Caratheodory condition, and
(L1) Symmetry: a;;(x, 2) = aji(z, 2),
(L2) There exist a constant 3 > 0 and a nonnegative
continuous function A(x) on € such that

(1.6.5) B a(x,0)8€5 < aij(w,2)&& < Bag;(w,0)E:¢;

(16.6) @€ < aij(x,0)&¢;.
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(L3)QY = {z € QA\(z) = 0} is a measure zero set in R", and there exist
bounded subdomains with the cone property €, CC Q\', such that
Q, C Qpyq and U2, = O\

(Ly)b; € CHQ)(1 < i < n), and

(1.6.7) la;j(z,2)] < C
(1.6.8) Cllz|* +12*] — g1(z) < C(x, 2)z — %Dibi($)22
(1.6.9) C(x,2)] < Cl2|*~" + ga(2)

where k > 1,C > 0 are constants, g; € L'(Q),g2 € L¥ (Q),1/k + 1/K = 1.

Remark 1.6.1. The condition (1.6.5) implies that the degenerate points
of (1.6.4) have nothing to do with z, hence ), can be written as

23 = {JI S 8Q|aij(x,z)NiNj >0, Vze Rl}

Remark 1.6.2. If 2 is a bounded domain, the condition (1.6.8) may be
weakened to read

1
C’|z|’C —qi(z) <Clx,2)z — §Dib¢(x)z2
Denote by
X ={veCc'Q) |U|Z =0, and|v|2< oo}
3
endowed with the norm
lolls = | (9o +oP)da+ [ fofst+ [ pofdat
Q a0 Q
Let X7 be the completion of X under the norm

ol = [ / (ai;(x,0) DiwDju + [v]2)da]? +
Q

b- N|vids]? v|Fda]*
+[/21U22|b N{v?ds] +[/Q\ [ da]

where b = {b1(z), -, by(x)}
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Let X5 be the completion of X under the norm || - ||2. Obviously, X is
a reflexive Banach space, and X is separable endowed norm space. A weak
solution of (1.6.4) is defined to be a element u € X; such that

/ la;j(x,uw)DjuD;v + b; - uD;v + C(x,uw)v + f - v]dx
Q

(1.6.10) — /Z b- Nuvds =0, Yve X,

1

Theorem 1.6.3. Under the conditions (L;) — (L), if f € L¥ (Q), then
problem (1.6.4) has a weak solution in Xj.

Proof. Let < Lu,v > be the left-hand side of (1.6.10). The first thing to
be checked is that the inner product < Lu,v > defines a bounded mapping
L:X;— X3.

Given u € Xy, let @;;(x) = a;j(z,u), then (@;;(z)) is a symmetric semi-
positive definite matrix. Hence for any v € X5 we have

/ agj(x, u) DjuDivdr = / aj(x) DjuDivdx
Q Q

< ([ ay(@DuDyult x ([ i) DyoDjvdal
Q Q

< ﬁ[/ aij(x,O)DiuDjudm]%[/ aij(z,O)Diijvdm]%
Q Q

< Cllull - [[v]l2

where C' > 0 is a constant.
By (1.6.9) and b; € C1(), from the definitions of || - ||; and || - |2 we can
deduce

|/[biqu + C(z,u)v + f - v]dz]
Q

IN

Cllullz - [1Dv} 2 + I fll e ol e + Cllall e ol e + llgall o 0]

IN

[Cllulli™ +C] - Jvll
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Furthermore, we have

|/ b- Nu - vds|
2

IN

[ /2 5 Nlu2ds] /2 5+ Nlv?ds*

1 1

IN

Cllully - llvll2-

It follows from the three inequalities above that L : X; — X3 is a bounded
mapping.
Now we check the acute angle condition. Let u € X, then

1
< Lu,u >= / la;j(z,uw)DjuDju+ C(x, uw)u — §Dibiu2 + fu]dx
Q

Lo 1 Lo
(1.6.11) +l/ b-N-qusf—/ b- Nu?ds
2U%, 2%

1

Since b- N > 0 on Y, and b-7<0on >, from (1.6.5), (1.6.8) and (1.6.11)
we derive

< Lu,u> > / (87 aj(2,0)DiuDju + Clu|® 4+ Clu|? — fu — g1]dz
Q

Jrl/ b N|u?ds
2/, 03,

1
/ (3 ta;j(x,0)DiuDju + §C|u|k + Cu?ldx
Q

Y]

1 - — 2 ’
- . N 2 o k
03 f g s [ b + s

which means that ther is a constant R > 0 such that
< Lu,u>>0, YueX and |luljs = R.

It remains to show that L : X; — XJ is weakly continuous. Suppose
that w, — wug in X;. We shall prove that u, converges to uy in measure
on any bounded subdomain Qg C Q. According to (L3), there are bounded
subdomains with cone property Q, CcC Q\Q',Q, C Q,11,U2,Q, = O\
Since €' is a set of measure zero in R™, we only have to show that u,, converges
to ug in measure on ) for any k.

For any integer ko > 0, it follows from the continuity of A(x) on Q and
Qg, CC Q\Q' that there exists ey, > 0 such that A(x) > e, in Q. We
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denote by X;(,) the Banach space which is the completion of functions in
X1 restricted to Q, under the norm

Jull = [ / Vulda]? + | / ]
Qo Qko

Clearly, X; can be embedded into X;(Q,). We denote by I the embedding
operator, evidently Iu,, — ITugin X (€y,). By means of the compact embedding
theorems, u,, — ug in L?(y, ), which means that u,, converges to ug in measure
on €.

We only have to prove that for any v € Xj,

(1.6.12) lim aij(z,un)DjunDivda::/aij(x,uo)DjuoDwdx
(1.6.13) lim C(m,un)vdx:/C(a:,uo)vdm.

By the condition (1.6.9), {C(z,u,)} € L¥ (Q) is bounded. Because u, con-
verges to ug in measure on any bounded subdomain Qg C 2, we get that

C(z,up) — C(z,up) in LP(Qy), V1I<p<k

Hence (1.6.13) holds true for any v € C§°(€2). On the other hand, C§°(f2)
is dense in L¥(2), so by (1.6.9) we conclude that (1.6.13) is satisfied for any
v e LFQ).
Now we consider (1.6.12). It is possible that Du does not belong to any
LP(Q)(p > 1), hence the proof of (1.6.12) cannot be as simple as that of (1.6.13).
Make the following decomposition

/ [aij (2, un)Djun Div — a;;(z, uo) DjugDiv]dx
Q
= / Qi ($, U())DZ‘U(DJ"LL” — Dj’LL(])d.’E +

Q

—l—/ [aij(x, un) — aij(z, uo))Dju, Djvdx
Q
We know from (1.6.5) that the following two semi-norms are equivalent

lulo = [/ aij(x,O)DiuDjudx]%,
Q
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uluy = [/ aij(iv,uo)DiuDjudx]%.
Q

By u, — up in X5, we get that

lim aij(a;,uo)Dw(Djun — DjU())dl‘ =0

n—oo Q

Vo € Xs. It is easy to verify that the following inner product defines a bounded
mapping A : X; — L?(Q, R")

< Au,w >= / laij(z,u) — a;j(z, uo)] Djuw;dx
Q

where w = (w1, - -+, w,) € L?(Q, R"). If we can prove
(1.6.14) lim < Au,,w >=0, Ywe L*(Q,R")

then we will have finished the proof of (1.6.12).

Let © = Q\'. Because € is of measure zero in R™, e (€, R") is dense in
L2(Q, R™). Hence it suffices to prove (1.6.14) for w € C°(Q, R™).

Given a w € C§°(€, R™), then there is a bounded subdomain 2y CC € such
that supp w C g, while u,, converges to uo in measure in €. From (1.6.7) we
obtain

aij(w,un) — a;j(z,up) in L*(Q)

On the other hand, there is a ¢ > 0 such that A(x) > €, V& € Q. Hence {Du,,}
is bounded in L2(, R™), which implies (1.6.14) holds true for w € C§°(, R™).
Thus the weak continuousness of L is proved. The theorem follows from The-
orem 1.3.2. The proof is complete.

Example 1.6.4. We take the following quasilinear Keldys equation as an
example to illustrate the application of Theorem 1.6.3.

2 (@ f1 () 34) + Sy f2(u) Ge) — G4 — P = f

u({E?y) =0, ($7y) € ZQUZB

where 0 < p,q, (z,y) € Q C R? as shown in Fig.1.1 below and fi, f» € C(R)
satisfy the condition

(1.6.15)

0< Cl < fl(z),fg(Z) < 02 < 0
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v A

Y

Fig. 1.1
It is easy to see that ), = {(z,y)lr = 0,0 <y < 1},>"; = {(z,y)|z =
1,0<y<landy=1,0<a<1}. Applying Theorem 1.6.3 we claim that if
f € L*3, then problem (1.6.15) has a weak solution u satisfying

0 0
G E + y G + u'hdedy < ©

where C' > 0 is a constant dependent on f.
1.6.3 Maximum principle and L*°-modular estimates

In this subsection, we mainly discuss the maximum principle, L*°-modular
estimates and the comparison principle for weak solutions of degenerate elliptic
Keldys-Fichera boundary value problem.

Let © C R™ be a bounded domain, we first consider the linear case. Give
the following operator

Liu = D;(a;j(z)Dju+ bj(x)u) — C(x)u
b; € C1(Q) and a;;(z) = aj;(z), furthermore
0< aij(x)fifj, Vo € ﬁ,f € R".

Let X; be the completion of C*(Q) with the norm

ullz = aij(x)DjuDju 4 u? dx—l—/ |B-]\7u2ds%
Jullg, = [ (w;@)DauDyu+ ) [y R

We say u € X1 NWHP(Q)NLI(Q)(1 < p < 2, %—l—% = 1) satisfies Lyu > O(or
< 0) in weak sense, if Vo € X; N WLP(Q) N L4(Q) with U|Z Uy, = 0,v>0
2 3
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in 2, the following inequality holds

/Q[aij (x)DjuDjv + bi(z)u - Div 4+ Cu - v]dz

(1.6.16) _/Z b-Nu-vds <0 (or >0)

1

Theorem 1.6.5. Let ) ,UY , # ¢, and
(1.6.17) b*(z) < C(x), VYrel

where b*(2) = maz{D;b;(z), 3 D;b;(x)}. Ifu € XlﬂWl’p(Q)ﬂLq(Q)(%—&-% =1)
satisfies Lyu > 0(or < 0) in weak sense, then the nonnegative maximum (non-

positive minimum) of v must be achieved in >, U ..

Proof. Let
k= sup w(ork=__inf )
22 v 23 22 - 23
By the claims of the theorem, we may assume k > 0(k < 0). Let vg = [u—k]*(or
vo = [k — u]™"), where for a function f, [f]* is defined by

f(x) if f(x)>0
[f]T =
0 if f(z)<0

From the chain rule for weak derivative (see [GT]) and the assumptions on u,
we obtain that vg € X3 N WHP(Q) N LY(Q), U0|Z By 0,v9 > 0 on 2, and
2 3

Diu, u(z) >k
(1618) Di’l)o =
0, u(z) <k

Now we only need to deal with the case of k > 0, as for the case of k < 0, the
proof is the same as the case of & > 0.

Putting v = vg in (1.6.16), by (1.6.18) and the integration by parts, we
obtain the inequality

/ [aij(x)DjuD;vg — b;(x) Djuvg + c(x)uvy — Db (x)uvg|dx
Q
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= / [aij (.’L‘)DjvoDiUO — bl(.’L‘)Dﬂ)O - Vo =+ c(x)uvo — Dibiuvo]d:c
Q
1
= / [aij (J,‘)Dﬂ}QDjUO + (C — Dibi)uvo =+ §le11}§]dl‘
Q

1 — —
—/ b- Nvids
2y

1

Let QF = {z € Qu(z) > k}. Because u = vy +k on O and b-7 < 0 on Do
from the above inequality, we have

1
/ [aij (l‘)Di’U()DjUO + (C(l’) — §lel(l‘))7)g + (C — lel)vok’}dl‘ S 0
o+

which implies by (1.6.17) that Q7 is a set of measure zero. The proof is com-
plete.

Now we consider the modular estimate theorem for weak solutions of equa-
tion (1.6.4). The condition (Ls) is changed to read

(1.6.19) 0< az-j(a:, 0)&'5]', Ve e Q&€ R™.

Theorem 1.6.6. Assume that ) ,U> 5 # ¢ and L satisfies (L1), (L3),
(1.6.19) and

(1.6.20) b*(z) < c(x,2)z7,  for (z,2) €QxR

If ue X; NWHP(Q)N Lk(Q)(ﬁ < k) satisfies (1.6.10) Yo € X, N WLP(Q) N
LE(Q) with U|Z Uy, = 0, then

|u\§max{sgzp\§|, sup ful} = M

Z2UZ3

whe ¢*(z) = inf,cpi[e(z, 2)271 — D;bi(2)].

Proof. First, we assume that L is a linear operator. Let w = M + u, then
w|Z2U23 > 0. Taking v € WHP(Q) N X, N L¥(Q) with ’U|Z2U23 =0,v>0

on €2, we have

/ [a;j(x)DjwD;v + bi(x) Dijvw + cwvldr — / b; N;wuds
Q

1
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/ +[a;j(x)DjuD;v + b;(x) Djvu + cuv]dz
Q

- /Zl +[b- Nuvlds + /Q[c(a:)M — D;b;(z) Mvdx

_ /Q [(e(z) — Dibi())M £ flodz > 0

By Theorem 1.6.5, w > 0 on 2. Then we have |u| < M on  a.e.

For the case that L is a nonlinear operator, we take a;;(x) = a;j(z, u), bi(z) =
bi(x), and &(x) = ez, u)/u(x), then u satisfies (1.6.10) with respect to the lin-
ear operator Lu = D;[a;;(x)Dju + b(z)u] — &x)u. From the above result the
theorem follows. The proof is complete.

Remark 1.6.7. If k = SUpYS [y U= O(or k = infz Ly U= 0), and
2 3 2 3
the set Q' = {z € Q|a;;(x)&;¢; = 0, for some £ € R", [€] # 0} has measure zero
in R", the conditions (1.6.17) and (1.6.20) can be weakened respectively as
b*(x) < c(x) Vo € Q, andb*(z) < c(x,2)27 !, V(z,2) € Qx R

Applying Theorem 1.6.6, ones can obtain the L°°-modular estimates of weak
solutions of (1.6.4) as follows.

Corollary 1.6.8. Under the hypotheses of Theorem 1.6.3, let f € L>°(Q)
and b*(z) < c(x,2)271,V(x,2) € Q x RL, if the weak solution u € X of (1.6.4)
belongs to W1P(Q) for some 1 < p and p/(p — 1) < k, then we have

sup Ju] < sup | L |
Q Q

o (x)

Finally, we consider the comparision principle.

Definition 1.6.9. We say that Lu; > Lus in weak sense, if

/ [a;j(z,u1)Djus Djv + byus Div + ¢(x, uy )v]de — / b- Nujvds
Q

1

< / [aij(x, u2) Djus Div + bjus Div + c(x, uz)v|de — / b Nugvds
Q

1

Yo € X1 NWEP(Q) with U\Z Uy = 0 and v > 0 on Q.
2 3
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Theorem 1.6.10. Assume that a;;(z, z) = a;;(z),c € ¢*(Q x R'), and
b (x) < (w,2), Y(v,2)€ QxR
If uy,up € Xy NWEP(Q) N L*(Q)(p/p — 1 < k)Luy > Lusy in weak sense, and
uﬂz U < uQ\Z 5> , then u; < ug on Q.
2 3 2 3

Proof. Let w = u; — ug, then w|z Uy < 0. From Lu; > Lus we have
2 3

/ [a;j () DjwD;v + b; Dyvw + (c(z,u1) — c(x, uz))ve]dz
Q

—/ E-vadsgo
>

1
for v € X; NWh(Q) N Lk(Q),U|Z LY, = 0,v > 0 on Q. Let c(z,u1) —
2 3
c(x,uz) = ¢, (z,@)w, where @ is a suitable mean value function of u; and ws.
From Theorem 1.6.5 we deduce w < 0 as required. The proof is complete.

Corollary 1.6.11. Under the assumptions of Theorem 1.6.10, if the prob-
lem (1.6.4) has a weak solution in X;NW1P(Q) for some p > 1 and p/(p—1) < k,
then this weak solution must be unique.

In the same fashion as the proof of Theorem 1.6.6, one can obtain the fol-
lowing theorem.

Theorem 1.6.12. Let b*(x) < c(z,2)z",V(z,2) € @ x R If f(z) <0
and v is a weak solution of (1.6.4) in X; NWHP(Q)(1 < p,p/(p—1) < k), then
w(z) >0 on Q.

Remark 1.6.13. In the degenerate elliptic equations, if the terms D; (b;(z)u) =
0~,1 < i < n, then in all the theorems of this subsection, the~c0ndition u €
X1 NWhP(Q) N Lk(Q)(% + 1 = 1) can be relaxed as that u € X;(or u € X; in
Corollary 1.6.8).

1.6.4 WlP-solutions of the quasilinear equations

We start with an abstract regularity result which is useful for the existence
problem of W™P(Q)-solutions of degenerate quasilinear elliptic equations of
order 2m.

Let X, X1, X5 be the spaces defined in Theorem 1.3.2, and Y be a reflective
Banach space, Y — Xj.
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Lemma 1.6.14. Under the hypotheses of Theorem 1.3.2, there exists a
sequence of {u,} C X, u, — up in X; such that < Gu,,,u, >= 0, furthermore
if we can derive that |lu,|ly < ¢, ¢ is a constant, then the solution ug of Gu =0
belongs to Y.

The proof of Lemma 1.6.13 is obviously.
Now we return to discuss the existence of W!P-solutions of equation (1.6.4).
Let €2 C R"™ be bounded and C*°.

Theorem 1.6.15. Under the assumptions of Theorem 1.6.3, if there is a
real number 8 > 1 such that

/ IMz)|Pdx < 0o, A(x) defined as in (1.6.6)
Q

then (1.6.4) has a weak solution u € X; N W1P(Q),p = 23/1 + 3 > 1. More-
over, if Y}, U> s # ¢, and when b; # 0, for some 1 < i < n,k > 23/0 —
1,c(z,2)z=t — Dib; > a > 0,Y(z,2) € Q x R, otherwise c(z,2)2~t > a > 0,
then the solution u € L>°(§2) provided f € L*>°(2).

Proof. According to Lemma 1.6.14, it suffices to prove that there is a
constant ¢ > 0 such that for any u € X (X is as that in Theorem 1.6.3) with
< Lu,u >= 0, we have

23
1.6.21 p<e p=—.
(16.21) fulwer <e. p=115

From (1.6.10) we know

< Lu,u >= /[aij(a:,u)Dz—uDju + bi(z)uD;u
Q

—I—C(x,u)u—i-f-u]dx—/ b-Nulds =0, ueX
1

Due to (Lz2) and (1.6.8) we have

1
< Lu,u >= / laij(x, w)DjuDju + c(x, u)u — §Dibiu2
Q

1 = — 1 - —
+ﬂmm+—/ bNﬁ@——/ b- Nu2ds
2y, 2y

1

> / [B7IN(@)|Vul]® + cjul* — f-u— g1]dzx
Q
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—i—l/ b N|u?ds
2/3,0%

1 2

Consequently we have
(1.6.22) / g + el ¥ )de > / 157 X@) [Vl + SJultld
Q Q

By the reversed Holder inequality (see [Ad])

(1.6.23) [ Ma)udn = [ NPaal [ valFran
Q Q Q

From (1.6.22) and (1.6.23), the estimates (1.6.21) follows.
The second conclusion follows from Theorem 1.6.6 and Remark 1.6.13. The
proof is complete.

Example 1.6.16. We consider the W1 P-solutions of the following Keldys
equation.

L i) + Ly fr(u)ge) —u=f(z), z€Q
(1.6.24)
=0
u\zs
where >, = ¢, and Q = (0,1) x (0,1),> ", f1, f2 are defined as in Example
1.6.4. Tt is easy to see that

Az,y) = min{c1x™*, coy®?},

here ¢; > 0 is the constant defined as in Example 1.6.4. If 0 < ay,as < %,
then for 3 = 2, we have

11 1 1
/ / I\ 2dx < C%/ r 2y - / Y22 dy < oo
0o Jo 0 0

Furthermore we have
c(x,2)27 ' =1>0

Therefore, by Theorem 1.6.15, the equation (1.6.24) has a weak solution u €
W1L3(Q) N L(Q) provided f € L®(Q).

Next we investigate the W 1P-solutions of the degenerate quasilinear elliptic
equations as follows

—D;(a;j(x,u)Dju+ bi(x)u) + c(z,u, Vu) = f(x),
(1.6.25)

Uy, oy, =0
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Suppose that

A;). The conditions (L1)(Lz) in Theorem 1.6.3 hold, >, (i = 1,2, 3) is the
same as that in (1.6.4), and the measure of ), U, is nonzero on 0.

As). For the function A(z) in (L), there exist Gy > 1, such that

/ IA(z)| P dx < oo,
Q
Az).b; € }(Q) and there is a g € L(2) such that

1
(1.6.26) g(x) < ez, 2,8)z — §Dz—bi <22

|laij(z,2)] < ¢
(1.6.27)
le(z, 2,§) < cf|2]*t + [€]2 + 1]

n(Bo — 1) + 200 0<a2<25o+n(ﬁ0—1)

O=ans n(1+ Bo) — 2060’ - n(1+ Bo)

Let X = {u € cl(§)|u\z = 0}, and Y be the completion of X with the
3
norm

lully = [ / ai;(x,0) DuDjudz]? + | / IV del’
Q Q

H/ZIUZQ 5. Nlu2ds]?

Since mes », U4 # 0, by the generalized Poincare inequalities (see [Te]), we
know that ||ully > cljullw1.s, i.e. Y — W1P(Q). For the equation (1.6.25), we
always take p = 26y/1 + (o, and

1, ifb;=0, Vl<i<n

(1.6.28) Bo >
n, ifb;#Z0, forsomel<i<n

u €Y is called a weak solution of (1.6.25), if Vv € Y
(1.6.29)
/ [a;j(z,uw)DjuD;v + bjuD;v + c(x, u, Vu)v — folde — / b- Nuvds =0
Q
1

By applying Theorem 1.3.4, Theorem 1.6.5 and Remark 1.6.13, we can ob-
tain the following theorem.
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Theorem 1.6.17. Let the conditions (A;) — (As) be satisfied and f €
L (Q)(% + %) = 1). Then (1.6.25) has a weak solution u € Y. Moreover, if
feL>®(),and

1.6.30 inf 2,8z V= Dibj(z)] > a>0
( ) end RJC@ z,8)z ()] = o

then the solution u € L>®(2).
Proof. Denote by < Gu, v > the left part of equality (1.6.29). It is easy to
show that the inner product < Gu,v > defines a bounded continuous mapping

G :Y — Y* owing to (1.6.27) and (1.6.28). First we check the acute angle
condition. Let v € Y, we have

1
< Gu,u> = / [a;j(x,uw)DjuDju — §Dibiu2 + c(z, u, Vu)u
Q

1 - 1 -
—fu}d:c+§/ b-Nuzds—i/ b- Nu?ds
> >

> / (8 a;j(2,0)DiuDju+ g — fulde + 1/ b N|u?ds
Q 2 Zl v 2
(due to (1.6.5) and (1.6.26))
> ﬂ_l )\( 2 ﬂ_l . . .
> — x)|Vu|*dzx + — [a;j(x,0)D;uDju+ g — fuldz
2 Ja 2 JalJa
+1/ b- N|u*ds, (by (1.6.6))
2%, 0%,
> s —Bo 7,.1" B P2 s )
> —[[ [A7%dz] B[ | |VulP]? + — [ aij(z,0)D;uD;u
2 Ja Q 2 Jo

1 - - /
+—/ \b-N\qusfc/ |u|pda:fc/[|g|+|f|p |dx
2Jy, 0y, Q Q

(thanks to the reversed Holder inequality)
According to (Az) and p < 2, from the above inequality we can derive
< Gu,u>>0, YueY, |ully =R great enough.

Next we need to verify the continuous condition ii) in Theorem 1.3.4. Let
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up, —up in Y( as By =1, let u, —=* up in Y'), and

Iim < Gu, — Gug,u, —ug >=0

n—oo
From the condition (1.6.27), by using the same manner as the proof of Theorem
1.5.2, ones can show that

RILH;O < Gup,v >=< Gug,v >, YveY
Here we omit the details of proof. Therefore the first conclusion of the theorem
follows from Theorem 1.3.4.
Finally, by (1.6.30) we can obtain the second conclusion from Theorem 1.6.5
and Remark 1.6.13 by using the same method as the proof of Theorem 1.6.6.
The proof is complete.

1.6.5. Interior regularity

In this subsection, we concern the interior regularity of weak solutions of
equations (1.6.25), here a weak solution u of (1.6.25) means that u satisfies
(1.6.29) for any v € C1(Q) with U|Z = 0. We always assume that

3

0 <a;j(z,2)&€&, V(r,z) e xR, £€R"

and the set Q' = {z € Qla;;(x,2)§E; = 0, for some £ € R™ and [£| # 0} is
independent of z, mes Q' =0 in R"™.
Suppose that a;;,b;, ¢ € ¢(Q x R x R™), and

(1.6.31) le(z,2,8)| < g(x,2), g€c(x R

Theorem 1.6.18. Let (1.6.31) hold and f € ¢'(). If u € X NL®(Q)
is a weak solution of (1.6.25), X defined as that in section 1.6.3, then u €
()N HE (D), (0 < a< ).

Proof. Because Q\ is open, for any zp € Q\Q there is a close ball
Bas(z0) = {x € Qlz — 20| < 26} € Q\ for some § > 0. It suffices to verify
that u € ¢®(Bs(xo)) N HE,.(Bs(zo))-

Take 1 € ¢5° () such that supp 7 C Bas(xo), and

0<n(z)<1, nlz)=1, aszx € Bs(xo)

Let w =7 - u, then

(1.6.32) /aij(x,u)Dijivdzv:/n(:v)aij(x,u)DjuDivdx
Q o

66



+/ a;j(z,u)uD;n - Divdx
Q

Puting 7 - v in (1.6.29), we have
(1.6.33) / nai;(x, uw)DiuDjvde = — / [ai;(z,w)DyuD;n - v+
Q Q

+b;uD;n - v+ bun - Div + e(x,u, Vu)nv — fn - vldz
On the other hand

f/ aij(z, w)DyuD;n - vdx = / A;j(z,u)Djn - Dyvdz+
Q Q

0A;;
+/[8—7Diﬂ + Aij(z,u)Djjnlvde
o 0%

where

Ay(a,2) = /O ai; (2, y)dy.

Since supp 1 C Bas(xo), from (1.6.32) and (1.6.33), we have

/ aij(z,u) DjwD;vdz =/ [Aij(z,u)Dyn + biu - n
Bas Bas

8A’L )
(1.6.34) —l—aij(:r,u)uDjn]Divdx—i—/ [MDW

Bos O
+A;;(z,u)Dijn+ fn—b;Din - ujvde
Denote by
gi(z) = Ajj(x,w)Djn + a;j(x,w)Dinu + bi(z)un,
g(x) = %ﬁ(fﬂfjﬂl + Ajj(x,u)Dijn + f-n—b;Dinu — c(x,u, Vu)n
Because Bas C O\, there exists a constant € > 0 such that
€lé)? < aij(w,2)&&, Y(z,2) € Bas(wo) x R
Hence w € W12(Bays) N L>°(Bas) is a weak solution of the following equation
—D;(a;j(x,u)Djw) = g — D;g;, « € Bas(xo)

wlop,s =0
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Owing to u € L>(Bgs) and (1.6.31), g,9; € L*°(Bas), and thanks to the de
Giorgi estimates (Theorem 1.5.6), we get that w € ¢®(Bys), which implies that
u € c*(Bs), for some 0 < a < 1.

Noticing that (1.6.34) holds true for any v € H}(Bs), and Dw = Du in Bs,
therefore we obtain

/ [a;j(x,uw)Dju — Ayj(x,w)Djn — a;j(x,w)Djnu — byun]D;vdx
Bs

0A;;
- /B [ ax-J Din+ A;j(x,u)Dijn + fn —b;Dinu — c(x, u, Vu)nvde
5 [

=0, Yve Hi(Bs).
Thus, u restricting on B is a weak solution of the equation
D;A;(z,u, Vu) + B(z,u, Vu) =0, x € Bs(xo)
where

Ai(z,u, Vu) = aij(z,u)Dju — A;j(z,u)Djn — ai;(z, u)Djnu — byun

B(x,u, Vu) = 8517 0+ Aij(x,u)Dign + fn— biDinu — c(x, u, Vu)n

According to the assumptions, it is easy to see that A;, B € ¢! (Bsx Rx R"), and
u € WH2(Bs) N e (Bs). By means of the H2-regularity of quasilinear elliptic
equations (see [LU]), we derive that u € Hf, .(Bs). Thus the theorem is proven.

Next, we consider the interior W?2P-regularity of (1.6.25). Assume that
ai;j(z,z) € ¢*(Q) are independent of z, and

(1.6.35) le(z, 2,6)] < e(|2l* +1€]7 + 1).

where 0 < k,0 < ¢ < 2.

Theorem 1.6.19. Let (1.6.35) be satisfied, and b; € ¢'(Q), f € LF(Q), k* =
k+1/k. Ifu € XNLF1(Q) is a weak solution of (1.6.25), then u € W2P(Q\Q'),p =

- loc
min{2,k+1/k,2/q}. Furthermore, if a;;,b,c € ¢ (2 x R x R™), and np/(n —
2p) > k+1, np/(n—p) > 2, then u € ¢ (Q\Y).

Proof. As the proof of Theorem 1.6.18, we can get that w = n-u €
Wh2(Bys) N LET1(Bys) is a weak solution of the equation

—Di(aij(:c)Djw) =g — Digia T € Bos
w|oB,s =0
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where

9i = 2a;;(x)Djnu + b;n - u,
g = Dia;;Dinu+ ai; Dijnu+ fn—b;Dinu — c(x,u, Vu)n

By (1.6.35) and X N L*1(Q) < W12(Bys) N L*1(Bys), we can see that
9 € L¥(Bas), Digi € L*(Bas), k = min{%L, 2}. According to the LP-estimates
(Theorem 1.1.11), ones obtain that w € WP (Bys), i.e. u € W?P(Bs),p =
min{2, (k +1)/k,2/q}. The first conclusion is proven.

By iteration, similar to the proof of Theorem 1.5.3, one can derive the
second conclusion of this theorem. The proof is complete.

1.7. The Boundary Value Problem of the

Equations with Nonnegative Characteristic
Form

1.7.1. Formulation of the boundary value problem

For second order equations with nonnegative characteristic form, Keldys[Ke]
and Fichera[Fi] presented a kind of boundary condition, with that the associ-
ated problem is of well posedness. However, for higher order ones, the dis-
cussion of well posed boundary value problem has not been seen. Here we
shall give a kind of boundary value condition, which is consistent with Dirich-
let problem if the equations are elliptic, and coincident with Keldys-Fichera
boundary value problem when the equations are of second order.

We consider the linear partial differential operator

(1.7.1) Lu = > (=)™ D*(aap(x) D% + bary (2) DV u)

lee|=|B|=m, |v|=m—1
+ > (=1)ID%(dgr(x) D ).
0], A[<m—1
where x € 2,0 C R™ is an open set, the coefficients of L are bounded measur-

able functions, and aqg(z) = aga(x).

Let {gas(z)} be a series of functions with gog = gga, || = || = k. Ifin cer-
tain order we put all multiple indexes o with |a| = k into a row{a?,---,aV¥},
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then {gog(x)} can be made into a symmetric matrix (g,iqs). By this rule, we
get a symmetric matrix

(172) M(.’L‘) = (aaia]‘ (x))i,jzl,“-,Nm
Suppose that the matrix M (z) is semi-positive, i.e.
(1.7.3) 0 < agiai (2)&&5, Yo € Q&€ RN,

and the odd order part of (1.7.1) can be written as
(1.7.4)

S UMb @DT) =Y S ()" DM (@)D )

laf=m,|y|[=m—1 i=L |A|=[0]=m—1

where 8; = {6;1,-,0in},0;; is the Kronecker symbol. Assume that for all
1 <i < n, we have _ ,
bio(®) = byr(2), z€Q

We introduce another symmetric matrix

(1.7.5) B(z) = (zn: b (2) nk> .z €00
k=1

4,J=1,,Nm 1

where @ = {ny,---,n,} is the outward normal at z € 9Q. Let the following
matrices be orthogonal

CM($> = (Ci]}‘/[($>>i,j:1,-~,Nm; reN

CP(z) = (CH(2))ij=1,Np_r, T €OV

satisfying
CM (@) M (z)CM (x) = (ei(%)6i)ij=1, N
)

CP(z)B(x)C" (x)' = (hi(x)i;)ij=1,..N

s IVNm —1°

where C(x)’ is the transposed matrix of C(x), e;(x) are the eigenvalues of M (x)
and h;(z) the eigenvalues of B(x). Denote by

SV =z e dei(x) >0}, 1<i<N,

P = {2 €d0hi(x) >0}, 1<i< Ny

S0\ NP 1<i<N, ..
For multiple indices «a, 8, < 8 means that «; < §;,V1 < i < n. Now let us
consider the following boundary value problem,

(1.7.6) Lu= f(z), ze€Q
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(1.7.7) D%ulpn =0, |aj<m-—2

N1
(1.7.8) > Cg(x)D’\Ju\Z; =0, [NM=m—-1, 1<i<Npy_,
=1 ‘
N’m .
(1.7.9) Z CZ}I(%‘)DQ TR Nk, ‘ZAI =0,
i=1 '

for all 6y, < o, |?| =m, and 1 < i < N, where &, ={0,---,1,---,0}.
P
We can see that the item (1.7.9) of boundary value condition is determined
by the leading term matrix (1.7.2), and (1.7.8) is defined by the odd term
matrix (1.7.5). Moreover, if the operator L is not elliptic, then the item (1.7.7)
implies that the operator

L’u = Z (—l)lg‘De(dg)\(x)DAu)
[O],|A|<m—1

is elliptic.
In order to illustrate the boundary value condition (1.7.7)-(1.7.9), in follow-
ing we give an example.

Example 1.7.1. Give the differential equation

0*u 0*u u
1.7.10 — t+t =55+t == —Au= Qc R%
( ) oz + 023023 + oz u=/f wefc

here Q = {(z1,72) € R*|0 < 71 < 1,0 < m3 < 1}. let o' = {2,0},0% =
{1,1},a® = {0,2} and A! = {1,0}, A2 = {0, 1}, then the leading and odd term
matrices of (1.7.10) respectively are

and the orthogonal matrices are
1 0
C«]W _ 1 CB — < 10 )
0 1 0 1
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We can see that Ziw = 09, Zgj = 01, Zéw = ¢, and Z? = ¢, ZQB as shown
in Fig 1.2 below

¥

X

Fig. 1.2
The item (1.7.8) is
2 j 2 Ou
CBpN =D = =0
2 CHP sy = DMl = gl

and the item (1.7.9) is

3 .
Z CM D> =84, . ny,. — D =81y =0
ulyy wlyy

3 )
CM DY =854, .y, =D¥ Py . =0
; 2 k; lZf kz‘Z;”
V6, < al and 8§, < o?. Since only 8, = {1,0} < o' = {2,0}, hence we have

0
Dal*éklu'nkﬁZM = 8_u 'n1|8§2 =0
1 £

however, &, = {1,0} < a? = {1,1} and &, = {0,1} < o?, therefore

2 £ mlon =0
D“ 75’“211, . nk2|zM =
’ 2L nylon =0
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Thus the associated boundary value condition of (1.7.10) is as follows

ou ou
ulan " By \BQ/F ™ ES

which implies that 59—52 is free on I' = {(z1,22) € 0|0 < z1 < 1,29 = 0}.

Remark 1.7.2. In general the matrices M (z) and B(x) arranged are not

unique, hence the boundary value conditions relating to the operator L may
be not unique.

Remark 1.7.3. When all leading terms of L are zero, the equation (1.7.6)
is an odd order one. In this case, only (1.7.7) and (1.7.8) remain.

Now we return to discuss the relations between the condition (1.7.7)-(1.7.9)
with Dirichlet and Keldys-Fichera boundary value conditions.

It is easy to verify that the problem (1.7.6)-(1.7.9) is the Dirichlet prob-
lem provided the operator L being elliptic. In this case, wa = 0N for all
1 <i < N,,. Besides, (1.6.9) run over all 1 < ¢ < N,,, and Ok, < o7, moreover
CM () is non-degenerate for any x € 9. Solving the system of equations, we
get D%ulpq = 0,V|a| =m — 1.

When m = 1, namely L is of second order, the condition (1.7.8) is the form
u|ZB =0, NP ={rea " bi(x)n; > 0}.
and (1.7.9) is

n
Zcff(fﬁ)m‘UIZM =0, 1<i<n
j=1 i

Noticing
> ag(@ming =Y ei() (D CY (x)n;)?
i,j=1 i=1 j=1

thus the condition (1.7.9) is the form
ufg =0, SM = {x € 8Qai;(z)nm; > 0}.

It shows that when m = 1, (1.7.8) and (1.7.9) are coincident with Keldys-
Fichera boundary value condition.
Next, we shall give the definition of weak solutions of (1.7.6)-(1.7.9). Let

(1.7.10) X={velC>® ) |D%|oa=0, |af<m-—2, and

v satisfy (1.7.9), |lv|l2 < oco}.
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where || - || is defined by

|\U||2_/ > (D der/ Z |va| 2ds]?
lvI=

lal<m

We denote by X3 the completion of X under the norm || - ||2 and by X; the
completion of X with the following norm

||v|\1=[/ (Y awp@D Do+ Y D)

Q
la|=|Bl=m [v[<m—1

/ Zl |hi(z Z CEDY v)?ds]

=

Definition 1.7.4. u € X; is a weak solution of (1.7.6)-(1.7.9) if for any
v € Xo, the following equality holds

/Q[ Z (a0p(2) DPu 4 bor () DYu) DY

lal=18]=m,|7|=m—1

Nﬂl—l
(1.7.11) + Z dG,)\(iC)Dk’LLDG’U}d;C— Z / Ch(@.
101, |x|<n—1 i1 ),
Nrn—l . Tn 1
X( Z CZ?D’YJ )( Z CBD’Y dS—/f . vde
Jj=1 j=1

We need to check the reasonableness of the boundary value problem (1.7.6)-
(1.7.9) under the definition of weak solutions, i.e., the solutions in the classical
sense are necessarily the solutions in weak sense, and conversely when a weak
solution satisfies certain regularity conditions, it will surely satisfy the given
boundary value conditions. Here we assume that all coefficients of L are suffi-
ciently smooth.

Let u be a classical solution of (1.7.6)-(1.7.9). Denote by < Lu,v > the left
part of (1.7.11), we want to show

(1.7.12) < Lu,v >= / Lu-vde, YveX
Q
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Thanks to integration by part, we have

/Q Lu-vdx = / [ Z (aap(2) DPu + bos () DYu) D

Q
lee|=[8]=m,|v|=m—1

+ > doa(z)D uD] d:c—/aQ > aaﬁ( YD

16],IA|[<m—1 le|=8l=

n
X DOk + Z Z b () - n;DPuD*v]ds
AI=lf=m 1 i=1

Since v € X, we have

/ Z aag( YDPuD %y - nyds
o0

le|=|B8l=

N, . N, .
- [ S oSyt =
ALy j=1 j=1

Because u satisfies (1.7.8),

Y bl (x -niDeuD)‘vds
D SR SYE
)

2 \=||=m—1 i=1

N1

= / Z C’Z-J?D“’ju)( Z C’Z-]?-’D"’jv)ds
] j=1 j=1
Nm71 Nm71 ) Nm71 .
-3 / @)Y CEDY (S CEDYv)ds
iz I j=1 j=1

From the three equalities above we obtain (1.7.12).

Let u € X; be a weak solution of (1.7.6)-(1.7.9). Then the boundary value
condition (1.7.7) and (1.7.9) can be reflected by the space X;. In fact, we can
show that if u € X7, then u satisfies

(1.7.13) Z/ CMDO‘ Ok Ny, )%
ZCMD"‘] =0, YveX;nWnth(Q).
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Evidently, when u € X,v € X; N W™ +12(Q), we have

/ Z op(x) DPuDvdx

@ al=|8]=m

1.7.14 = —/ D;(ag 3D*v)DP~%iudx
( ) ; Z (@a,3Dv)

la]=m,|B|=m

If we can verify that for any u € X7, (1.6.14) holds true, then we get

/ Y ap(@)D*wD?Pu Nyds =0
O a|=|8]=n

which means that (1.7.13) holds true. Since X is dense in X, for v € X given,
let up € X and ux — v in X;. Then

, By D — 8, N
kh_)rrgo Z aap D" u D*vdx / Z aop D7 uD*vdx

@ aj=m,|8l=m @ aj=m,|8l=m

klggo/g |_Zﬁ_ Di(aaﬁDD‘v)Dﬁ‘Siukclx:/Q l_zﬁ_ Di(aaﬂDD‘v)Dgf‘siudx

Due to wuy, satisfying (1.7.14), hence u € X; satisfies (1.7.14) Thus (1.7.13) is
verified.
Remark 1.7.5. When (1.7.2) is a diagonal matrix, then (1.7.9) is the form

DVU|ZM =0, forlyl=m-1

where Zf\f = {x € 0 Y| ayt54+s,(x) -n? > 0}. In this case, the corre-
sponding trace embedding theorems can be set, and the boundary value con-
dition (1.7.9) is naturally satisfied. On the other hand, if the weak solution u
of (1.7.6)-(1.7.9) belong to X; N W™P(Q) for some p > 1, then by the trace
embedding theorems, the condition (1.7.9) also holds true.

It remains to verify the condition (1.7.8). Let ug € X3 NW™+1.2(Q) satisfy
(1.7.11). Since W™*+1:2(Q) < X5, hence we have

/Q[ Z (a(w(x)Dﬁuo + ba~ () DY ug) D% ug

le|=|8l=m; |y|=m—1

(1.7.15) + Z dox(z) D ugD%ug — fug|dz—
[0],IA|<m—1
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N1 Np—1 )
-y / Jhi()(Y ] CEDY ug)’ds =0
= I j=1
On the other hand, by (1.7.11), for any v € C§°(2), we get

(1.7.16)/[— Z Di(aap(2)D%ug) DP iy + Z dox(x) D Mug D%
@ |a|=|B8|=m [0],|A|[<m—1

—fv—Dy( Z éw(x)DWUO)Dev]d:r =0
16]=ly|=m—1

Because the coefficients of L are sufficiently smooth, and C§°(Q2) is dense in
W~ 12(Q), the equality (1.7.16) also holds for any v € W™~ "?(Q). Therefore,
due to ug € W' "*(Q) we have

/[f Z Di(aag(x)Dﬁuo)Do‘f‘S"'qur Z d(;)\(x)D)‘uoDeuo
£ Jal=|8l=m 10],| | <m—1

(1.7.17) —fuo—Dp( > b (2)DVup)DPugldx =0
j0l=l7|=m—1

From (1.7.13) one derives

—/ Z Di(aag(:c)DO‘uo)DB_‘s"uodx:/ Z aag(ﬂc)Do‘uoDBuodx

2 |a|=|8]=m 2 |a|=18=m
Furthermore
- / Di( > bh(x)DVug) Dlugda = / > bew () DV g D ugda:
Q = QT
16]=]7|=m—1 |ar|=m2,|y|=m—1
Ny —1 N1 )
-y hi(x)( Y CEDY ug)?ds
i=1 /ZfUZf j=1

From (1.7.15) and (1.7.17) one can see that

Nm—1

N1
> / , hi(@)( Y CED  ug)*ds =0
-1 Y i=1

Noticing h;(z) > 0 in Zf, one deduces that wg satisfies (1.6.8) provided
ug € X1 N Wm+1’2(ﬂ).
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Finally, we discuss the well posedness of the boundary value problem (1.7.6)-
(1.7.9).

Theorem 1.7.6(Existence Theorem). Let 2 C R™ be an arbitrary open
set, f € L*(Q) and by, € C1(Q). If there exist a constant C > 0 and g € L'()
such that

(1.7.18) C Y EPHCIEP—g< Y doa(x)éoén

[vl=m—1 [Al10]<m—1

1 < ,
_5 Z Z Dib»zyﬁ(x)g'ygﬁ-

i=1 |y|=|g]=m—1

where £, is the component of ¢ € RNm-1 corresponding to D%u, then the
problem (1.7.6)-(1.7.9) has a weak solution in Xj.

Proof. Let < Lu,v > be the inner product as in (1.7.12). It is easy to
verify that < Lu,v > defines a bounded linear operator L : X1 — X5. Hence
L is weakly continuous. From (1.7.18), for u € X we drive that

(1.7.19) < Lu,u >:/[ Z aap(2) D uD u+t-
Q

la|=[B|=m

+ Z Z §o(2)D0uDAoiqy 4 Z dyo(z)D7uD“u]dx

i=1 |A|=]0|=m—1 Ivlslal<m—1

Nm—1

N1
-y / hi(@)( Y CEDY w)ds
i— 7Y =1

= /Q[ Z s () D uDPu + Z dyo(z)D'uD%u

laf=[B]=n [l el <m—1

-5 > Dibls(x)D"uD uldx +
i=1 |y|=l8l=m—1

m—1

+% NZI[ /Zf - /Zf hi(x)(NZ CEDY w)?ds

Y]

/ [ aap(x)D*uDPu + C Z |DYul? + Cu? — g(z))dx

Q
la|=]8|=m [v[=m—1

1Nm‘1 Nowe1 |
— (z B (DY u)21ds
+2 ;[/ZfUZ? |hz( )|(; C”( )D )]d
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Hence we obtain
< Lu,u>>Clul? -C, YueX

Thus by Holder inequality we have
<Lu—fiu>>0, YuelX, I|ul|i=R greatenough.

By Theorem 1.3.2, the theorem is proven.

Theorem 1.7.7(Uniqueness Theorem). Under the assumptions of Theo-
rem 1.7.6 with g(z) = 0 in (1.7.18). If the problem (1.7.6)-(1.7.9) has a weak
solution in X3 N W™P(Q) N Wm’l’q(Q)(% + % = 1), then such a solution is
unique. Moreover, if by, () = 0 in L,V|a] = m,|y| = m — 1, then the weak
solution u € X3 of (1.7.6)-(1.7.7) is unique.

Proof. Let ug € X1 NW™P(Q)NW™=14(Q) be a weak solution of (1.7.6)-
(1.7.9). We can see that (1.7.11) holds for all v € X3 NW™P(Q) N W™~ 14(Q).
Hence < Lug, ug > is well defined. Let uy € Xy NW™P(Q)NW™~14(Q). Then
from (1.7.19) it follows that < Luj; — Lug,u; — up >= 0 = u; = ug, which
means that the solution of (1.7.6)-(1.7.9) in X3 N W™P(Q) N Wm=14(Q) is
unique. If all the odd terms b, (z) = 0 of L, then (1.7.11) holds for all v € X7,
in the same fashion we know that the weak solution of (1.7.6)-(1.7.9) in X is
unique. The proof is complete.

Remark 1.7.8. In subsection 1.7.3, we can see that under certain assump-
tions, the weak solutions of degenerate elliptic equations are in X3 NW"P(Q2)N
W@+ = 1),

1.7.2. Existence of higher order quasilinear equations

Give the quasilinear differential operator

(1.7.20) Au= Z (=1)™D*(ans(z, /\ ) DPu + by (2) D7)

lee|=|Bl=m; |v|=m—1

+ Y (=)D (dye(x, [\ w)Du)

[v|=10]=m—1

+ Z (—l)l)“D)‘g,\(a:,/\u)

IAl<m—1

where m > 2 and /\u = {Dau}\a|§7n72~
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Let ans(z,&) = aga(z,§), the odd order part of (1.7.20) be as that in
(1.7.4), bo, € CHQ) and Zf,zzc be the same as those in subsection 1.7.1.
The leading matrix is

M(.’L‘, 5) = (aa’iaf (x’ 5))1',.7:1,'“71\7,”

and the eigenvalues are e;(x, ). We denote
SV = {z € 89ei(x,0) >0}, 1<i<N,,.
We consider the following problem

(1.7.21) Au= f(z), z€Q
(1.7.22) /\ o = 0.
(1.7.23) Z D”u|ZB =0, [N =m-1,1<i<Np_1.
(1.7.24) ZCM x,0)D* ~ "'ju-Nk].|Ziu =0,
V(SkjSO{J’|QJ‘:TL’1SZSNW’6]€]:{O’71’70}
N——
kj

Denote the anisotropic Sobolev space by

VI/‘I;(Y|<IC( )={u € LP(Q)|po > 1,D% € LP>(Q), V1 < |a| <k, andp, > 1, or =0}.

whose norm is

HU’” = Z Slgn paHDauHLl’a-
la|<k

when all p, = p for |a| = k, then the space is denoted by W]f "Z;‘Kk ().
qo(|0| < k) is termed the critical embedding exponent from VV\a| () to
LP(Q), if gp is the largest number of the exponent p in where Dyu € LP(Q2),Vu €

WP _ (Q), and the embedding is continuous.

|| <k
For example, when (2 is bounded, the space X = {u € L*(Q)|k > 1, D;u €
L3(),1 < i < n} with norm |jul| = [[Vullp2 + ||ul/z+ is an anisotropic

Sobolev space, and the critical embedding exponents from X to LP(f2) are
g =2(1 <i<n),q0 = maz{k, -2
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Suppose that
(A7). The coefficients of the leading term of A satisfy one of the following two
conditions

D). aap(z,n) = aap(z)

ii). ang(z,n) =0, a8 a # S.
(Az). There is a constant M > 0 such that

(1.7.25) 0SM > aap@ 08 < > aas(®,m)€aés

la|=[8]=m la|=[B]=m

< Mil Z aaﬁ(xao)£a£ﬁ~

lor|=[B]=m

(A3). There are functions G;(z,n)(i =0,1,---,n) with G;(z,0) =0,
V1 <i < n, such that

n
Z gy(x, /\u)Dyu = ZDiGi(x, /\u) + Go(z, /\u)
|y]|=m—1 =1

(A4). There is a constant ¢ > 0 such that

(1.7.26) AP < Y [as@abs — 5 O Dibhys(r)éals
=1

la|=[B|=m—1

(1.7.27) c Y signpalmP = f1 < D gola,n)ng + Golx,m).
[A[<m—1 |6|<m—2

where fi € L*(Q),p0 > 1,py >1or =0,V1 < |A| <m — 2.
(As). There is a constant ¢ > 0 such that

(1.7.28) law,g(z,n)| <c

(1.7.29) dyo(z,m)l <[ > Insl™ +1]
|B]<m—2

(1.7.30) g () <l Y [msl +1).
[B|<m—2

where 1 < S5 < qg/2,1 < E/g < ¢, qg is critical embedding exponent
from Wi’f*l’l)\‘gmﬂ(ﬂ) to LP(Q).
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Let X be defined by (1.7.10) and X; be the completion of X under the
norm

Hv||1=[/ (> aop(@,0DD%+ 7 [D7of’)dx
Q
la|=|B|=m |y|=m—1

Ny —1

/BQ Z e Z CEDY v)ds)t + S signps || D70l|1e

i=1 Iyl <m—2

=

and X5 be the complet1on of X with the norm

[lls = [[Wllwms + [[ollwmz + / Z |va| ds]*
[v|=

where p > maz{2, g5(g5 — 55) " 205(g5 — 255)7'}.

u € X; is a weak solution of (1.7.21)-(1.7.24), if for any v € X5, we have

/[ Z aaﬂ(xv/\u)DDéUJDﬂU-i- Z ba~(z) D uD%

lo|=[B]=m le|=m,|y[=m—1

(1.7.31) + Z dyo(z, /\u)DeuD”v + Z gk(a:,/\u)D)‘v — fuldz

[v[=[0]=m—1 [A|<m—1
Nrn,—l Nm—l . Nm—l .
- / @) (Y CEDT (Y CEDY vyds =0
=1 2 j=1 j=1
Theorem 1.7.9. Under the condition (A;)—(As), if f € LPo(Q), (pio—l-pl, =
0

1), then the problem (1.7.21)-(1.7.24) has a weak solution in Xj.

Proof. Denote by < Au,v > the left part of (1.7.31). It is easy to verify
that the inner product < Awu,v > defines a bounded mapping A : X1 — X3 by
the condition (As).

Let u € X, by (A2) — (A4), one can deduce that

< Au,u >2/[M Z aap(x,0)D*uDPu + C Z | DYu?
C Jal=I8l=m ly|=m—1
0 771 1
(1.7.32) +C > | DOl da:+2 Z / /

0] <m—2
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Npp—1 )
B v u)2ds] — - 1|ldx
X(; CB(2) D w)2ds] /Q[f 1l

Noticing hl|zB > 0, hi|zc <0, Z? UZZC = 01, by Holder and Young in-

equalities, from (1.6.32) we can get
< Au,u>>0, Vue X, |ulx, large enough.

By using the same method as in Theorem 1.5.1 and Theorem 1.6.3, we can
prove that the mapping A : X1 — X is weakly continuous. By Theorem 1.3.2,
this theorem is proven.

In the following, we take an example to illustrate the application of Theorem
1.7.9.
Example 1.7.10. We consider the boundary value problem of odd order
equation as follows
Pu  Bu

= — Lutu’ = fla,y), (r,y) €QCR?

1.7. —
(1.7.33) 973 + B

where €2 is an unit ball in R?, see Fig. 1.3 below

Yinx?

Fig. 1.3
The odd term matrix is

wen=(3 %)= (i 1)
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It is easy to see that
SP={zecdQn,=2>0={-Z<0<I}
S ={redn,=y>0}={0<6 <}

The boundary value condition associated with (1.7.33) is

(1.7.34) ulon =0

ou ou , 0 ™
(1.7.35) %|Zf = %(cosﬁ,sm@) =0, 5 < 0 < 5
(1.7.36) Z—Z|ZB = Z—Z(COSH, sinf) =0, 0<6<m.

Applying Theorem 1.7.9, if f € L*/3(2), then the problem (1.7.33)-(1.7.36) has
a weak solution u € W12(Q).

1.7.3. W™P-solutions of degenerate elliptic equations

In the following, we give some existence theorems of W P-solutions for the
boundary value condition (1.7.22)-(1.7.24) of higher order degenerate elliptic
equations.

First we consider the quasilinear equations

(1.7.37) Z (=1)™D*(aas(x, Du)DPu + bony (2) D)

leel=[B]=m,|v|=m—1

+ > (-=)"DVg(x,Du) = f(z), weQ.

[v|<m—1

where Du = {Dau}|a‘§m,1. The boundary value condition associated with

the equation (1.7.37) is given by (1.7.22)-(1.7.24). Suppose that Q@ C R™ is

bounded, and

(B71) The condition (1.7.25) holds, and there is a continuous function A(z) >0
on Q such that

MD)EP™ < Y aap(,0)6%¢7, Ve R

|a|=|8]=m

where £* = &1 - &0 a = (aq, -+, o).
(B2).QY = {z € QA(x) = 0} is a measure zero set in R™, and there is a sequence
of subdomains € with cone property such that Qi CC Q/Q, Qi C Qgyq
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and UQy = Q/QI.
(B3) The positive definite condition

c Y P -hns Y wwon-3> Y D

[A|<m—1 [0|<m-—1 i=1 |y|=|a]=m—1

where pg > 1,py >1lor=0for 1 <|\ <m—1;f; € L}(Q)
(B4). The structural conditions

|aas(z, )] < c

9, (@, )l < e[ Y 1€l +1]

o] <m—1
where 0 < Sy < gg, qg is the critical embedding exponent from VV| )\*‘ em_1(©)
to LP(Q). N
Let X be define by (1.7.10) and X; be the completion of X with the norm

lu]| = / Z aag(x 0)D* uDﬁudaz]2+ Z signpea || D% ul| Lra

la|=]8|= la|<m—1

Np—1 Nopp—1

Z /d ) S OB () D" u)ds]?

Jj= 1

Theorem 1.7.11. Under the assumptions (B1) — (By), if f € LP0(Q), then
the problem (1.7.37)(1.7.22)-(1.7.24) has a weak solution v € X;. Moreover, if

there is a § > 1 such that
/ A()|~da < o
Q

then the weak solution u € W™P?(Q) N Xi,p= %.
The proof of Theorem 1.7.11 is parallel to that of Theorem 1.6.15, here we
omit the details.

Next, we consider the quasilinear equation

|a|=|B|=m,|y|=m—1
+ > ()MDgy(@,0u) = f(z), zeQ
[y|[<m—1
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where Ou = {u,---, D™u}.
Suppose that
(B}) There is a 6 > 1 such that

/ I\x)|~°dz < oco.
Q
(B§) The structural conditions

|aap(z,n)| <c

97 (@ ) < e[ Y &l + Y J€al +1]

o1 <m—1 lal=m
where 0 < 5,9 < q—“’q;—lqg,O <t,<p(gy—1)/qy,p=26/1+6,qy,qp are the

critical embedding exponents from V[/f;\*l <m—1(8) to LI().

Theorem 1.7.12. Let the conditions (B1) — (Bs3) and (B})(B§) be sat-
isfied. If f € LPo(Q), then the problem (1.7.38)(1.7.22)-(1.7.24) has a weak
solution u € WP (Q)capXi,p = 26/(1 + 6).

The proof of Theorem 1.7.12 is parallel to that of Theorem 1.6.17.
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