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Abstract
We obtain an inequality involving the p-deformed Jacobi polynomial: P (α,β)n,p (x) with the help of the

contour integration and the theory of equations. The inequalities for the Gegenbauer polynomial, the
Legendre polynomial and the Chebyshev polynomial are illustrated as the special cases.

1 Introduction

Numerous scientific phenomena and numerical analysis use the Jacobi polynomial. On the real half-line, it
is employed to obtain the approximate solution of the characteristic equation with the Cauchy kernel [11,
Eq. (1.1), page 326]:

aφ(x) +
1

πi

∫ +∞

0

bφ(σ)

σ − x dσ = f(x), x ∈ (0,+∞),

where a, b are given complex numbers with a2 − b2 6= 0, b 6= 0, f(x) is the given complex valued Hölder
continuous function and φ(x) is unknown function. The Jacobi polynomial also solves the differential equation
of heat conduction in non-homogeneous moving rectangular parallelepiped [10]. The singular differential
equations are numerically solved by Jacobi-Gauss type interpolations [1]. Moreover, this polynomial is
involved in achieving the coupled system’s numerical solution for fractional differential equations [9]. In
2007, Rafael Díaz and Eddy Pariguan [6] introduced the function (Euler integral form):

Γp(z) =

∫ ∞
0

e−t
p/p tz−1 dt,

where z ∈ C, <(z) > 0, p > 0. We note that the special case: Γ2(x) represents the Gaussian integral [6, p.
183]. In fact, the occurrence of the product of the form x(x+ p)(x+ 2p) · · · (x+ (n− 1)p) in combinatorics
of creation and annihilation operators [4], [5] and the perturbative computation of Feynman integrals [3] led
Rafael Diaz et al. to generalize the gamma function in the above form. Diaz at el.[6] defined the Pochhammer
p-symbol for z ∈ C, p ∈ R and n ∈ N, which is given by

(z)n,p = z(z + p)(z + 2p) · · · (z + (n− 1)p).

The following are some basic formulas follow from the above p-Gamma function and the p-Pochhammer
symbol [6, Prop. 6, p. 183].

Γp(z + p) = z Γp(z), (z)n,p = Γp(z + np)/Γp(z), Γp(p) = 1.

In [8], it is shown that for α, β ∈ (−1,∞), p ∈ (0,∞) and n ∈ N ∪ {0},∫ 1

−1

(1− x)
α+1
p −1(1 + x)

β+1
p −1P (α,β)

n,p (x)P (α,β)
m,p (x) dx

=
pn+12

α+β+2
p −1Γp(α+ np+ 1)Γp(β + np+ 1)

n!(α+ β + 2 + (2n− 1)p)Γp(α+ β + 2 + np− p) δmn, (1)
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wherein P (α,β)
n,p (x) is the p-deformed Jacobi polynomial defined explicitly by [8]

P (α,β)
n,p (x) =

(1 + α)n,p
n!

n∑
k=0

(−n)k(α+ β + 2 + np− p)k,p
(1 + α)k,pk!

(
1− x

2

)k
. (2)

The orthogonal polynomials are known to satisfy specific inequalities. For instance, the Jacobi polynomial
fulfills the inequality that appeared in [7], and the Legendre polynomial satisfies the inequalities derived in
[12, Theorem 60 and 61, p.172-173].
Here our objective is to investigate the inequality relation for the p-Jacobi polynomial P (α,β)

n,p (x) as stated
in (2).

2 Inequality

We establish the inequality in the following

Theorem 1 For α, β ∈ [0,∞), p ∈ [1,∞), n ∈ N and x ∈ (−1, 1),

∣∣∣P (α,β)
n,p (x)

∣∣∣ ≤ [ 2γ+δ−2nppnpγγ δδ

nnp(γ + δ − np)γ+δ−np

]1/2p

(1− x)
np−γ
2p (1 + x)

np−δ
2p ,

where γ = 1 + α+ (n− 1)p and δ = 1 + β + (n− 1)p.

Proof. The Rodrigues formula for the polynomial (2) is [8]

(1− x)
α+1
p −1(1 + x)

β+1
p −1P (α,β)

n,p (x) =
(
−p

2

)n (−1)n

n!
Dn
[
(1− x)

α+1
p +(n−1)(1 + x)

β+1
p +(n−1)

]
,

where D = d/dx. In view of the contour integral formula for the n-th derivative of an analytic function [2,
Eq. (5), p. 167], we have

n!

(
2

p

)n
(1− x)

α+1
p −1(1 + x)

β+1
p −1P (α,β)

n,p (x) = Dn
[
(1− x)

α+1
p +(n−1)(1 + x)

β+1
p +(n−1)

]
=

n!

2πi

∫
C

(1− z)
α+1
p +(n−1)(1 + z)

β+1
p +(n−1)

(z − x)n+1
dz,

where C is any positively oriented simple closed contour enclosing the point x in the z-plane. Hence,(
2

p

)n
(1− x)

α+1
p −1(1 + x)

β+1
p −1P (α,β)

n,p (x) =
1

2πi

∫
C

(1− z)
α+1
p +(n−1)(1 + z)

β+1
p +(n−1)

(z − x)n+1
dz = I(α,β)

n,p (x), (3)

say. The circle C(x; r), interior to C, with its center at point x and radius r, can be used to substitute
the closed contour C using the principle deformation of path [2, Corollary, p. 159]; in particular, we choose
C(0; r) = C.
We will make use of the following substitutes in the present work.

α− p+ 1

n
= a and

β − p+ 1

n
= b. (4)

Using these in (3), and putting z = x+ s, we get

I(α,β)
n,p (x) =

1

2πi

∫
C

(
(1− x− s)

a
p+1(1 + x+ s)

b
p+1

s

)n
ds

s
.
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For determining the radius r of the circle C, we take the logarithm of the integrand which is the function of
s, given by (

a+ p

p

)
log(1− x− s) +

(
b+ p

p

)
log(1 + x+ s)− log s = ξ(s),

say, then

ξ
′
(s) = − a+ p

p(1− x− s) +
b+ p

p(1 + x+ s)
− 1

s
.

Now if
(a+ p)

p(1− x− s) −
(b+ p)

p(1 + x+ s)
+

1

s
=

As2 +Bs+ C

s(1 + x+ s)(1− x− s) ,

then it follows that

A ≡ A(x) =
a+ b+ p

p
, B ≡ B(x) =

(a+ b)x

p
+

(a− b)
p

, C ≡ C(x) = 1− x2.

Since A(x)s2 +B(x)s+ C(x) is a quadratic polynomial in s, we have

∆(x) = [B(x)]2 − 4A(x)C(x)

=

(
a+ b+ 2p

p

)2

x2 +
2(a2 − b2)

p2
x+

(a− b)2

p2
− 4(a+ b+ p)

p
,

which is a polynomial in x having two roots x+ and x−, say, where

x± =
− 2(a2−b2)

p2 ±
√

4(a2−b2)2

p4 − 4
(
a+b+2p

p

)2 (
(a−b)2
p2 − 4(a+b+p)

p

)
2
(
a+b+2p

p

)2 .

Thus, ∆(x) = (x−x−)(x−x+) and since x ∈ (−1, 1), −1 < x− < x+ < 1. But then∆(x) < 0, ∀ x ∈ (x−, x+).
This indicates that the equation: A(x)s2 +B(x)s+ C(x) = 0 has two conjugate solutions s1, s̄1 = s2, say.

We note from the relation between roots and coeffi cients, that

|s1|2 = |s2|2 = s1s2 =
C(x)

A(x)
=
p(1− x2)

a+ b+ p
.

Hence, suggested by this, we choose the radius

r =

√
p(1− x2)

a+ b+ p
. (5)

Now, with s = reiθ,∣∣∣I(α,β)
n,p (x)

∣∣∣ ≤ 1

2π

∫ 2π

0

(|(1− x− reiθ)1+ a
p (1 + x+ reiθ)1+ b

p r−1|)n dθ.

Here the expression:
|(1− x− reiθ)1+ a

p (1 + x+ reiθ)1+ b
p r−1|,

with eiθ = cos θ + i sin θ, transforms to[
(r2 + (1− x)2 − 2r(1− x) cos θ)

] a+p
2p
[
(r2 + (1 + x)2 + 2r(1 + x) cos θ)

] b+p
2p r−1. (6)

Next, we put ∣∣∣(1− x− reiθ)1+ a
p (1 + x+ reiθ)1+ b

p r−1
∣∣∣ = eΦ(cosθ). (7)
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Then taking logarithm and putting cos θ = t, we get

a+ p

2p
ln(r2 + (1− x)2 − 2r(1− x)t) +

b+ p

2p
ln(r2 + (1 + x)2 + 2r(1 + x)t)− ln(r) = Φ(t),

where t ∈ (−1, 1). Let

t1 = −r
2 + (1 + x)2

2r(1 + x)
, t2 =

r2 + (1− x)2

2r(1− x)
. (8)

Then since [r − (1± x)]
2 ≥ 0, it follows that t1 ≤ −1 and 1 ≤ t2. Hence,

Φ(t) =
a+ p

2p
ln(t2 − t) +

b+ p

2p
ln(t− t1) + k, (9)

where

k =
a+ p

2p
ln(1− x) +

b+ p

2p
ln(1 + x) +

a+ b+ 2p

2p
ln(2) +

a+ b

2p
ln r, (10)

which is independent of t. Using (5) in (8), we have

t1 =
−(a+ b+ 2p)− (a+ b)x

2
√
p(a+ b+ p)(1− x2)

, t2 =
(a+ b+ 2p)− (a+ b)x

2
√
p(a+ b+ p)(1− x2)

,

and

t2 − t1 =
(a+ b+ 2p)√

p(a+ b+ p)(1− x2)
. (11)

From (9),

Φ
′
(t) = − a+ p

2p(t2 − t)
+

b+ p

2p(t− t1)
=

(a+ b+ 2p)(t0 − t)
2p(t− t1)(t2 − t)

,

where

t0 =
(a+ p)t1 + (b+ p)t2

(a+ b+ 2p)
=

−a+ b− (a+ b)x

2
√
p(a+ b+ p)(1− x2)

is such that t1 < t0 < t2. These inequalities are implied by the fact that a + b + 2p > ±(a + b). Also, since
a+ p > 0, b+ p > 0, we have

Φ
′′
(t) = − a+ p

2p(t2 − t)2
− b+ p

2p(t− t1)2
< 0.

From this, it follows that Φ(t) is concave and since φ′(t0) = 0, φ(t) has a global maximum at t0. From (6)
and (7), we thus obtain the inequality:∣∣∣I(α,β)

n,p (x)
∣∣∣ ≤ 1

2π

∫ 2π

0

enΦ(cos θ)dθ =
1

π

∫ π

0

enΦ(cos θ)dθ ≤ enΦ(t0), (12)

in view of the property:

f(x) = f(2a− x) =⇒
∫ 2a

0

f(x) dx = 2

∫ a

0

f(2a− x) dx,

of definite integrals. Since,

t2 − t0 =
(a+ p)(t2 − t1)

a+ b+ 2p
and t0 − t1 =

(b+ p)(t2 − t1)

a+ b+ 2p
, (13)
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we find from (9) and (13) that

Φ(t0) =
a+ p

2p
ln

(
(a+ p)(t2 − t1)

a+ b+ 2p

)
+
b+ p

2p
ln

(
(b+ p)(t2 − t1)

a+ b+ 2p

)
+ k.

From (10) and (11), we further find that

Φ(t0) = ln

[
2a+b+2p(a+ p)a+p(b+ p)b+p(1− x)a(1 + x)b

p(a+ b+ p)a+b+p

] 1
2p

.

Hence,

enΦ(t0) =

[
2a+b+2p(a+ p)a+p(b+ p)b+p(1− x)a(1 + x)b

pp(a+ b+ p)a+b+p

] n
2p

=

[
2a+b+2p(a+ p)a+p(b+ p)b+p

pp(a+ b+ p)a+b+p

] n
2p

(1− x)
an
2p (1 + x)

bn
2p . (14)

From (12) and (14), we obtain

∣∣Iα,βn,p (x)
∣∣ ≤ [2a+b+2p(a+ p)a+p(b+ p)b+p

pp(a+ b+ p)a+b+p

] n
2p

(1− x)
an
2p (1 + x)

bn
2p .

In view of (3), we have (
2

p

)n
(1− x)

α+1
p −1(1 + x)

β+1
p −1

∣∣∣P (α,β)
n,p (x)

∣∣∣
≤

[
2a+b+2p(a+ p)a+p(b+ p)b+p

pp(a+ b+ p)a+b+p

]n/2p
(1− x)an/2p(1 + x)bn/2p.

Further simplification using (4), leads us to the theorem.

3 Particular Cases

For p = 1 and n ∈ N, the inequality reduces to∣∣∣P (α,β)
n (x)

∣∣∣ ≤ [2α+β (α+ n)α+n(β + n)β+n

nn(α+ β + n)α+β+n

]1/2

(1− x)−α/2(1 + x)−β/2. (15)

Here, the choice α = 0 = β yields the inequality for the Legendre polynomial [12, Theorem 60, p. 172]:

|Pn(x)| < 1, −1 < x < 1.

Next, if we put α = β = ν − 1/2, then P (ν−1/2,ν−1/2)
n (x) = Cνn(x), the Gegenbauer polynomial [12, Eq. (1),

p. 276]. Hence from (15), we find the corresponding inequality:

|Cνn(x)| ≤ (2ν)n
(ν + 1/2)n

[
(2ν + 2n− 1)2ν+2n−1

nn22n(2ν + n− 1)2ν+n−1

]1/2

(1− x2)(−2ν+1)/4, ν > 0.

The Chebyshev polynomial of first kind [12, Eq.(1), p. 301] is expressed as Tn(x) = P
(−1/2,−1/2)
n (x). Hence,

for n ≥ 2, we find from (15), the inequality:

|Tn(x)| = n!

(1/2)n

∣∣∣P (−1/2,−1/2)
n (x)

∣∣∣ ≤ n!

(1/2)n

[
(2n− 1)2n−1

nn22n−1(n− 1)n−1

]1/2

(1− x2)1/4.
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Since 2n− 1 < 2n, this simplifies to the form:

|Tn(x)| < n!

(1/2)n

[
n

n− 1

](n−1)/2

(1− x2)1/4, n ≥ 2.

Similarly, the Chebyshev polynomial of second kind: Un(x) is the case: P (1/2,1/2)
n (x) [12, Eq.(2), p. 301].

From (15), the inequality assumes the form:

|Un(x)| = (n+ 1)!

(3/2)n

∣∣∣P (1/2,1/2)
n (x)

∣∣∣ ≤ (n+ 1)!

(3/2)n

[
(2n+ 1)2n+1

nn22n+1(n+ 1)n+1

]1/2

(1− x2)−1/4.

Further, using the relation: 2n+ 1 < 2n+ 2, the above inequality takes the elegant form:

|Un(x)| <
√

2(n+ 1)!

(3/2)n

[
n+ 1

n

]n/2
(1− x2)−1/4.
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