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Abstract

In this note, we present a simple proof of an analogue of the Cauchy-Schwarz inequality relevant to
products of determinants. Specifically, we show that

|det(A*MB)|* < det(A*MA) - det(B*MB), A,BecC™",

where M € C™*™ is hermitian positive definite. Here m and n are arbitrary. In case m < n, equality
holds trivially. Equality holds when m > n and rank(A) = rank(B) = n if and only if the columns of A
and the columns of B span the same subspace of C™.

1 Introduction

The Cauchy—Schwarz inequality for vectors in C" states that, if z,y € C", and (a, b) is the inner product in
C", then
(2, y)” < (z,2) - (y,9),
with equality if and only if x and y are linearly dependent. There are many analogues of this theorem in
different settings, and these can be found in many books and papers on linear algebra and related subjects.
In this work, we prove an analogue of this inequality that concerns determinants. Our result here also follows
from Marcus and Moore [2]. (See the remarks at the end of this note.)
We begin with the following lemma:

Lemma 1 Let U and V be two rectangular unitary matrices in C™*"

with m > n, in the sense
vv=1I1, VV=I,.

Then
|det(U*V)] < 1. (1)

Equality holds if and only if the columns of U and the columns of V' span the same subspace of C™.
Proof. The matrices U and V have the following columnwise partitionings:

U=luilug| - |un), wjuj=3d;;5 V=l[vi|va] - |oa],  vf

;U =04

Then W = U*V € C"*" and the (4, j) element of W is ufv;. Therefore, U*V has the columnwise partitioning
UV =W = [wi|ws] - |lw,];  wj = [ujvj,ubvj, ..., o]’ §=1,2,...,n, (2)

and

n
ijHQZZ‘Uij\Q, j=12,...,n' (3)
i=1

*Mathematics Subject Classifications: 15A15.
tComputer Science Department, Technion - Israel Institute of Technology, Haifa, Israel
'We denote by ||z||, z € CY, the standard Iz norm of z, in every dimension q. Thus ||z|| = vz*z for all g.
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Thus, by Hadamard’s inequality?, there holds

n
| det(U*V)| = |det W[ < [T llwsll (4)
j=1
We add to the set of the n (orthonormal) vectors uy, ug, . . . , u, the m—n (orthonormal) vectors w41, Upt2, - - -, Um,
such that uq,...,u,, is an orthonormal basis for C™, hence for every vector x € C™, we have
m m
T = Xj(ufgc)uZ and ||z|?* = Z lufz|?.

i=1 i=1

Next, we define
Sy = span{uy,ug,...,u,} and S(Jf = span{ty4+1, Unt2, - - -, Um }-

Here Sy is the column space of U and Si is the orthogonal complement of Sy, and every vector z € C™ is

of the form
n m

rT=2T+ I a%:Z(u;‘x)uiESU, = Z(ufﬂ:)uleb%, T =0,

i=1 i=n+1
therefore,
n m
I = 1217+ 1217 1217 = luial, 12517 = ) [uial
i=1 i=n+1

Then, for v;, the j* column of the matrix V, we have v; = ©; + 9;, where

n m
917 = fujvg* = llw; | by (3), N5l°P = Y |ujv,l*.
i=1 i=n+1
Therefore,
L= ol = llwi |2 + 151> = Jwsll <l =15 §=1,2,...,n. (5)

This forces [}_, [lw;]| <1 in (4), thus proving (1).
We denote the column space of V' by Sy. That is,

Sy = span{vy,va, ..., v}

Assume that Sy # Sy. Then, at least one of the vectors vy, vs,...,v,, say v,, does not belong to Sy, and
this implies that
Up =Vp +Up, Up #0.

As a result,
L= Jlopll® = llwpll® + 151> > [[wpl> = Jwpll < [lop]l = 1. (6)

As a result of (5) and (6), we have []}_, [w;|| < 1 in (4), which forces strict inequality in (1).
We now show that equality holds in (1) when Sy = Sy. In this case, each v; is a linear combination of
the u;. That is,
V =UY, forsomeX € C"*".

Consequently,
L, =V*V =(U)"(U) =S (U V)L =Y = X'T =1,

?Hadamard’s inequality: If H is an s x s matrix with columnwise partitioning H = [h1|ha| - - |hs], then

S
ldet H| < [T Irsll,  Nihgll = /h3hi, G=1,....5.
j=1

A proof of Hadamard’s inequality can be found in Horn and Johnson [1, p. 477].
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that is, ¥ is a unitary matrix in C"*". Consequently,
UV =UUS) = (U T)E =% = det(U*V) = det 3,

from which,
|det(U*V)| = |det X| = 1.

This completes the proof. m

2 Main Result

Theorem 1 Let A, B € C™*", with m,n arbitrary. Then
|det(A*B)|*> < det(A*A) - det(B*B). (7)
1. If m < n, equality holds in (7), both sides vanishing there.
2. If m = n, equality holds in (7).

3. (a)If m > n and rank(A) < n or rank(B) < n, equality holds in (7), both sides vanishing there.

(b) If m > n and rank(A) = rank(B) = n, equality holds in (7) if and only if the columns of A and the
columns of B span the same subspace of C™.

Proof. We start by noting that all three matrices A*A, B*B, and A*B are n X n.

1. If m < n, each one of the matrices A*A, B*B, and A*B is of rank at most m, hence is singular.
Therefore, (7) holds, both sides vanishing there.

2. If m = n, then A and B are square. Therefore,
det(A*A) = (det A*)(det A), det(B*B) = (det B*)(det B)

and
det(A*B) = (det A*)(det B).

The result in (7) now follows with equality there by invoking det C* = det C' for every square matrix

C.

3. (a)If m > n, and either rank(A) < n (hence A*A is singular) or rank(B) < n (hence B*B is singular),
we have that A*B is singular as well. Therefore, (7) holds with equality, both sides vanishing there.

(b)If m > n and rank(A) = rank(B) = n, we proceed as follows:
Consider the QR factorizations of A and B, namely,

A=QaRs, B=QpRp; Qa,QpeC™ ", Ry RpeC™",

where @) 4 and Qp are unitary in the sense

QaQa=1n, QpQRe=1In,

and R4 and Rp are upper triangular square matrices with nonzero diagonal elements. Now, it is easy
to verify that
A"A=R)Ra, B'B=RpRp, A'B=R,)(Q,Qs)ks.

Note that Q% Qp € C"*", just as R4, Rp. Therefore, since R4 and Rp are upper triangular matrices
with nonzero diagonal elements,

det(A*A) = (det R)(det Ra) = | det Ra|?,
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and

det(B*B) = (det Rj)(det Rg) = | det Rp|*.
Next,

det(A*B) = (det(Q%Qp))(det R%)(det Rp).
Therefore,

|det(A*B)| = | det(Q%Qp)| | det Ra||det Rp],
which implies that

|det(A*B)|? = | det(Q%Qp)|? det(A* A) det(B*B).

The rest of the proof can now be achieved (i) by realizing that the column spaces of A and Q4 are the
same, and so are the column spaces of B and @p, and (ii) by applying Lemma 1 to | det(Q% Qp)| since
m > n. We leave the details to the reader.

This completes the proof. m R y
By applying Theorem 1 to the matrices A = M'/?A and B = M'Y/?B, where M € C™ "™ is hermitian
positive definite, we obtain the following general form of Theorem 1.

Theorem 2 Let A, B € C™*", with m,n arbitrary, and let M € C™*™ be hermitian positive definite. Then
|det(A*MB)|? < det(A*MA) - det(B* M B). (8)
1. If m < n, equality holds in (8), both sides vanishing there.
2. If m = n, equality holds in (8).

3. (a)If m > n and rank(A) < n or rank(B) < n, equality holds in (8), both sides vanishing there.

(b) If m > n and rank(A) = rank(B) = n, equality holds in (8) if and only if the columns of A and the
columns of B span the same subspace of C™.

Proof. We first note that, because M'/? is nonsingular, rank(A) = rank(A) and rank(B) = rank(B).
Therefore, parts 1, 2, and 3(a) of the theorem follow immediately from parts 1, 2, and 3(a) of Theorem 1.

As for part 3(b) of the theorem concerning the case m > n and rank(A) = rank(B) = n, we first observe
that rank(A) = rank(B) = n as well, and, by part 3(b) of Theorem 1, equality holds in (8) if and only if the
columns of A = M*/24 and the columns of B = M'/2B span the same n-dimensional subspace X of C™,
that is, if and only if

B = AF for some nonsingular F € C"*", (9)

We now need only to show that this is possible if and only if the columns of A and the columns of B span
the same n-dimensional subspace X of C™. Upon multiplying both sides of the equality in (9) by M~1/2,
we also obtain

M~ 2B =M"'Y?AF = B=AF,

which implies that the columns of A and the columns of B span the same n-dimensional subspace X of C™.
We have thus shown that B = AF < B = AF. This completes the proof. m

Remark 1 The proof of the Cauchy—Schwarz inequality in C" makes use of the fact that the inner product
(z,y) in C" is bilinear in x and y. Because X*MY is bilinear in X andY, one might think that the proof of
the Cauchy—Schwarz inequality in C" can be applied to det(A* M B), det(A*M A), and det(B*M B) to obtain
(8). This is not possible, however, since det(A*M B) does not have the bilinearity property; for example,
det((A1 + A3)*MB) is not necessarily equal to det(A; M B) + det(A3M B).
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Remark 2 The problem treated here is a special case of a general problem treated by Marcus and Moore
in [2, Eq. (1) on p. 111 and Theorem on p. 115]. These authors use advanced techniques to obtain the
relations which must exist between the m X m matrices My, Ms, Ms, My so that the relation

det(A* M, B) det(B* My A) < det(A* Mz A) det(B* My B)

holds for all m x n matrices A and B when m > n.

Because we are restricting our problem to the special case in which My = My = Mz = My = M, M
being an m X m positive definite hermitian matriz, we are able to carry out our analysis by employing rather
elementary techniques of linear algebra that are easily accessible.
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