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Abstract

In this note, we present a simple proof of an analogue of the Cauchy-Schwarz inequality relevant to
products of determinants. Specifically, we show that

| det(A∗MB)|2 ≤ det(A∗MA) · det(B∗MB), A,B ∈ Cm×n,

where M ∈ Cm×m is hermitian positive definite. Here m and n are arbitrary. In case m ≤ n, equality
holds trivially. Equality holds when m > n and rank(A) = rank(B) = n if and only if the columns of A
and the columns of B span the same subspace of Cm.

1 Introduction

The Cauchy—Schwarz inequality for vectors in Cn states that, if x, y ∈ Cn, and (a, b) is the inner product in
Cn, then

|(x, y)|2 ≤ (x, x) · (y, y),

with equality if and only if x and y are linearly dependent. There are many analogues of this theorem in
different settings, and these can be found in many books and papers on linear algebra and related subjects.
In this work, we prove an analogue of this inequality that concerns determinants. Our result here also follows
from Marcus and Moore [2]. (See the remarks at the end of this note.)
We begin with the following lemma:

Lemma 1 Let U and V be two rectangular unitary matrices in Cm×n with m > n, in the sense

U∗U = In, V ∗V = In.

Then
|det(U∗V )| ≤ 1. (1)

Equality holds if and only if the columns of U and the columns of V span the same subspace of Cm.

Proof. The matrices U and V have the following columnwise partitionings:

U = [u1|u2| · · · |un], u∗i uj = δi,j ; V = [v1|v2| · · · |vn], v∗i vj = δi,j .

ThenW = U∗V ∈ Cn×n and the (i, j) element ofW is u∗i vj . Therefore, U
∗V has the columnwise partitioning

U∗V = W = [w1|w2| · · · |wn]; wj = [u∗1vj , u
∗
2vj , . . . , u

∗
nvj ]

T , j = 1, 2, . . . , n, (2)

and

‖wj‖2 =

n∑
i=1

|u∗i vj |2, j = 1, 2, . . . , n.1 (3)
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1We denote by ‖z‖, z ∈ Cq , the standard l2 norm of z, in every dimension q. Thus ‖z‖ =

√
z∗z for all q.
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106 Cauchy-Schwarz Type Inequality for Determinants

Thus, by Hadamard’s inequality2 , there holds

|det(U∗V )| = |detW | ≤
n∏
j=1

‖wj‖. (4)

We add to the set of the n (orthonormal) vectors u1, u2, . . . , un them−n (orthonormal) vectors un+1, un+2, . . . , um,
such that u1, . . . , um is an orthonormal basis for Cm, hence for every vector x ∈ Cm, we have

x =

m∑
i=1

(u∗i x)ui and ‖x‖2 =

m∑
i=1

|u∗i x|2.

Next, we define
SU = span{u1, u2, . . . , un} and S⊥U = span{un+1, un+2, . . . , um}.

Here SU is the column space of U and S⊥U is the orthogonal complement of SU , and every vector x ∈ C
m is

of the form

x = x̂+ x̃; x̂ =

n∑
i=1

(u∗i x)ui ∈ SU , x̃ =

m∑
i=n+1

(u∗i x)ui ∈ S⊥U ; x̂∗x̃ = 0,

therefore,

‖x‖2 = ‖x̂‖2 + ‖x̃‖2; ‖x̂‖2 =

n∑
i=1

|u∗i x|2, ‖x̃‖2 =

m∑
i=n+1

|u∗i x|2.

Then, for vj , the jth column of the matrix V , we have vj = v̂j + ṽj , where

‖v̂j‖2 =

n∑
i=1

|u∗i vj |2 = ‖wj‖2 by (3), ‖ṽj‖2 =

m∑
i=n+1

|u∗i vj |2.

Therefore,
1 = ‖vj‖2 = ‖wj‖2 + ‖ṽj‖2 ⇒ ‖wj‖ ≤ ‖vj‖ = 1; j = 1, 2, . . . , n. (5)

This forces
∏n
j=1 ‖wj‖ ≤ 1 in (4), thus proving (1).

We denote the column space of V by SV . That is,

SV = span{v1, v2, . . . , vn}.

Assume that SV 6= SU . Then, at least one of the vectors v1, v2, . . . , vn, say vp, does not belong to SU , and
this implies that

vp = v̂p + ṽp, ṽp 6= 0.

As a result,
1 = ‖vp‖2 = ‖wp‖2 + ‖ṽp‖2 > ‖wp‖2 ⇒ ‖wp‖ < ‖vp‖ = 1. (6)

As a result of (5) and (6), we have
∏n
j=1 ‖wj‖ < 1 in (4), which forces strict inequality in (1).

We now show that equality holds in (1) when SU = SV . In this case, each vi is a linear combination of
the uj . That is,

V = UΣ, for some Σ ∈ Cn×n.
Consequently,

In = V ∗V = (UΣ)∗(UΣ) = Σ∗(U∗U)Σ = Σ∗Σ ⇒ Σ∗Σ = In,

2Hadamard’s inequality: If H is an s× s matrix with columnwise partitioning H = [h1|h2| · · · |hs], then

|detH| ≤
s∏

j=1

‖hj‖, ‖hj‖ =
√
h∗jhj , j = 1, . . . , s.

A proof of Hadamard’s inequality can be found in Horn and Johnson [1, p. 477].
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that is, Σ is a unitary matrix in Cn×n. Consequently,

U∗V = U∗(UΣ) = (U∗U)Σ = Σ ⇒ det(U∗V ) = det Σ,

from which,
|det(U∗V )| = |det Σ| = 1.

This completes the proof.

2 Main Result

Theorem 1 Let A,B ∈ Cm×n, with m,n arbitrary. Then

|det(A∗B)|2 ≤ det(A∗A) · det(B∗B). (7)

1. If m < n, equality holds in (7), both sides vanishing there.

2. If m = n, equality holds in (7).

3. (a) If m > n and rank(A) < n or rank(B) < n, equality holds in (7), both sides vanishing there.

(b) If m > n and rank(A) = rank(B) = n, equality holds in (7) if and only if the columns of A and the
columns of B span the same subspace of Cm.

Proof. We start by noting that all three matrices A∗A, B∗B, and A∗B are n× n.

1. If m < n, each one of the matrices A∗A, B∗B, and A∗B is of rank at most m, hence is singular.
Therefore, (7) holds, both sides vanishing there.

2. If m = n, then A and B are square. Therefore,

det(A∗A) = (detA∗)(detA), det(B∗B) = (detB∗)(detB)

and
det(A∗B) = (detA∗)(detB).

The result in (7) now follows with equality there by invoking detC∗ = detC for every square matrix
C.

3. (a) If m > n, and either rank(A) < n (hence A∗A is singular) or rank(B) < n (hence B∗B is singular),
we have that A∗B is singular as well. Therefore, (7) holds with equality, both sides vanishing there.

(b) If m > n and rank(A) = rank(B) = n, we proceed as follows:
Consider the QR factorizations of A and B, namely,

A = QARA, B = QBRB ; QA, QB ∈ Cm×n, RA, RB ∈ Cn×n,

where QA and QB are unitary in the sense

Q∗AQA = In, Q∗BQB = In,

and RA and RB are upper triangular square matrices with nonzero diagonal elements. Now, it is easy
to verify that

A∗A = R∗ARA, B∗B = R∗BRB , A∗B = R∗A(Q∗AQB)RB .

Note that Q∗AQB ∈ C
n×n, just as RA, RB . Therefore, since RA and RB are upper triangular matrices

with nonzero diagonal elements,

det(A∗A) = (detR∗A)(detRA) = |detRA|2,
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and
det(B∗B) = (detR∗B)(detRB) = |detRB |2.

Next,
det(A∗B) = (det(Q∗AQB))(detR∗A)(detRB).

Therefore,
|det(A∗B)| = |det(Q∗AQB)| |detRA| |detRB |,

which implies that

|det(A∗B)|2 = |det(Q∗AQB)|2 det(A∗A) det(B∗B).

The rest of the proof can now be achieved (i) by realizing that the column spaces of A and QA are the
same, and so are the column spaces of B and QB , and (ii) by applying Lemma 1 to |det(Q∗AQB)| since
m > n. We leave the details to the reader.

This completes the proof.
By applying Theorem 1 to the matrices Ã = M1/2A and B̃ = M1/2B, where M ∈ Cm×m is hermitian

positive definite, we obtain the following general form of Theorem 1.

Theorem 2 Let A,B ∈ Cm×n, with m,n arbitrary, and let M ∈ Cm×m be hermitian positive definite. Then

|det(A∗MB)|2 ≤ det(A∗MA) · det(B∗MB). (8)

1. If m < n, equality holds in (8), both sides vanishing there.

2. If m = n, equality holds in (8).

3. (a) If m > n and rank(A) < n or rank(B) < n, equality holds in (8), both sides vanishing there.

(b) If m > n and rank(A) = rank(B) = n, equality holds in (8) if and only if the columns of A and the
columns of B span the same subspace of Cm.

Proof. We first note that, because M1/2 is nonsingular, rank(Ã) = rank(A) and rank(B̃) = rank(B).
Therefore, parts 1, 2, and 3(a) of the theorem follow immediately from parts 1, 2, and 3(a) of Theorem 1.
As for part 3(b) of the theorem concerning the case m > n and rank(A) = rank(B) = n, we first observe

that rank(Ã) = rank(B̃) = n as well, and, by part 3(b) of Theorem 1, equality holds in (8) if and only if the
columns of Ã = M1/2A and the columns of B̃ = M1/2B span the same n-dimensional subspace X̃ of Cm,
that is, if and only if

B̃ = ÃF for some nonsingularF ∈ Cn×n. (9)

We now need only to show that this is possible if and only if the columns of A and the columns of B span
the same n-dimensional subspace X of Cm. Upon multiplying both sides of the equality in (9) by M−1/2,
we also obtain

M−1/2B̃ = M−1/2ÃF ⇒ B = AF,

which implies that the columns of A and the columns of B span the same n-dimensional subspace X of Cm.
We have thus shown that B̃ = ÃF ⇔ B = AF . This completes the proof.

Remark 1 The proof of the Cauchy—Schwarz inequality in Cn makes use of the fact that the inner product
(x, y) in Cn is bilinear in x and y. Because X∗MY is bilinear in X and Y , one might think that the proof of
the Cauchy—Schwarz inequality in Cn can be applied to det(A∗MB), det(A∗MA), and det(B∗MB) to obtain
(8). This is not possible, however, since det(A∗MB) does not have the bilinearity property; for example,
det((A1 +A2)

∗MB) is not necessarily equal to det(A∗1MB) + det(A∗2MB).
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Remark 2 The problem treated here is a special case of a general problem treated by Marcus and Moore
in [2, Eq. (1) on p. 111 and Theorem on p. 115]. These authors use advanced techniques to obtain the
relations which must exist between the m×m matrices M1,M2,M3,M4 so that the relation

det(A∗M1B) det(B∗M2A) ≤ det(A∗M3A) det(B∗M4B)

holds for all m× n matrices A and B when m > n.
Because we are restricting our problem to the special case in which M1 = M2 = M3 = M4 = M , M

being an m×m positive definite hermitian matrix, we are able to carry out our analysis by employing rather
elementary techniques of linear algebra that are easily accessible.
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