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Abstract

We consider the problem of exact controllability of the wave equation with
Dirichlet boundary conditions and multiplicative controls. A multiplicative con-
trol is a coeffi cient like uy. Exact controllability result is stated and proved for
some particular targets.

1 Introduction

Let D ⊂ Rn, n ∈ N be a bounded domain with smooth boundary ∂D. We use the
notations QT = D × (0, T ) and

∑
T = ∂D × (0, T ). Consider the following control

problem with multiplicative control:

ytt −∆y = uyt + vy, in QT ,
y = g, on

∑
T ,

(y(x, 0), yt(x, 0)) = (y0(x), y1(x)) in D,
(1)

where u, v ∈ L∞(QT ) are controls, g ∈ C(
∑
T ), and (y0, y1) ∈ H1

0 (D)× L2(D).
A problem like this arises, in the context of so-called “smart materials", whose

properties can be altered by applying various external factors such as temperature,
electrical current or magnetic field [1]. Russell [2] developed controllability and stability
theory for wave equation. Ball, Marsden and Slemrod [3] consider the problem of
global approximate controllability of the rod equation utt + uxxx + k(t)uxx = 0 with
hinged ends and the wave equation utt − uxx + k(t)u = 0 with Dirichlet boundary
conditions, where k is control; which appears to be the first work on this subject in the
framework of partial differential equations(pdes). In [1, Chapter 6], Khapalov proved,
in a constructive way, that the set of equilibrium states like (yd, 0) of a vibrating string
that can approximately be reached in H1

0 (0, 1)×L2(0, 1) by varying its axial load and
the gain of damping is dense in the subspace H1

0 (0, 1)× {0} of this space; where as in
Chapter 8, Khapalov talks about the extension of this problem to the semilinear case.
It seems that the result for exact controllability of (1) obtained in this work is new.
To prove our result we use the method of connecting the multiplicative controllability
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with the additive distributed controllability by means of some substitution used for
parabolic equation by Fernandez [4].

REMARK 1. The zero state (y0, y1) = (0, 0) is the fixed point for the solution
mappings of system (1), regardless of the choice of controls u. Hence, it cannot be
steered anywhere from this state. Hence, everywhere below we consider only non-zero
initial states (y0, y1).
Some preliminary results used to prove our main Theorem are given in section 2.

In section 3, we prove the main theorem.

2 Preliminaries

The exact controllability of system (1) is defined as follows:

DEFINITION 1. System (1) is said to be exact controllable in time T1 > 0 if, for
every initial data (y0, y1) ∈ H1

0 (D)×L2(D) and desired profile yd ∈ H1
0 (D), there exist

controls u, v ∈ L∞(QT ) such that (y(x, T ), yt(x, T )) = (yd, 0) in D, for all T ≥ T1.

We will need help of the following well known result from [5], while proving our
main theorem.

LEMMA 1. Let a ∈ L∞(QT ), v ∈ L2(QT ) and (q0, q1) ∈ H1
0 (D)× L2(D) be given.

Then the solution q of the linear problem

qtt(x, t)−∆q(x, t) + a(x, t)q(x, t) = v(x, t), in QT ,
q = 0, on

∑
T ,

(q(x, 0), qt(x, 0)) = (q0(x), q1(x)) in D,

satisfies q ∈ C([0, T ];H1
0 (D)), qt ∈ C([0, T ];L2(D)) and

‖q(·, t)‖2C([0,T ];H1
0 (D)) + ‖qt(·, t)‖2C([0,T ];L2(D))

≤ eC3kT
(
‖q(·, T2)‖2H1

0 (D) + ‖qt(·, T2)‖2L2(D) + ‖v‖2L2(QT )

)
,

where k = 1 + ‖a‖L∞(QT ).

Also, we will use the following known result about the additive controllability from
[6,7].

LEMMA 2. For every (q0, q1) ∈ H1
0 (D) × L2(D) and a ∈ L∞(QT ), there exists a

control function v ∈ L2(QT ) such that the weak solution q to problem

qtt(x, t)−∆q(x, t) + a(x, t)q(x, t) = v(x, t), in QT ,
q = 0, on

∑
T ,

(q(x, 0), qt(x, 0)) = (q0(x), q1(x)) in D,

satisfies (q(x, T ), qt(x, T )) = (0, 0). Moreover,

‖v‖2L2(QT ) ≤ C(‖a‖L∞(QT ))
(
‖q0‖2H1

0 (D) + ‖q1‖2L2(D)

)
.

Now it is time to state and prove the main result.
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3 The Main Result

Our main theorem is stated as follows:

THEOREM 1. Let θ be a function defined on QT . If θt, θ ∈ W 2,∞(D), 0 < θ,
0 < θt in D, and 0 ≤ ∆θ, θt = θ a.e. in D, g ∈ C(

∑
T ), g = θ on

∑
T , then there

exists a T (θ) > 0 such that for any non-zero initial state (y0, y1) ∈ H1
0 (D) × L2(D),

there exist multiplicative controls u, v ∈ L∞(QT ) such that the corresponding solution
to (1) in C([0, T ];H1

0 (D)) ∩ C1([0, T ];L2(D)) satisfies

(y(x, T ), yt(x, T )) = (θ(x, T ), θt(x, T )),

in D, for all T ≥ T (θ).

PROOF. Let z = y − θ. Then z0 = z(x, 0) = y(x, 0) − θ(x, 0) = y0 − θ0, z1 =
zt(x, 0) = yt(x, 0) − θt(x, 0) = y1 − θ1, and hence (z0, z1) = (y0 − θ0, y1 − θ1). Thus
from (1), z satisfies

ztt −∆z = u(zt + θt) + v(z + θ) + ∆θ − θ, in QT ,
z = 0, on

∑
T ,

(z(x, 0), zt(x, 0)) = (z0, z1), in D.
(2)

It is well known that given (z0, z1) ∈ H1
0 (D) × L2(D), u, v ∈ L∞(QT ), θ as given in

Theorem 1, the problem (2) admits a unique solution z in the space C1([0, T ];L2(D))∩
C([0, T ];H1

0 (D)).
In order to prove Theorem 1, it is suffi cient to prove that system (2) is exactly null

controllable. We prove this in the following few steps:
STEP 1. In this step, we prove that given T1 > 0, there exists M > 0, such that

the corresponding solution to (4) satisfies

‖z(·, T1)‖2H1
0 (D) + ‖zt(·, T1)‖2L2(D) ≤M.

Multiplying the system (4) by zt and integrating over Qt = D × (0, t), we obtain

0 =

∫
Qt

[
zttzt −∆zzt − uz2

t − uztθt − zt∆θ − vzzt − vztθ + θzt
]
dxdτ

=

∫
Qt

[
1

2

d

dt
(z2
t + ‖∇z‖2)− uz2

t − uztθt − zt∆θ − vzzt − vztθ + θzt

]
dxdτ.

Suppose u, v are constants and v = 0. Then, for t ∈ (0, T ) we have∫
D

[
z2
t (x, t) + |∇z(x, t)|2

]
dx

=

∫
D

[
z2

1 + |∇z0|2
]
dx+ 2

∫
Qt

[
uz2
t

]
dxdτ + 2

∫
Qt

[uztθt + zt∆θ − θzt] dxdτ

≤ ‖z1‖2L2(D) + ‖∇z0‖2L2(D) + 2u‖zt‖2L2(Qt)
+ |u|‖zt‖2L2(Qt)

+ |u|‖θt‖2L2(Qt)

+2‖zt‖2L2(Qt)
+ ‖∆θ‖2L2(Qt)

+ ‖θ‖2L2(Qt)
. (3)



48 Exact Controllability of Wave Equation

By Poincaré’s inequality we have∫
D

[
z2
t (x, t) + z2(x, t)

]
dx ≤ C1(u+ 2)

∫
Dt

[
z2
t + z2

]
dxdτ + C1

(
‖z1‖2L2(D) + ‖∇z0‖2L2(D)

)
+C1

(
|u|‖θt‖2L2(Qt)

+ ‖∆θ‖2L2(Qt)
+ ‖θ‖2L2(Qt)

)
, (4)

where constant C1 is independent of z. Hence, by Gronwall’s lemma

‖z(·, t)‖2H1
0 (D) + ‖zt(·, t)‖2L2(D)

≤ e(u+2)C1t
(
‖z1‖2L2(D) + ‖∇z0‖2L2(D)

)
+ C1

∫ t

0

eC1(u+2)(t−τ)‖z1‖2L2(D)dτ

+C1

∫ t

0

eC1(u+2)(t−τ)‖∇z0‖2L2(D)dτ + |u|C1

∫ t

0

eC1(u+2)(t−τ)‖θt‖2L2(Qt)
dτ

+C1

∫ t

0

eC1(u+2)(t−τ)‖∆θ‖2L2(Qt)
dτ + C1

∫ t

0

eC1(u+2)(t−τ)‖θ‖2L2(Qt)
dτ

= e(u+2)C1t
(
‖z1‖2L2(D) + ‖∇z0‖2L2(D)

)
+

1− eC1(u+2)t

(u+ 2)
‖z1‖2L2(D)

+
1− eC1(u+2)t

(u+ 2)
‖∇z0‖2L2(D) + |u|1− e

C1(u+2)t

(u+ 2)
‖θt‖2L2(Qt)

+
1− eC1(u+2)t

(u+ 2)
‖∆θ‖2L2(Qt)

+
1− eC1(u+2)t

(u+ 2)
‖θ‖2L2(Qt)

.

Hence, for given T1 > 0, we can select u = u1 < −2 depending on (z0, z1) and |u| is
suffi ciently large such that there exists a constant M > 0, such that the corresponding
solution of (2) satisfies

‖z(·, T1)‖2H1
0 (D) + ‖zt(·, T1)‖2L2(D) ≤M.

STEP 2. In this step, we further prove that for any ε0 > 0, we can find controls
u and v and T2(θ) > 0 suffi ciently large such that the corresponding solution to (2)
satisfies

‖z(·, T2)‖2H1
0 (D) + ‖zt(·, T2)‖2L2(D) ≤ ε0.

As θt ∈W 2,∞(D), we have θt ∈ C(D) by Sobolev embedding theorem. Also, θt > 0 in
D, there exists a positive constant ν > 0 such that θt ≥ ν > 0 in D, hence 0 ≤ ∆θ

θt
∈

L∞(D). Let zT1 = z(x, T1) and z′T1 = zt(x, T1). Select u2 = −∆θ
θt

+ 1 and v = 0 in
(T1, T2). Then, we have

ztt −∆z = −(∆θ
θt
− 1)zt, in D × (T1, T2),

z = 0, on ∂D × (T1, T2),
(z(x, T1), zt(x, T1)) = (zT1 , z

′
T1

), in D.
(5)

Let λ > 1 be the eigenvalue of −∆ in H1
0 (D). Let t ∈ (T1, T2) and Qt = D × (T1, t).

Multiplying (5) by zt and integrating in D, we have∫
D

[
z2
t (x, t) + |∇z(x, t)|2

]
dx =

∫
D

[
z2

1 + |∇z0|2
]
dx+ 2

∫
Qt

(−(λ− 1)) z2
t dxdτ.
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As in step 1, using Poincaré’s inequality and Gronwall’s lemma we have

‖z(·, T2)‖2H1
0 (D) + ‖zt(·, T2)‖2L2(D) ≤ C

(
‖z(·, T1)‖2H1

0 (D) + ‖zt(·, T1)‖2L2(D)

)
,

where C = e−(λ−1)(T2−T1). Thus by step 1,

‖z(·, T2)‖2H1
0 (D) + ‖zt(·, T2)‖2L2(D) ≤Me−(λ−1)(T2−T1).

Hence, for any ε0 > 0, there exists a T2(θ) > 0 suffi ciently large such that

‖z(·, T2)‖2H1
0 (D) + ‖zt(·, T2)‖2L2(D) ≤ ε0. (6)

STEP 3. In this step, we achieve the result by means of the controllability re-
sult with the traditional additive distributive control. Let zT2 = z(x, T2) and z′T2 =
zt(x, T1). Consider the following system

ztt −∆z = u(zt + θt) + v(z + θ) + ∆θ − θ in D × (T2, T2 + 1),
z = 0, on ∂D × (T2, T2 + 1),

(z(x, T2), zt(x, T2)) = (zT2 , z
′
T2

), in D.
(7)

As θ ∈W 2,∞(D), we have θ ∈ C(D) by Sobolev embedding theorem. Also, θ > 0 in D,
there exists a positive constant µ > 0 such that θ ≥ µ > 0 inD, hence 0 ≤ ∆θ

θ ∈ L
∞(D).

Let u = 0 and v = −∆θ
θ + 1 + v3. Then (7) becomes

ztt −∆z + (∆θ
θ − 1)z = v3(z + θ) in D × (T2, T2 + 1),

z = 0, on ∂D × (T2, T2 + 1),
(z(x, T2), zt(x, T2)) = (zT2 , z

′
T2

), in D.
(8)

From (6) we have
‖z(·, T2)‖2H1

0 (D) + ‖zt(·, T2)‖2L2(D) ≤ ε0, (9)

where ε0 will be fixed later. In place of (8), we consider the following system

ztt −∆z + (∆θ
θ − 1)z = w(x, t) in D × (T2, T2 + 1),

z = 0, on ∂D × (T2, T2 + 1),
(z(x, T2), zt(x, T2)) = (zT2 , z

′
T2

), in D.
(10)

By Lemma 2, there exists a control w ∈ L2(D×(T2, T2+1)) such that the corresponding
solution to (10) satisfies

(z(·, T2 + 1), zt(·, T2 + 1)) = (0, 0). (11)

Moreover,

‖w‖2L2(D×(T2, T2+1)) ≤ C2(d)
(
‖z(x, T2)‖2H1

0 (D) + ‖zt(x, T2)‖2L2(D)

)
, (12)

where d = ‖∆θ/θ − 1‖L∞(QT2
). Also, using Lemma 1, we have

‖z(·, t)‖2
C([T2,T2+1];H1

0 (D))
+ ‖zt(·, t)‖2(C([T2,T2+1];L2(D))

≤ eC3(1+d)
(
‖z(·, T2)‖2

H1
0 (D)

+ ‖zt(·, T2)‖2L2(D) + ‖w‖2L2(QT2
)

)
,

(13)
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where QT2 = D × (T2, T2 + 1), and constant C3 depends only on D. From (12) and
(13), we have

‖z(·, t)‖2
C([T2,T2+1];H1

0 (D))
+ ‖zt(·, t)‖2(C([T2,T2+1];L2(D))

≤ eC3(1+d)(1 + C2)
(
‖z(·, T2)‖2

H1
0 (D)

+ ‖zt(·, T2)‖2L2(D)

)
,

(14)

We now select
ε0 <

1

eC3(1+d)(1 + C2)
<

µ

eC3(1+d)(1 + C2)
.

Here we may assume that µ > 1, and by (6), select T2 suffi ciently large such that

(‖z(·, T2)‖2H1
0 (D) + ‖zt(·, T2)‖2L2(D)) ≤ ε0.

Hence, we have

‖z(·, t)‖2C([T2,T2+1];H1
0 (D)) + ‖zt(·, t)‖2(C([T2,T2+1];L2(D)) < µ. (15)

Thus, we can select the multiplicative control for (8)

v3 =
µ

z + θ
a.e. in D × (T2, T2 + 1), (16)

where z is the solution of (8). In view of θ ≥ µ > 0, and (15), we have v3 ∈ L∞(D ×
(T2, T2 + 1)).
Hence, in the time interval (T2, T2 +1), in view of (16), the solution of (8) with the

control v3, i.e., the solution of (7) with the controls u = 0 and v = −∆θ
θ + 1 + v3 and

the solution of (10) with the control w become identical. Hence from (11), we have

(z(·, T2 + 1), zt(·, T2 + 1)) = (0, 0),

where z is the corresponding solution to (7) with u = 0 and v = −∆θ
θ + 1 + v3.

By steps 1, 2 and 3, we have for any (z0, z1) ∈ H1
0 (D) × L2(D), we can select

T2(θ) > 0 suffi ciently large such that the corresponding solution z to (2) with controls

u =


u1 in (0, T1),

−∆θ
θt

in (T1, T2),

0 in (T2, T2 + 1),

and v =


0 in (0, T1),

0 in (T1, T2),

−∆θ
θ + 1 + v3 in (T2, T2 + 1),

satisfies
(z(·, T2 + 1), zt(·, T2 + 1)) = (0, 0),

where T (θ) = T2 + 1 depends on θ only. This completes the proof of Theorem 1.

REMARK 2. In step 2, we can take ε0 = infx∈D θ. So, ‖z(·, T2)‖H1
0 (D) ≤ ε0. Now

in step 3, due to null controllability z approaches 0. Thus in (16) we have z+ θ > 0 in
D × (T2, T2 + 1).

From the proof of Theorem 1 we have the following theorem.
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THEOREM 2. Let θ be a function defined on QT . If θ, θt ∈W 2,∞(D), 0 > θ, 0 > θt
in D, and 0 ≥ ∆θ, θt = θ a.e. in D, g ∈ C(

∑
T ), g = θ on

∑
T , then there exists a

T (θ) > 0 such that for any non-zero initial state (y0, y1) ∈ H1
0 (D)×L2(D), there exist

multiplicative controls u, v ∈ L∞(QT ) such that the corresponding solution to (1) in
C([0, T ];H1

0 (D))∩C1([0, T ];L2(D)) satisfies (y(x, T ), yt(x, T )) = (θ(x, T ), θt(x, T )), in
D, for all T ≥ T (θ).
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