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Abstract

We consider the problem of exact controllability of the wave equation with
Dirichlet boundary conditions and multiplicative controls. A multiplicative con-
trol is a coefficient like uy. Exact controllability result is stated and proved for
some particular targets.

1 Introduction

Let D C R", n € N be a bounded domain with smooth boundary 0D. We use the
notations Q7 = D x (0,T) and ), = dD x (0,T). Consider the following control
problem with multiplicative control:

Y — Ay = uy + vy, in Qr,
y =g, on >, (1)
(y(z,O), yt(:c,())) = (yO(x)v yl('r)) in Da

where u, v € L®(Qr) are controls, g € C(3_;), and (yo,v1) € H3(D) x L*(D).

A problem like this arises, in the context of so-called “smart materials", whose
properties can be altered by applying various external factors such as temperature,
electrical current or magnetic field [1]. Russell [2] developed controllability and stability
theory for wave equation. Ball, Marsden and Slemrod [3] consider the problem of
global approximate controllability of the rod equation s + Uzgr + k(t)ugz, = 0 with
hinged ends and the wave equation uy — Uy, + k(t)u = 0 with Dirichlet boundary
conditions, where k is control; which appears to be the first work on this subject in the
framework of partial differential equations(pdes). In [1, Chapter 6], Khapalov proved,
in a constructive way, that the set of equilibrium states like (y4,0) of a vibrating string
that can approximately be reached in H}(0,1) x L?(0,1) by varying its axial load and
the gain of damping is dense in the subspace HJ(0,1) x {0} of this space; where as in
Chapter 8, Khapalov talks about the extension of this problem to the semilinear case.
It seems that the result for exact controllability of (1) obtained in this work is new.
To prove our result we use the method of connecting the multiplicative controllability
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46 Exact Controllability of Wave Equation

with the additive distributed controllability by means of some substitution used for
parabolic equation by Fernandez [4].

REMARK 1. The zero state (yo,y1) = (0,0) is the fixed point for the solution
mappings of system (1), regardless of the choice of controls u. Hence, it cannot be
steered anywhere from this state. Hence, everywhere below we consider only non-zero
initial states (yo,y1)-

Some preliminary results used to prove our main Theorem are given in section 2.
In section 3, we prove the main theorem.

2 Preliminaries

The exact controllability of system (1) is defined as follows:

DEFINITION 1. System (1) is said to be exact controllable in time 77 > 0 if, for
every initial data (yo,vy1) € Ha (D) x L?(D) and desired profile y; € H{ (D), there exist
controls u,v € L (Qr) such that (y(z,T),y:(z,T)) = (y4,0) in D, for all T > T3.

We will need help of the following well known result from [5], while proving our
main theorem.

LEMMA 1. Let a € L=(Q7), v € L*(Qr) and (qo, q1) € HE(D) x L?(D) be given.
Then the solution ¢ of the linear problem

qit(z,t) — Aq(z,t) + a(z, t)q(z,t) =
q

(q($70),Qt(x70)) =
satisfies ¢ € C([0,T); HY(D)), ¢: € C([0,T]; L*(D)

(z,t), in Qr,
, on » .,
q(),q1(z)) in D,

and

I
=Rt

— —

laC Doz oy + e 6o, 712200)
< O (g T3y o) + e T o) + 0E2ar))
where k =1+ |lal| L~ (@)

Also, we will use the following known result about the additive controllability from
[6,7].

LEMMA 2. For every (qo, q1) € Hi(D) x L*(D) and a € L>=(Qr), there exists a
control function v € L?(Q7) such that the weak solution ¢ to problem

qit(z,t) — Aq(z,t) + a(z, t)q(z,t) = v(z,t), in Qr,
q =0, on » .,
(q(2,0),q(2,0)) = (qo(z),q1(x)) in D,

satisfies (¢(z,T),q:(z,T)) = (0,0). Moreover,

[0l132(@r) < Clllallz=@n) (laolsy o) + ey ) -

Now it is time to state and prove the main result.
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3 The Main Result

Our main theorem is stated as follows:

THEOREM 1. Let 6 be a function defined on Q. If 6,60 € W2>(D), 0 < 0,
0<6,inD,and 0 <A, 6, =0 ae inD,geCO r), g=>0on) 4, then there
exists a T'(f) > 0 such that for any non-zero initial state (yo, y1) € Hs(D) x L*(D),

there exist multiplicative controls u, v € L (Qr) such that the corresponding solution
to (1) in C([0,T]; H}(D)) N C([0,T); L*(D)) satisfies

(y(@,T),yi(x,T)) = (0(z,T), 0 (2, T)),

in D, for all T > T'(0).

PROOF. Let z = y — 0. Then 2y = 2(z,0) = y(x,0) — 0(x,0) = yo — 0o, 21 =
z(2,0) = yi(2,0) — 0¢(x,0) = y1 — 61, and hence (20,21) = (Yo — 6o, y1 — 61). Thus
from (1), z satisfies

20— Az =u(zg+0,) +v(z+0)+A0—-0, inQr,

5 0’ on ZT’ (2)
(Z(%,O),Zt(x,())) = (20721)7 in D.

It is well known that given (20, 2z1) € H}(D) x L*(D), u,v € L*®(Qr), 0 as given in
Theorem 1, the problem (2) admits a unique solution z in the space C*([0,T]; L?(D))N
C([0,T); HI(D)).

In order to prove Theorem 1, it is sufficient to prove that system (2) is exactly null
controllable. We prove this in the following few steps:

STEP 1. In this step, we prove that given T7 > 0, there exists M > 0, such that
the corresponding solution to (4) satisfies

12C, Tz oy + e C T lI72py < M-

Multiplying the system (4) by z; and integrating over Q¢ = D x (0, t), we obtain

0 = / [zttzt — Azzp — uzt2 —uze0p — 21 A — vzz — vz 0 + Hzt] dxdr

t

1d
= / {26[15(23 +[IV2]|?) = uz? — uzby — 200 — vzz — 0240 + 0z | ddr.

Suppose u, v are constants and v = 0. Then, for ¢ € (0, T') we have

/ (27 (z,t) + |Vz(2,t)?] do
D

/ (2 + |V2o|*] dz + 2/ [uz] dedr + 2/ [uzibs + 2 A0 — Oz dedr
D

t t

IN

H21||%2(D) + ||VZO||%2(D) + 2U||Zt||%2(Qt) + \U|||ZtH%2(Qt) + |u|||0t||%2(Qt)
2]zl 2 (g, + 18007 2(q,) + 101172(q,)- (3)
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By Poincaré’s inequality we have

/D[Z?(m)ﬂg(w,t)}da: < 01(u+2)/

| ot + 2 dadr 4y (1) + IV 20l

+C1 (Jull6: 320, + 1801220, + 101320, ) - (4)
where constant C is independent of z. Hence, by Gronwall’s lemma
12, )2 oy + N2 T2 )

t
% () + 1V 0lacey) + O [ €D s i

IN

t t
+C1/O ecl(u+2)(t—7)HVZO||2L2(D)dT+MCI/O eCl(u-‘rQ)(t—T)||0t||%2(Qt)d7—

t t
+C /0 e DT AG|2 2 o, dT + Co /0 e D612, o, dT
1 — ¢Culut2)t

= D% (a1 ) + V200000 + gy Il

— eCa(ut2)t

Cr(u+2)t ) 1 )
||vz0HL2(D) + Ww”@tnm(@)

1—e
(u+2)
1— e (ut2)t 1 — % (u+2)t
- ||Ag|2 — |93 .

+

Hence, for given T > 0, we can select u = u; < —2 depending on (zg, 21) and |u] is
sufficiently large such that there exists a constant M > 0, such that the corresponding
solution of (2) satisfies

12C, Tz oy + 26 (s T I2(py < M-

STEP 2. In this step, we further prove that for any ¢y > 0, we can find controls
u and v and T(0) > 0 sufficiently large such that the corresponding solution to (2)
satisfies

o o) oy + 26 T) e < o

As 0, € W2°°(D), we have 0; € C(D) by Sobolev embedding theorem. Also, 6; > 0 in
D, there exists a positive constant v > 0 such that ; > v > 0 in D, hence 0 < %9 €
L*(D). Let zp, = z(x,T1) and 27, = 2z(x,T1). Select uy = —%—f +1land v =0in
(Ty, T3). Then, we have

Ztt—AZ = —(%—f—l)zt, in D x (Tl, 112)7
z =0, on 0D x (Ty, Ts), (5)
(z(z,T1), 2e(w, T1)) = (21, 27,), in D.

Let A > 1 be the eigenvalue of —A in H}(D). Let t € (T1,T2) and Q; = D x (T1,t).
Multiplying (5) by z; and integrating in D, we have

2 21 1 _ 2 2 (N — 1)) 22dedr
/D[zt(z,t)+|Vz(a:,t)| ]dx_/D[zl+|Vzo| ]derZ/ (—(AN—1)) z7dzd

t
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As in step 1, using Poincaré’s inequality and Gronwall’s lemma we have
2 T) By ) + 1126 ) By < C (1T gy oy + 12 T By )
where C' = e~A=D(T2=T1)  Thus by step 1,
12C, T 2 oy + 126C T) 2 (py < Mem DT,
Hence, for any €y > 0, there exists a T»(6) > 0 sufficiently large such that
2 T3y + N2 C, T2) 22 by < €o- (6)

STEP 3. In this step, we achieve the result by means of the controllability re-
sult with the traditional additive distributive control. Let z7, = z(x,T) and 27, =
z¢(x,T1). Consider the following system

20— Az =u(ze +0:) +v(z+0)+A0—0 inDx(Ty To+1),
z = 0, on 0D x (TQ, TQ + ].), (7)
(2(z,T2), 2¢(x, T2)) = (21, 21,)5 in D.

As 0 € W>*°(D), we have § € C(D) by Sobolev embedding theorem. Also, § > 0 in D,
there exists a positive constant p > 0 such that § > p > 0in D, hence 0 < % € L (D).
Let u =0 and v = —42 + 1+ v3. Then (7) becomes

z—Az+ (42— 1)z =wv3(2+0) inDx (T, Tb+1),
z =0, on 0D x (Ty, To + 1), (8)
(Z(x7T2)aZt(x7T2)) = (ZT27Z%2)7 in D.

From (6) we have
12, T3 oy + N2 C T2)ll72 () < €0, (9)

where ¢y will be fixed later. In place of (8), we consider the following system

z— Az + (B2 — 1)z = w(z,t) in D x (Ty, Ty+1),
z = 0, on 9D x (TQ, T2 + 1), (10)
(2(x,To), 2¢(x, T2)) = (21,,27,), in D.

By Lemma 2, there exists a control w € L?(D x (T, To+1)) such that the corresponding
solution to (10) satisfies

(z('aTQ + 1)7 Zt('7T2 + 1)) = (070) (11)
Moreover,
Jl32 (12, as1y) < Cold) (1200 To) 3y ) + N2t B) By ) - (12)
where d = ||A0/0 — 1| L~ (qy,)- Also, using Lemma 1, we have

= MG g 2 13103 0y + 126G O, 2415220y

(13)
< 4D (|12, 1) 2y + 120 TN 2y + 10l3cary )
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where Qp, = D x (T2, T3 + 1), and constant C5 depends only on D. From (12) and
(13), we have

(- 2) ||%‘([T2,T2+1];H[}(D)) + 12 t)H?C([Tg,TZ)H];L?(D))

(14)
< D14+ Cy) (Il Ty iy + 2 T B )
We now select
1 H
€ < eCa(1+d) (1 + Cy) < eCa(14d) (1 + Cy)”
Here we may assume that p > 1, and by (6), select T sufficiently large such that
(12 T 1 (py + N2C, T2) [ Z2(p)) < €0
Hence, we have
Hz('at)H%([TZ,TQH];Hg(D)) + 2 G O oqm e p2(py) < H- (15)
Thus, we can select the multiplicative control for (8)
vy = zi@ a.e. in D x (Ty, Ty + 1), (16)
where z is the solution of (8). In view of § > p > 0, and (15), we have v3 € L*°(D x
(Ty, To +1)).
Hence, in the time interval (Tz, T +1), in view of (16), the solution of (8) with the
control vs, i.e., the solution of (7) with the controls u = 0 and v = —% + 14 wv3 and

the solution of (10) with the control w become identical. Hence from (11), we have
(2(+To+1),2(-, T2 + 1)) = (0,0),

where 2z is the corresponding solution to (7) with « = 0 and v = —% + 14 vs.
By steps 1, 2 and 3, we have for any (29, 21) € H}(D) x L*(D), we can select
T5(0) > 0 sufficiently large such that the corresponding solution z to (2) with controls

Uy in (O,Tl), 0 in (OvTI)v
u = _%‘9 in (T17T2)’ and v =<0 in (T17T2)7
R e (T T )

satisfies
(Z("TQ + 1)vzt('7T2 + 1)) = (070)7

where T'(0) = T> + 1 depends on 6 only. This completes the proof of Theorem 1.

REMARK 2. In step 2, we can take ey = infyep 0. So, ||2(+, T2)[| g2 (p) < €0- Now
in step 3, due to null controllability z approaches 0. Thus in (16) we have 246 > 0 in
D x (TQ,TQ + 1)

From the proof of Theorem 1 we have the following theorem.
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THEOREM 2. Let 6 be a function defined on Q. If 6,0, € W2>°(D), 0> 6,0 > 6,

in D, and 0 > Af, 6, =0 ae. in D, g€ C(>p), g=0on Y ., then there exists a
T(#) > 0 such that for any non-zero initial state (yo, y1) € Hg(D) x L?(D), there exist
multiplicative controls u, v € L*(Qr) such that the corresponding solution to (1) in
C([0,T); HY(D))NCL([0,T); L*(D)) satisfies (y(x,T),y¢(x,T)) = (0(x,T), 0:(x,T)), in
D, for all T > T(0).
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