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Abstract7

In this paper, we introduce (ψ,ϕ)-almost weakly contractive maps in G-metric8

spaces and prove the existence of fixed points. Our Theorem 4 generalizes the9

result of Aage and Salunke (Theorem 2, [1]). We also extend it to a pair of weakly10

compatible maps and prove the existence of common fixed points. We provide11

examples in support of our results.12

1 Introduction and Preliminaries13

The development of fixed point theory is based on the generalization of contraction14

conditions in one direction or/and generalization of ambient spaces of the operator15

under consideration on the other. Banach contraction principle plays an important role16

in solving nonlinear equations, and it is one of the most useful results in fixed point17

theory. In the direction of generalization of contraction conditions, in 1997, Alber18

and Guerre-Delabriere [3] introduced weakly contractive maps which are extensions19

of contraction maps and obtained fixed point results in the setting of Hilbert spaces.20

Rhoades [16] extended this concept to metric spaces. In 2008, Dutta and Choudhury21

[12] introduced (ψ,ϕ)-weakly contractive maps and proved the existence of fixed points22

in complete metric spaces. In 2009, Doric [11] extended it to a pair of maps. For more23

literature in this direction, we refer to Choudhury, Konar and Rhoades [9], Babu,24

Nageswara Rao and Alemayehu [4], Sastry, Babu and Kidane [17], Babu and Sailaja25

[5] and Zhang and Song [19]. In continuation to the extensions of contraction maps,26

Berinde [7] introduced ‘weak contractions’ as a generalization of contraction maps.27

Berinde renamed ‘weak contractions’as ‘almost contractions’in his later work [8]. For28

more works on almost contractions and its generalizations, we refer to Babu, Sandhya29

and Kameswari [6], Abbas, Babu and Alemayehu [2] and the related references cited30

in these papers.31

Throughout this paper, we denote R+ = [0,∞) and32

Ψ = {ψ/ψ : R+ → R+ is continuous on R+, ψ is nondecreasing,33

ψ(t) > 0 for t > 0, ψ(0) = 0} .34
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70 Fixed Points of (ψ,ϕ)-Almost Weakly Contractive Maps

In the metric space setting Dutta and Choudhury [12] introduced (ψ,ϕ)-weakly con-35

tractive maps as follows:36

DEFINITION 1 ([12]). Let (X, d) be a metric space. Let T : X → X be a map. If37

there exist ψ,ϕ ∈ Ψ such that38

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− ϕ(d(x, y))39

for all x, y ∈ X, then T is said to be a (ψ,ϕ)-weakly contractive map.40

Dutta and Choudhury [12] proved that every (ψ,ϕ)-weakly contractive map has a41

unique fixed point in complete metric spaces. On the other hand, Berinde [7] introduced42

‘weak contractions’as a generalization of contraction maps.43

DEFINITION 2 ([7]). Let (X, d) be a metric space. A selfmap T : X → X is said44

to be a weak contraction if there exist δ ∈ (0, 1) and L ≥ 0 such that for all x, y ∈ X,45

d(Tx, Ty) ≤ δd(x, y) + Ld(y, Tx).46

Berinde [7] proved that every weak contraction has a fixed point in complete metric47

spaces and provided an example to show that this fixed point need not be unique. In48

order to obtain the uniqueness of fixed point, Berinde [7] used the following condition:49

there exist θ ∈ (0, 1) and L1 ≥ 0 such that50

d(Tx, Ty) ≤ θd(x, y) + L1d(x, Tx) for all x, y ∈ X (1)51

and proved that every weak contraction together with (1) has a unique fixed point in52

complete metric spaces, and further posed the following problem: “Find a contractive53

type condition different from (1), that ensures the uniqueness of fixed point of weak54

contractions".55

In this context Babu, Sandhya and Kameswari [6] answered the above problem by56

introducing ‘condition (B)’as follows:57

DEFINITION 3 ([6]). Let (X, d) be a metric space. A map T : X → X is said to58

satisfy condition (B) if there exist 0 < δ < 1 and L ≥ 0 such that for all x, y ∈ X,59

d(Tx, Ty) ≤ δd(x, y) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.60

Babu, Sandhya and Kameswari [6] proved that every selfmap T of a complete61

metric space satisfying condition (B) has a unique fixed point. On the other hand,62

in the direction of generalization of ambient spaces, in 2005, Mustafa and Sims [15]63

introduced a new notion namely generalized metric space called G-metric space and64

studied the existence of fixed points of various types of contraction mappings in G-65

metric spaces.66

DEFINITION 4 ([15]). Let X be a nonempty set and let G : X3 → R+ be a67

function satisfying:68
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(G1) G(x, y, z) = 0 if x = y = z,69

(G2) 0 < G(x, x, y) for all x, y ∈ X, with x 6= y,70

(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 6= y71

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all variables) and,72

(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).73

Then the function G is called a generalized metric, or, more specially a G-metric on74

X, and the pair (X,G) is called a G-metric space.75

EXAMPLE 1 ([15]). Let (X, d) be a metric space. The mapping Gs : X3 → R+76

defined by77

Gs(x, y, z) = d(x, y) + d(y, z) + d(x, z)78

for all x, y, z ∈ X is a G-metric and so (X,Gs) is a G-metric space.79

EXAMPLE 2 ([15]). Let (X, d) be a metric space. The mapping Gm : X3 → R+80

defined by81

Gm(x, y, z) = max {d(x, y), d(y, z), d(x, z)}82

for all x, y, z ∈ X is a G-metric and so (X,Gm) is a G-metric space.83

EXAMPLE 3. Let X be a nonempty set. We denote the class of all real valued84

bounded functions on X by B(X). For f ∈ B(X), we define85

‖f‖ = sup {|f(x)| /x ∈ X} .86

Then (B(X), ||.||) is a normed linear space. We define metric d on B(X) by d(f, g) =87

‖f − g‖ for f, g ∈ B(X). Now we define generalized metric G on B(X) by88

G(f, g, h) = ‖f − g‖+ ‖g − h‖+ ‖h− f‖89

for all f, g, h ∈ B(X). Then clearly G is a generalized metric on B(X). The space90

(B(X), G) is a generalized metric space.91

DEFINITION 5 ([15]). Let (X,G) be a G-metric space and let {xn} be a sequence92

of points of X. We say that {xn} is G-convergent to x if limn,m→∞G(x, xn, xm) = 0;93

that is, for any ε > 0, there exists N ∈ N such that G(x, xn, xm) < ε for all n,m ≥ N .94

We refer to x as the limit of the sequence {xn}.95

PROPOSITION 1 ([15]). Let (X,G) be a G-metric space. Then for any x, y, z, a ∈96

X we have that:97

(1) if G(x, y, z) = 0, then x = y = z.98

(2) G(x, y, z) ≤ G(x, x, y) +G(x, x, z).99
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(3) G(x, y, y) ≤ 2G(y, x, x).100

(4) G(x, y, z) ≤ G(x, a, z) +G(a, y, z).101

(5) G(x, y, z) ≤ 2
3 (G(x, y, a) +G(x, a, z) +G(a, y, z)) .102

PROPOSITION 2 ([15]). Let (X,G) be a G-metric space. Then the following103

statements are equivalent:104

(1) {xn} is G-convergent to x.105

(2) G(xn, xn, x)→ 0 as n→∞.106

(3) G(xn, x, x)→ 0 as n→∞.107

DEFINITION 6 ([15]). Let X be a G-metric space. A sequence {xn} is called G-108

Cauchy if given ε > 0, there is an N ∈ N such that G(xn, xm, xl) < ε for all n,m, l ≥ N ;109

that is, if G(xn, xm, xl)→ 0 as n,m, l→∞.110

PROPOSITION 3 ([15]). In a G-metric space X, the following two statements are111

equivalent:112

(1) The sequence {xn} is G-Cauchy.113

(2) For every ε > 0, there exists N ∈ N such that G(xn, xm, xm) < ε for all n,m ≥ N.114

DEFINITION 7 ([15]). A G-metric space X is said to be G-complete (or a complete115

G-metric space) if every G-Cauchy sequence in X is G-convergent in X.116

PROPOSITION 4 ([15]). Let X be a G-metric space. Then the function G(x, y, z)117

is jointly continuous in all three of its variables.118

PROPOSITION 5 ([15]). Every G-metric space X defines a metric space (X, dG)119

by120

dG(x, y) = G(x, y, y) +G(y, x, x) for all x, y ∈ X.121

Mustafa, Obiedat and Awawdeh [14] proved the following result.122

THEOREM 1 ([14]). Let (X,G) be a complete G-metric space, and let T : X → X123

be a mapping satisfying one of the following conditions:124

G(Tx, Ty, Tz) ≤ aG(x, y, z) + bG(x, Tx, Tx) + cG(y, Ty, Ty) + dG(z, Tz, Tz)125

or126

G(Tx, Ty, Tz) ≤ aG(x, y, z) + bG(x, x, Tx) + cG(y, y, Ty) + dG(z, z, Tz)127

for all x, y, z ∈ X where 0 ≤ a + b + c + d < 1. Then T has a unique fixed point (say128

u, i.e., Tu = u), and T is G-continuous at u.129



Babu et al. 73

In 2011, Aage and Salunke [1] introduced weakly contractive maps in G-metric130

spaces and proved the existence of fixed points in G-metric spaces.131

DEFINITION 8. Let (X,G) be a G-metric space. Let T : X → X be a selfmap of132

X. T is said to be a weakly contractive map in G if, there exists ϕ ∈ Ψ such that133

G(Tx, Ty, Tz) ≤ G(x, y, z)− ϕ(G(x, y, z)) for each x, y, z ∈ X. (2)134

THEOREM 2 ([1]). Let (X,G) be a complete G-metric space and let T : X → X135

be a weakly contractive map in G. Then T has a unique fixed point in X.136

DEFINITION 9 ([10]). Let f and g be two selfmaps on a G-metric space (X,G).137

The mappings f and g are said to be compatible if limn→∞G (fgxn, gfxn, gfxn) = 0138

whenever {xn} is a sequence in X such that limn→∞ fxn = limn→∞ gxn = z for some139

z ∈ X.140

DEFINITION 10 ([10,13]). Two maps f and g on a G-metric space (X,G) are said141

to be weakly compatible if they commute at their coincidence point.142

Here we note that every pair of compatible maps is weakly compatible but its143

converse need not be true (Example 1.4, [10]). Shatanawi [18] proved the following144

common fixed point theorem for a pair of weakly compatible maps.145

THEOREM 3 ([18]). Let X be a G-metric space. Suppose the maps f, g : X →146

X satisfy the following condition: there exists a nondecreasing function φ : R+ →147

R+ satisfying limn→∞ φn(t) = 0 for all t ∈ (0,∞) such that either148

G(fx, fy, fz) ≤ φ(max{G(gx, gy, gz), G(gx, fx, fx), G(gy, fy, fy), G(gz, fz, fz)}),
(3)149

or150

G(fx, fy, fz) ≤ φ(max{G(gx, gy, gz), G(gx, gx, fx), G(gy, gy, fy), G(gz, gz, fz)})151

for all x, y, z ∈ X. If f(X) ⊆ g(X) and g(X) is a G-complete subspace of X, then152

f and g have a unique point of coincidence in X. Moreover, if f and g are weakly153

compatible, then f and g have a unique common fixed point.154

Unfortunately, the example given in support of Theorem 2 by Aage and Salunke155

(Example 2, [1]) is false in the sense that the maps T and ϕ defined in this example156

do not satisfy the inequality (2). For, the example considered by Aage and Salunke is157

the following.158

EXAMPLE 4 ([1]). Let X = [0, 1]. Define G : X3 → R+ by159

G(x, y, z) = |x− y|+ |y − z|+ |z − x| for all x, y, z ∈ X.160
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Then (X,G) is a complete G-metric space. The authors defined T on X by Tx = x− x2

2161

and ϕ(t) = t2

2 , t ≥ 0. Let us choose x = 1, y = 1
2 and z = 1

4 . Then G(Tx, Ty, Tz) = 9
16 ,162

G(x, y, z) = 3
2 and ϕ(G(x, y, z)) = 9

8 . Hence163

9

16
= G(Tx, Ty, Tz) � G(x, y, z)− ϕ(G(x, y, z)) =

3

8
.164

Also the inequality (2) fails to hold at x = 1
2 , y = 1

3 and z = 0. Hence T and ϕ do not165

satisfy the inequality (2) so that T is not a weakly contractive map with this ϕ, even166

though T has a fixed point 0.167

The following is a suitable example in support of Theorem 2.168

EXAMPLE 5. Let X = [0, 1]. We define G : X3 → R+ by169

G(x, y, z) =

{
0, if x = y = z
max{x, y, z}, otherwise.

170

Then (X,G) is a complete G-metric space. Let Tx = x2

2 and ϕ(t) = t2

4 . Without loss171

of generality, we assume that x > y > z. Then172

G(Tx, Ty, Tz) = max{Tx, Ty, Tz} =
x2

2
,173

174

G(x, y, z) = max{x, y, z} = x and ϕ(G(x, y, z)) =
x2

4
.175

Now, G(x, y, z) − ϕ(G(x, y, z)) = x − x2

4 . Therefore G(Tx, Ty, Tz) = x2

2 < x − x2

4 =176

G(x, y, z) − ϕ(G(x, y, z)). Hence T satisfies the inequality (2) so that T is a weakly177

contractive map. Thus by Theorem 2, we have T has a unique fixed point and it is 0178

in X.179

Motivated by the ‘(ψ,ϕ)-weakly contractive maps’introduced by Dutta and Choud-180

hury [12], ‘almost weak contractions’of Berinde [7, 8] and ‘condition (B)’of Babu, Sand-181

hya and Kameswari [6] in metric space setting, in this paper we introduce ‘(ψ,ϕ)-almost182

weakly contractive maps’in G-metric spaces and prove the existence of fixed points in183

complete G-metric spaces. The importance of the class of (ψ,ϕ)-almost weakly con-184

tractive maps is that this class properly includes the class of weakly contractive maps185

studied by Aage and Salunke [1] so that the class of (ψ,ϕ)-almost weakly contractive186

maps is larger than the class of weakly contractive maps, which is illustrated in Ex-187

ample 6. Hence, the results obtained on the existence of fixed points of (ψ,ϕ)-almost188

weakly contractive maps generalize the results of Aage and Salunke [1].189

In the following, we introduce (ψ,ϕ)-almost weakly contractive maps.190

DEFINITION 11. Let (X,G) be a G-metric space and let T be a selfmap of X. If191

there exist ψ and ϕ in Ψ and L ≥ 0 such that192

ψ(G(Tx, Ty, Tz)) ≤ ψ(G(x, y, z))− ϕ(G(x, y, z)) + L m(x, y, z) (4)193
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for all x, y, z ∈ X, where194

m(x, y, z) = min{G(Tx, x, x), G(Tx, y, y), G(Tx, z, z), G(Tx, y, z)},195

then we call T is a (ψ,ϕ)-almost weakly contractive map on X.196

We observe that if ψ is the identity map and L = 0 in (4) then T is a weakly197

contractive map. Hence the class of all weakly contractive maps is contained in the198

class of all (ψ,ϕ)-almost weakly contractive maps. Further, every (ψ,ϕ)-almost weakly199

contractive map need not be a weakly contractive map (Example 6).200

In Section 2, we prove the existence of fixed points of (ψ,ϕ)-almost weakly contrac-201

tive maps in G-metric spaces. Our main result (Theorem 4) generalizes the result of202

Aage and Salunke (Theorem 2, [1]). We also extend it to a pair of weakly compatible203

maps and prove the existence of common fixed points. Corollaries and examples in204

support of our results are provided in Section 3.205

2 Main Results206

The following is the main result of this paper.207

THEOREM 4. Let (X,G) be a complete G-metric space and let T be a (ψ,ϕ)-208

almost weakly contractive map. Then T has a unique fixed point in X.209

PROOF. Let x0 ∈ X. We define the sequence {xn} by xn = T (xn−1), n = 1, 2, ....210

If xn+1 = xn for some n ∈ N, then trivially xn a fixed point of T . Suppose xn+1 6= xn211

for all n ∈ N. We now consider212

ψ(G(xn, xn+1, xn+1)) = ψ(G(Txn−1, Txn, Txn))213

≤ ψ(G(xn−1, xn, xn))− ϕ(G(xn−1, xn, xn))214

+Lm(xn−1, xn, xn),215

where m(xn−1, xn, xn) = 0 so that216

ψ(G(xn, xn+1, xn+1)) ≤ ψ(G(xn−1, xn, xn))− ϕ(G(xn−1, xn, xn)). (5)217

By using the property of ϕ, we have218

ψ(G(xn, xn+1, xn+1)) < ψ(G(xn−1, xn, xn)) for n = 1, 2, . . . . (6)219

Now, by applying the nondecreasing property of ψ, it follows that220

G(xn, xn+1, xn+1) ≤ G(xn−1, xn, xn) for n = 1, 2, . . . .221

Therefore {G(xn, xn+1, xn+1)} is a monotone decreasing sequence of nonnegative reals222

and hence there exists r ≥ 0 such that G(xn, xn+1, xn+1) → r as n → ∞. Now, on223

letting n → ∞ in the inequality (5), we have ψ(r) ≤ ψ(r) − ϕ(r) so that ϕ(r) ≤ 0.224

Since ϕ(r) ≥ 0, it follows that ϕ(r) = 0 so that r = 0.225

i.e., G(xn, xn+1, xn+1)→ 0 as n→∞. (7)226
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We now prove that the sequence {xn} is Cauchy.227

On the contrary, if {xn} is not Cauchy, then there exists an ε > 0 for which we can228

find subsequences {xnk}, {xmk
} of {xn} with nk > mk ≥ k such that229

G(xnk , xmk
, xmk

) ≥ ε. (8)230

Corresponding to each mk, we can choose nk such that it is the smallest integer with231

nk > mk and satisfying (8). Then, we have232

G(xnk , xmk
, xmk

) ≥ ε and G(xnk−1, xmk
, xmk

) < ε. (9)233

We now prove the following three identities:234

(i) limk→∞G(xnk , xmk
, xmk

) = ε.235

(ii) limk→∞G(xnk−1, xmk−1, xmk−1) = ε.236

(iii) limk→∞G(xnk , xmk−1, xmk−1) = ε.237

From (9), we have G(xnk , xmk
, xmk

) ≥ ε so that238

ε ≤ lim
k→∞

inf G(xnk , xmk
, xmk

). (10)239

Also,240

G(xnk , xmk
, xmk

) ≤ G(xnk , xnk−1, xnk−1) +G(xnk−1, xmk
, xmk

)241

< G(xnk , xnk−1, xnk−1) + ε,242

and hence243

lim
k→∞

supG(xnk , xmk
, xmk

) ≤ ε. (11)244

From (10) and (11), we have245

ε ≤ lim
k→∞

inf G(xnk , xmk
, xmk

) ≤ lim
k→∞

supG(xnk , xmk
, xmk

) ≤ ε246

so that limk→∞G(xnk , xmk
, xmk

) exists and247

ε = lim
k→∞

inf G(xnk , xmk
, xmk

) ≤ lim
k→∞

supG(xnk , xmk
, xmk

) = ε.248

Hence249

lim
k→∞

G(xnk , xmk
, xmk

) = ε. (12)250

Therefore (i) holds. Also,251

G(xnk−1, xmk−1, xmk−1) ≤ G(xnk−1, xmk
, xmk

) +G(xmk
, xmk−1, xmk−1)252

≤ G(xnk−1, xnk , xnk) +G(xnk , xmk
, xmk

)253

+G(xmk
, xmk−1, xmk−1).254
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On taking limit superior as k →∞ and using (7) and (12), we get255

lim
k→∞

supG(xnk−1, xmk−1, xmk−1) ≤ ε. (13)256

Now,257

G(xnk , xmk
, xmk

) ≤ G(xnk , xnk−1, xnk−1) +G(xnk−1, xmk−1, xmk−1)258

+G(xmk−1, xmk
, xmk

).259

Hence, we have that260

G(xnk−1, xmk−1, xmk−1) ≥ G(xnk , xmk
, xmk

)−G(xnk , xnk−1, xnk−1)261

−G(xmk−1, xmk
, xmk

).262

Now on taking limit inferior both sides, and using (7) and (12), we get263

ε ≤ lim
k→∞

inf G(xnk−1, xmk−1, xmk−1). (14)264

Thus from (13) and (14), we have265

ε ≤ lim
k→∞

inf G(xnk−1, xmk−1, xmk−1) ≤ lim
k→∞

supG(xnk−1, xmk−1, xmk−1) ≤ ε.266

Hence it follows that267

lim
k→∞

G(xnk−1, xmk−1, xmk−1) = ε. (15)268

Therefore (ii) holds. Let us now prove (iii). From (8), we have269

ε ≤ G(xnk , xmk
, xmk

) ≤ G(xnk , xmk−1, xmk−1) +G(xmk−1, xmk
, xmk

).270

This implies that271

G(xnk , xmk−1, xmk−1) ≥ ε−G(xmk−1, xmk
, xmk

)272

and273

lim
k→∞

inf G(xnk , xmk−1, xmk−1) ≥ ε. (16)274

Now,275

G(xnk , xmk−1, xmk−1) ≤ G(xnk , xnk−1, xnk−1) +G(xnk−1, xmk−1, xmk−1)276

and hence using (7) and (ii), we get277

lim
k→∞

supG(xnk , xmk−1, xmk−1) ≤ ε. (17)278

Now, from (16) and (17), we have279

ε ≤ lim
k→∞

inf G(xnk , xmk−1, xmk−1) ≤ lim
k→∞

supG(xnk , xmk−1, xmk−1) ≤ ε280

so that G(xnk , xmk−1, xmk−1)→ ε as k →∞. Therefore (iii) holds.281
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Now282

ψ(G(xnk , xmk
, xmk

)) = ψ(G(Txnk−1, Txmk−1, Txmk−1))283

≤ ψ(G(xnk−1, xmk−1, xmk−1))− ϕ(G(xnk−1, xmk−1, xmk−1))284

+L m(xnk−1, xmk−1, xmk−1).285

On letting k →∞ and using (i)—(iii) and (7), we get286

ψ(ε) ≤ ψ(ε)− ϕ(ε) < ψ(ε),287

which is a contradiction. Therefore {xn} is a G-Cauchy sequence. Since X is complete,288

there exists p ∈ X such that {xn} is G-convergent to p. We now consider289

ψ(G(xn, Tp, Tp)) = ψ(G(Txn−1, Tp, Tp))290

≤ ψ(G(xn−1, p, p))− ϕ(G(xn−1, p, p)) + Lm(xn−1, p, p).291

On letting n → ∞, we have ϕ(G(p, Tp, Tp)) ≤ 0 so that we must have Tp = p.292

Therefore p is a fixed point of T in X.293

Uniqueness: Suppose T has two fixed points p and q in X with p 6= q. Now, we294

consider295

ψ(G(p, q, q)) = ψ(G(Tp, Tq, T q))296

≤ ψ(G(p, q, q))− ϕ(G(p, q, q)) + Lm(p, q, q)297

= ψ(G(p, q, q))− ϕ(G(p, q, q)) < ψ(G(p, q, q)),298

which is a contradiction. Therefore ψ(G((p, q, q)) = 0 so that G(p, q, q) = 0 and hence299

that p = q. Thus, p is the unique fixed point of T in X. Hence the theorem follows.300

We now prove a common fixed point theorem for a pair of weakly compatible maps.301

THEOREM 5. Let (X,G) be a complete G-metric space and let T and S be two302

selfmaps on (X,G). Assume that T (X) ⊆ S(X), S is continuous, and there exist303

ψ,ϕ ∈ Ψ and L ≥ 0 such that304

ψ(G(Tx, Ty, Tz)) ≤ ψ(M(x, y, z))− ϕ(M(x, y, z)) + Lm(x, y, z), (18)305

where306

M(x, y, z) = max{G(Sx, Sy, Sz), G(Sx, Tx, Tx), G(Sy, Ty, Ty), G(Sz, Tz, Tz)}307

and308

m(x, y, z) = min{G(Tx, Sx, Sx), G(Tx, Sy, Sy), G(Tx, Sz, Sz), G(Tx, Sy, Sz)}309

for x, y, z ∈ X. Then T and S have a unique common fixed point in X provided T and310

S are weakly compatible maps.311



Babu et al. 79

PROOF. Let x0 ∈ X be arbitrary. Since T (X) ⊆ S(X), we can choose {xn} ⊆ X312

such that T (xn) = S(xn+1) = yn (say), n = 0, 1, 2, .... Let n ≥ 1 be an integer. Then313

by using the inequality (18) we have314

ψ(G(yn, yn+1, yn+1)) = ψ(G(Txn, Txn+1, Txn+1))315

≤ ψ(M(xn, xn+1, xn+1))− ϕ(M(xn, xn+1, xn+1))316

+Lm(xn, xn+1, xn+1),317

where318

M(xn, xn+1, xn+1) = max{G(Sxn, Sxn+1, Sxn+1), G(Sxn, Txn, Txn),319

G(Sxn+1, Txn+1, Txn+1), G(Sxn+1, Txn+1, Txn+1)}320

= G(Sxn, Sxn+1, Sxn+1)321

and322

m(xn, xn+1, xn+1)323

= min{G(Txn, Sxn, Sxn), G(Txn, Sxn+1, Sxn+1),324

G(Txn, Sxn+1, Sxn+1), G(Txn, Sxn+1, Sxn+1)}325

= min{G(yn, yn−1, yn−1), G(yn, yn, yn), G(yn, yn, yn), G(yn, yn, yn)}326

= 0327

since G(yn, yn, yn) = 0. This implies that328

ψ(G(yn, yn+1, yn+1)) ≤ ψ(G(yn−1, yn, yn))− ϕ(G(yn−1, yn, yn)). (19)329

Hence, from the inequality (18), if ym = ym+1 for some m, then it follows that yn = ym330

for all n ≥ m so that {yn} is Cauchy. Therefore, without loss of generality, we assume331

that yn 6= yn+1 for all n = 0, 1, 2, . . . . Now, from (18), we have332

ψ(G(yn, yn+1, yn+1)) < ψ(G(yn−1, yn, yn)).333

Hence by the nondecreasing nature of ψ, it follows that334

G(yn, yn+1, yn+1) ≤ G(yn−1, yn, yn) for all n = 1, 2, . . . .335

Therefore {G(yn, yn+1, yn+1)} is a monotone decreasing sequence of nonnegative reals.336

So, there exists r ≥ 0 such that G(yn, yn+1, yn+1) → r as n → ∞. Now, from the337

inequality (19), we have338

ψ(G(yn, yn+1, yn+1)) ≤ ψ(G(yn−1, yn, yn))− ϕ(G(yn−1, yn, yn)).339

On letting n → ∞, we have ψ(r) ≤ ψ(r) − ϕ(r) so that ϕ(r) ≤ 0. Since ϕ(r) ≥ 0, it340

follows that ϕ(r) = 0 so that r = 0.341

i.e., G(yn, yn+1, yn+1)→ 0 as n→∞. (20)342
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We now prove that the sequence {yn} is Cauchy. If we suppose that {yn} is not343

Cauchy, then there exists an ε > 0 and there exist subsequences {ynk}, {ymk
} of {yn}344

with nk > mk ≥ k such that345

G(ynk , ymk
, ymk

) ≥ ε. (21)346

Corresponding to each mk, we can choose nk such that it is the smallest integer with347

nk > mk and satisfying (21). Then, we have348

G(ynk , ymk
, ymk

) ≥ ε and G(ynk−1, ymk
, ymk

) < ε. (22)349

Now the following identities follow as in the proof of Theorem 4.350

(i) limk→∞G(ynk , ymk
, ymk

) = ε.351

(ii) limk→∞G(ynk−1, ymk−1, ymk−1) = ε.352

(iii) limk→∞G(ynk , ymk−1, ymk−1) = ε.353

We now consider354

ψ(G(ynk , ymk
, ymk

)) = ψ(G(Txnk , Txmk
, Txmk

))355

≤ ψ(M(xnk , xmk
, xmk

))− ϕ(M(xnk , xmk
, xmk

))356

+Lm(xnk , xmk
, xmk

),357

where358

M(xnk , xmk
, xmk

) = max{G(Sxnk , Sxmk
, Sxmk

), G(Sxnk , Txnk , Txnk),359

G(Sxmk
, Txmk

, Txmk
), G(Sxmk

, Txmk
, Txmk

)}360

= G(Sxnk , Sxmk
, Sxmk

) = G(ynk−1, ymk−1, ymk−1)361

and362

m(xnk , xmk
, xmk

) = min{G(Txnk , Sxnk , Sxnk), G(TxnkSxmk
, Sxmk

),363

G(Txnk , Sxmk
, Sxmk

), G(Txnk , Sxmk
, Sxmk

)}.364

Therefore,365

ψ(G(ynk , ymk
, ymk

))366

≤ ψ(G(ynk−1, ymk−1, ymk−1))− ϕ(G(ynk−1, ymk−1, ymk−1))367

+Lmin {G(ynk , ynk−1, ynk−1), G(ynk , ymk−1, ymk−1),368

G(ynk , ymk−1, ymk−1), G(ynk , ymk−1, ymk−1)}.369

On letting k →∞ and using (i)—(iii) and (20), we get370

ψ(ε) ≤ ψ(ε)− ϕ(ε) < ψ(ε),371

which is a contradiction. Therefore {yn} is a G-Cauchy sequence. Since X is complete,372

there exists z ∈ X such that limn→∞ yn = limn→∞ Txn = limn→∞ Sxn+1 = z. We373



Babu et al. 81

now prove that z is a common fixed point of T and S. Since S is continuous, we have374

limn→∞ STxn = limn→∞ SSxn = Sz. Further, since S and T are weakly compatible,375

we have limn→∞G(TSxn, STxn, STxn) = 0, which implies limn→∞ TSxn = Sz. Now,376

from (18), we have377

ψ(G(TSxn, Txn, Txn)) ≤ ψ(M(Sxn, xn, xn))− ϕ(M(Sxn, xn, xn))378

+Lm(Sxn, xn, xn), (23)379

where380

M(Sxn, xn, xn) = max{G(SSxn, Sxn, Sxn), G(SSxn, TSxn, TSxn),381

G(Sxn, Txn, Txn), G(Sxn, Txn, Txn)}382

= G(SSxn, Sxn, Sxn)383

and384

m(Sxn, xn, xn) = min{G(TSxn, SSxn, SSxn), G(TSxn, Sxn, Sxn),385

G(TSxn, Sxn, Sxn), G(TSxn, Sxn, Sxn)}.386

Therefore, from (23), we have387

ψ(G(TSxn, Txn, Txn)) ≤ ψ(G(SSxn, Sxn, Sxn))− ϕ(G(SSxn, Sxn, Sxn))388

+Lmin{G(TSxn, SSxn, SSxn), G(TSxn, Sxn, Sxn),389

G(TSxn, Sxn, Sxn), G(TSxn, Sxn, Sxn)}.390

On letting n→∞, we get391

ψ(G(Sz, z, z)) ≤ ψ(G(Sz, z, z))− ϕ(G(Sz, z, z)),392

which implies that ϕ(G(Sz, z, z)) ≤ 0 so that we must have Sz = z. Now, we consider393

ψ(G(Txn, T z, Tz)) ≤ ψ(M(xn, z, z))− ϕ(M(xn, z, z)) + Lm(xn, z, z), (24)394

where395

M(xn, z, z) = max{G(Sxn, Sz, Sz), G(Sxn, Txn, Txn), G(Sz, Tz, Tz), G(Sz, Tz, Tz)}396

and397

m(xn, z, z) = min{G(Txn, Sxn, Sxn), G(Txn, Sz, Sz), G(Txn, Sz, Sz), G(Txn, Sz, Sz)}.398

Also, we have399

lim
n→∞

M(xn, z, z) = G(z, Tz, Tz) and lim
n→∞

m(xn, z, z) = 0, (25)400

since limn→∞G(TSxn, SSxn, SSxn) = 0. Now, on letting n → ∞ in (24) and using401

(25), we get402

ψ(G(z, Tz, Tz)) ≤ ψ(G(z, Tz, Tz))− ϕ(G(z, Tz, Tz)).403

Then ϕ(G(z, Tz, Tz)) ≤ 0. Therefore, ϕ(G(z, Tz, Tz)) = 0 so that G(z, Tz, Tz) = 0.404

Therefore, Tz = z. Thus z is a common fixed point of T and S. Uniqueness of common405

fixed point of T and S follows from the inequality (18). This completes the proof of406

the theorem.407
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3 Corollaries and Examples408

In this section, we draw some corollaries from the main results of Section 2 and provide409

examples in support of our results. The following is an example in support of Theorem410

4.411

EXAMPLE 6. Let X = [0, 1]. We define G : X3 → R+ by412

G(x, y, z) =

{
0, if x = y = z
max{x, y, z}, otherwise.

413

Then (X,G) is a complete G-metric space. We define T : X → X by414

T (x) =


1
2 if x = 0,
2x if 0 < x < 1

2 ,
1 if 12 ≤ x ≤ 1.

415

We define ψ and ϕ on R+ by ψ(t) = t2

3 and ϕ(t) = t2

2 . Then, it is easy to verify that416

T satisfies the inequality (4) with L = 1. i.e., T is a (ψ,ϕ)-almost weakly contractive417

map. Thus T satisfies all the hypothesis of Theorem 4 and 1 is the unique fixed point418

of T . Here we observe that T is not a continuous map.419

Further, we observe that T is not a weakly contractive map. For, let us choose x =420

1
3 and y = z = 0. Then G(Tx, Ty, Tz) = 2

3 , G(x, y, z) = 1
3 and ϕ(G(x, y, z)) = ϕ( 13 ).421

Hence,422

2

3
= G(Tx, Ty, Tz) � G(x, y, z)− ϕ(G(x, y, z)) =

1

3
− ϕ(

1

3
) for any ϕ ∈ Ψ.423

Hence T does not satisfy the inequality (2) for any ϕ ∈ Ψ so that T is not a weakly424

contractive map in G-metric space. Thus Theorem 2 is not applicable.425

Further, this example suggests that the class of (ψ,ϕ)-almost weakly contractive426

maps is larger than the class of weakly contractive maps in G-metric spaces.427

REMARK 1. Theorem 2 follows as a corollary to Theorem 4 by choosing ψ as the428

identity map and L = 0. Hence Example 6 suggests that Theorem 4 is a generalization429

of Theorem 2.430

COROLLARY 1. Let (X,G) be a complete G-metric space and let T and S be431

two selfmaps on (X,G). Assume that T (X) ⊆ S(X), S is continuous, and there exist432

ψ,ϕ ∈ Ψ such that433

ψ(G(Tx, Ty, Tz)) ≤ ψ(M(x, y, z))− ϕ(M(x, y, z)), (26)434

where435

M(x, y, z) = max{G(Sx, Sy, Sz), G(Sx, Tx, Tx), G(Sy, Ty, Ty), G(Sz, Tz, Tz)}436

for x, y, z ∈ X. Then T and S have a unique common fixed point in X provided T and437

S are weakly compatible maps.438

PROOF. Follows from Theorem 5 by choosing L = 0.439
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The following is an example in support of Corollary 1.440

EXAMPLE 7. Let X = [0, 1]. We define G : X3 → R+ by441

G(x, y, z) =

{
0, if x = y = z,
max{x, y, z}, otherwise.

442

Then (X,G) is a complete G-metric space. We define T, S : X → X and ψ, ϕ on R+by443

T (x) =
x2

2
, S(x) =

x

4
(5− x), ψ(t) =

4t2

3
and ϕ(t) =

t2

3
444

for all x ∈ X and t ∈ R+. Then clearly T (X) ⊆ S(X).Without loss of generality, we445

assume that x > y > z. Then446

G(Tx, Ty, Tz) = max{Tx, Ty, Tz} = max{x
2

2
,
y2

2
,
z2

2
} =

x2

2
.447

Also448

G(Sx, Sy, Sz) = max{Sx, Sy, Sz} = max{x
4

(5− x),
y

4
(5− y),

z

4
(5− z)} =

x

4
(5− x).449

Now, we consider450

ψ(G(Tx, Ty, Tz)) =
x4

3
≤ x2

16
(5− x)2 = [G(Sx, Sy, Sz)]2451

≤ [M(x, y, z)]2 =
4

3
[M(x, y, z)]2 − 1

3
[M(x, y, z)]2452

= ψ(M(x, y, z))− ϕ(M(x, y, z)).453

Therefore,454

ψ(G(Tx, Ty, Tz)) ≤ ψ(M(x, y, z))− ϕ(M(x, y, z))455

so that the inequality (26) of Corollary 1 holds. Thus, T and S satisfy all the hypotheses456

of Corollary 1 and 0 is the unique common fixed point of T and S.457

REMARK 2. We observe that the ϕ that is used in Theorem 5 is different from φ458

that is used in Theorem 3.459
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