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Abstract

This article is concerned with the existence of positive solutions of a fourth-
order p-Laplacian boundary value problem. Based on a priori estimates achieved
by utilizing Jensen’s integral inequalities for convex and concave functions, we
use fixed point index theory to establish the existence of positive solutions for the
above problem.

1 Introduction

This article is concerned with the existence of positive solutions for the p-Laplacian
boundary value problem

(|u//|p71 u//)// — f(t, u’ _u//>,
a1u(0) — b’ (0) = cru(l) + dyu/(1) = 0, (1)
as (") (0) — ba((—u"Y(0) = e (") (1) + da((—u")") (1) =0,

where p > 0, f € C([0,1] x R2,R"), a;, b;, ¢i,d; > 0, and &; = a;d; + bic; + a;c; > 0 for
i=1,2.

Fourth order boundary value problems, including those with the p-Laplacian oper-
ator, have their origin in beam theory, ice formation, fluids on lungs, brain warping,
designing special curves on surfaces, etc. In our problem (1), the nonlinearity f in-
volves the second-order derivative u”. Such nonlinearity may be encountered in some
physical models. For example, the equation

ouw  *u  *u

_ - 3
o~ gt Papz @t by

is known in the studies of phase transitions near a Lifschitz point [16].
The p-Laplacian boundary value problems arise in non-Newtonian mechanics, non-
linear elasticity, glaciology, population biology, combustion theory, and nonlinear flow
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laws; see [5,6]. That explains why many authors have extensively studied the exis-
tence of positive solutions for p-Laplacian boundary value problems, by using topolog-
ical degree theory, monotone iterative techniques, coincidence degree theory, and the
Leggett-Williams fixed point theorem or its variants; see [1,2,3,4,8,10,11,12,13,14,15]
and the references therein.

In [14], by using the method of upper and lower solutions, Zhang and Liu obtained
the existence of positive solutions for the fourth-order singular p-Laplacian boundary
value problem

(WP~ )" = f(t u(t)) for 0 <t <1, (2)
subject to the boundary conditions
u(0) = u(1) — au(§) = u"(0) =" (1) — bu"(n) =0, 3)

where p > 1,0 < &,n < 1, and f € C((0,1) x (0,00), (0,00)) may be singular at ¢t = 0
and/or at t =1 and u = 0.

In [15], Zhang and Liu obtained the existence of positive solutions for (2) with the
boundary conditions

m—2 m—2
w(0) = Y au(&) = u(1) =u"(0) = Y biu(n) = u"(1) =0, (4)
i=1 i=1
where m > 3,a;,0;,&,m; € (0,1)(i = 1,2,...,m — 2) are nonnegative constants and

S P as < 1,77 b < 1,and f € C((0,1) xR, Ry ) may be singular at ¢ = 0 and /or
at ¢ = 1. By using the monotone iterative method, they established the existence of
positive solutions of pseudo-C?3[0, 1] for the above problem.

In [8], Guo et al. investigated the existence and multiplicity of positive solutions
for the fourth-order p-Laplacian boundary value problem

('[P 2 u")" = Ag(t) f(u) for0<t<1, (5)

where A is a positive parameter. By using fixed point index theory and the method
of upper and lower solutions, they obtained the following result: there exists A\* < oo
such that (5) has at least two positive solutions for A € (0, A\*), (5) has at least one
positive solution for A = X\*; and (5) have no positive solution at all for A > \*.
The presence of the second-order derivative v contributes to the difficulty to obtain

a priori estimates of positive solutions for some problems associated with (1). To
facilitate the establishment of such estimates, by using the reduction of order, we
transform (1) into a boundary value problem for an equivalent second-order integro-
differential equation (see the next section for more details). More importantly, we
observe that if p = 1, then (1) reduces to the semilinear fourth-order boundary value
problem

u® = f(ta u, —’U//),

a1u(0) — b1u'(0) = cyu(l) + dyu/ (1) = 0, (6)

asu”(0) — bou/"(0) = cou’ (1) + dau'”’(1) = 0.

Motivated by [11,12,13], we regard (6) as a perturbation of (1). In fact, we make
repeated use of the Jensen integral inequalities for convex and concave functions in
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order to derive a priori estimates of positive solutions for some operator equations
associated with (1), these estimates based on which we use fixed point index theory to
establish the existence of positive solutions for the above problem. Our main results
extend the corresponding ones in [11,12,13]. Also, some relations between (1) and (6)
may be seen from the Jensen inequalities for convex and concave functions.

This article is organized as follows. In Section 2, we provide some preliminary re-
sults. Our main results, namely Theorem 3.1 and 3.2, followed by two simple examples,
are stated and proved in Section 3.

2 Preliminaries
Let

E :=CI[0,1], |lu|] := Jnax lu()],P:={ue E: u(t) >0 fortel0,1]}. (7)

Clearly (E, || - ||) is a real Banach space and P is a cone in E. Define B, := {u € E :
||ul| < p} for all p > 0. Substituting v := —u into (1), we have

=(wlP~)"(t) = f(t, fo ki(t, s)v(s)ds, v(t)),

asvP (0) — be(vP)'(0) = (8)
cuP (1) + da(v?)' (1) =
where
k(4 L 1 (b1—|—a15)(01(1—t)—|—d1), Ogsgtgl,
lts) =5 (b1 4+ ar1t)(c1(1 — s) +dy), 0<t<s<1

Moreover, (8) is equivalent to the nonlinear integral equation

=

v(t) = (/01 ka(t, ) f (s, /01 kl(S,T)’U(T)dT,’U(S))dS> , 9)

where
k(t ) 1 (b2+a25)(02(1—t>+d2), Ogsgtgl,
§) = —
. 02 | (ba + ast)(ca(l — 8) +da), 0<t<s< 1.
Define the operator A: P — P by
1

(Av)(t) = (/01 Eka(t, s)f(s,/Olkl(s,f)v(T)dT,v(s))ds> . (10)

Now the condition f € C([0,1] x R?,R,) implies that A : P — P is a completely
continuous operator, and the existence of positive solutions for (1) is equivalent to that
of positive fixed points of A. Let

ks(t,T) ::/0 ka(t, s)k1(s, T)ds.
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o For any given nonnegative constants a, (3, let

% Ga p(t, s) == aks(t,s) + Pka(t, s) (11)
o3 and 1
u (La,pv)(t) == /0 Ga p(t, s)v(s)ds. (12)

o5 Clearly Lo g : ' — E is a completely continuous positive linear operator. If ao+ 3 > 0,
s then the spectral radius r(Lq,g) is positive. The Krein-Rutmann theorem then implies
o7 that there exists o 5 € P\ {0} such that r(La g)¢a,s = L}, 5¢a,s. i€

. r(Laﬁ>¢a¢xs>::j€ G ot 8) o s 1), (13)

9% where L7 g B — Eis the dual operator of A. Note that we may normalize ¢, g so
w0 that

1
101 / (pa)g(t)dt =1. (14)
0
102 LEMMA 2.1. For any given nonnegative constants a,3 with o + 8 > 0, let
i 1
103 Ka,3 ::/ t<pa,g(t)dt—|—/ (1 —t)paq,p(t)dt,
0 3
s where @4 g is given in (13) and (14). Then for every concave function ¢ € P, we have
1
. | 60pastt)ds > o slol.
0
106 The proof can be carried out as that of Lemma 2.4 in [11]. Thus we omit it.

107 LEMMA 2.2 (see [9]). Let a € Ry, b e Ry. If 0 € (0, 1], then
108 (CL + b)g > 2071(CLU + bg).

w Ifoe€ [1, —|—OO), then

110 (CL + b)g < 2071(CLU + bg).

e LEMMA 2.3 (see [9]). Suppose g € C[a,b] with I := g([a,b]) and h € C(I). If h is

u2  convex on I, then

b b
h (ﬁ/ g(t)dt) < bia/a h(g(t))dt.

us If A is concave on I, then

b b
(5 [ o) = 5 [ wena
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LEMMA 2.4. Let E and P be defined in (7). Suppose that ) C E is a bounded
open set and that T': QN K — K is a completely continuous operator. If there exist
ug € K\{0} and p > 0 such that

ut — (Tu)* # Mg for all A > 0 and u € 00N K,

then (T, Q2N K, K) = 0 where 7 indicates the fixed point index on K.

PROOF. Note the operator Sxu := ((Tu)* + \ug)'/* : P — P is a completely
continuous operator for all A > 0. If {(T, QN K, K) = i(Sp, 2N K, K) # 0, then the
homotopy invariance implies

(S, QN K, K) = i(So, QN K, K) #0

for all A > 0, and, in turn, the fixed point equation u = Syu have at least one solution
on KNP for all A > 0, contradicting the complete continuity of 7" and the boundedness
of K. Thus we have i(T,QN K, K) = 0, as desired. This completes the proof.

LEMMA 2.5 (see [7]). Let E be a real Banach space and K be a cone in E. Suppose
that Q C FE is a bounded open set, 0 € Q, and T : QN K — K is a completely
continuous operator. If

u—ATu#0 forall A\ €[0,1] and u € QN K,
then i(T, QN K, K) = 1.

3 Main Results

Let p, := min{1, p}, p* := min{1, p}, and m; := max; s¢(o,1) ki(t, s) for i = 1,2,3. Now
we list our hypotheses on f and a;, b;, ¢;, d; for i = 1,2:

(H1) f e C([0,1] x R%,R,).

(H2) a;, bi, Ci, d; > 0 and 51 = a;d; + b;c; + a;e; >0 for i = 1, 2.

(H3) There are aq, 81 > 0 and ¢ > 0, such that r(Ly, »,) > 1 and
ft,z,y) = a1z + By —c forallt € [0,1] and z,y > 0,

where Ly, n, is defined as in (11) and (12),

P Px 7 Dx Dx

ny = 2%71afmf*flm2p and ng 1= 2%7161Tm2p
(H4) There are ag, 52 > 0 and r; > 0 such that 7(Ly, n,) < 1 and
ft,z,y) < asx? + Boy? for allt € [0,1] and =,y € [0, 7],

where L, n, is defined as in (11) and (12),

* * * *
* P «

P * p P
E_1_ 5 -1l B B 1
n3 =27 ay mi T imy’ and ng :=27 "3, my”
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H5) There are as, 83 > 0 and ro > 0 such that (L., »,) > 1 and
5,16
ft, z,y) > asx? + B3yP for allt € [0,1] and =,y € [0, 79,

where Ly, n, is defined as in (11) and (12),

Dx bx 9

P Px
1 =-1 Px _q1
Pe P and ng := 2 153‘7 my’

ng 1= 2%71043?m1 my
(H6) There are ay, 84 > 0 and ¢ > 0 such that r(Ly, ng) < 1 and
ft,z,y) < agx? + Byy? + ¢ forallt €[0,1] and x,y > 0,

where Ly, ng is defined as in (11) and (12),

* * *

p* F: M- L p* p* pt_q
g 5-1 5 P —1_p A5 1gp I3
ny =47 " "a, m my and ng :=47 " 3," m, .

REMARK 3.1. Notice that the expression (10) implies that if v € P\ {0} is a fixed
point of the operator, then v(¢) > 0 holds for all ¢ € (0,1) with v» € PN C?[0, 1]. This,
together with the substitution v := —u”, in turn, implies that if u is a positive solution
of (1), then (—u")? € (P \ {0}) N C?[0,1] and hence u € (P \ {0}) N C*(0,1).

THEOREM 3.1. If (H1)-(H4) hold, then (1) has at least one positive solution u €
(P\{0}) N C*(0,1).

PROOF. It suffices to prove that A has at least one fixed point v € P\ {0}. To
this end, let
My ={ve P:vP = (Av)P + A\, A > 0}

We show that .#; is bounded. Indeed, if v € .#, then vP+ is concave on [0,1] and
there exists A > 0 such that vP» = (Av)P* + A\. Thus vP~(t) > (Av)P*(t). Note
s, /D € (0,1]. By (H3) and the Jensen integral inequality for concave functions
(Lemma 2.3 ), we have that, for all v € .4,

D
p

v (t) = (/01 Eka(t, s)f(s,/Olkl(s,f)v(f)dT,v(s))ds>

1 1
> / k(£ 5)F5 (s, / Fa(s, 7)o(r)dr), v(s))ds
1 Dx 1 Dx Dx
> /Olfg(t,s)mQT 1{[041/0 kf(s,T)vp(T)dT—Fﬁlvp(s)]T—cT}ds
1 P P 1 Px
> [ hatomg 2% ol [k o (67 0 0]

D
p

1 pe 1 e 1
L £ e A R O e A )
0 0
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pe . 1 gl
= 2%71041‘7 mb* "ty 1/ / ka(t, 8)k1 (s, T)vP~ (1)drds
o Jo

Px s px 1

Px — 1 Px !
+2% 1B my” ! / ka(t, s)vP*(s)ds — c'» my” / ko(t, s)ds
0 0

Px Dx
p

1
. Px _ 1
= 2%71041‘7 my* 1m2 /kg(t,s)vp*(s)ds
0

Poc
p

e — L DPx Bx 1
—|—2PT**151Tm2 ! / ka(t, s)vP*(s)ds — c'» my” 1/ ko(t, s)ds
0 0

Bx

1
= / Gy o, (t, $)VP"(8)ds — cpT*mQP ms.
0

Multiply the above inequality by ¢y n,(t) and integrate over [0, 1] and use (13) and
(14) to obtain

Bx g

1 1
/ P (O ms (Bt > (L ) / P () g (it — 5y,
0 0

so that

P

1 = 5
/ 0P (1) Py g (1)t % =Ny for all v € 4.
0 T( nh"z) -

Recall that vP+ is concave on [0, 1]. By Lemma 2.1, we have

1
fO Gl (t)<p7l177l2 (t>dt < Nl

~
Kni,ng A2

for all v € #;. This proves the boundedness of .#;. Taking R > sup{||v|| : v € A1},
we have

N

[[oP

<

vPr #£ (Av)P* + X forv € 9BR NP and A > 0.

Now Lemma 2.4 yields
i(A,BgNP,P)=0. (15)

Let
My:={vEB,, NP:v=Nv,0< <1}

We claim that .# = {0}. Indeed, if v € .45, then there exists A € [0,1] such that
v(t) = AAw(t). Thus we have

1
P

u(t) < (Av)(t) = [/01 ka(t, ) f (s, /01 ey (s, 7)o(r)dr, v(s))ds] for all v € By, N P.

Note p*,p*/p > 1. By (H4) and the Jensen integral inequality for convex functions
(Lemma 2.3), we have that, for all v € 45,

*

p_
p
*

P (t) < (/01 ka(t, s) f (s, /01 kl(S,T)’U(T)dT,’U(S))dS>
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1 o 1
< [T [ s netndros)ds
0 0
1 P _q 1 %
< /kg(t,s)mQP (ag/ kf(s,T)vp(T)dT—Fﬂzvp(s)) ds
0 0
. R AR S . s .,
< /2T*1k2(t,s)m2p (aQP / K (s, 7)0P (T)dT + ByF oP (s)) ds
0 0
L v_qp 2 .l .
< / 27 Lko(t, s)ymy” [[QQP my 71/ k1(s,m)vP (1)dr
0 0
—|—52%vp* (s)}ds
1 o+ Pt g p* . 1 .
< / 2% T ko(t, s)my” [QQP my 71/ k1(s,7)vP (7)dr
0 0

BT o (s)]} ds

*

p* 1 1 .
= 2%71042‘7 m? " tmy 1/ / ka(t, s)k1(s, 7)vP (7)drds
o Jo

* p* Pt L .
+2%7152p my’ 1/ ka(t, s)vP (s)ds
0

* *
* P «

1
P P .
= 2% ta mk Ttmy 1/ ks(t, s)vP (s)ds
0

p*

R R T "
+2p77152p my” 1/ ka(t, s)vP (s)ds
0

1
/ Grgn, (1, s)vp* (s)ds.
0

Multiply the above inequality by ¢n, », (t) and integrate over [0, 1] and use (13) and
(14) to obtain

1
*

1
| @O0t < (L) [0 O e
so that fol VP (1) g, (t)dt = 0, whence vP" (t) = 0 and # = {0}, as claimed. A
consequence of that is
v# M for allv € B,, NP and X € [0, 1].

Now Lemma 2.5 yields -
i(A,B,, NP, P)=1. (16)

Note that we may assume R > r;. Combining (15) and (16) gives
i(A, (BR\B,,)NP,P)=0—1=—1.

Therefore A has at least one fixed point on (Bg \ B,,) N P, and thus (1) has at least
one positive solution. This completes the proof.
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THEOREM 3.2. If (H1), (H2), (H5) and (H6) hold, then (1) has at least one positive
solution u € (P\{0})N C*(0,1).
PROOF. It suffices to prove that A has at least one fixed point v € P\ {0}. To
this end, let
Mz :={v € B, NP :vP* = (Av)P* + X\, A > 0}.

We shall now prove that .#5 C {0}. Indeed, if v € .#3, then there exists A > 0 such
that vP* = (Av)P* + A. Thus we have

px
P

WP (1) = (Av)P (1) = ( /0 1 ka(t, ) f (s, /0 1k1(s,7-)v(7-)d7-,v(s))ds> for all v € B,,NP.

Note p., p«/p € (0,1]. By (H5) and the Jensen integral inequality for concave functions
(Lemma 2.3), we obtain that, for all v € B, N P,

D
p

() > (/Olkg(t,s)f(s,/olkl(s,T)v(T)dT,v(s))ds>
> /01 kot (8,5)F5 (s, /01 ko (s, 7)o(r)dr, v(s))ds

1 pe 1 o
> / Eo(t, s)my”" ! (ag/ KD (s, T)vP (T)dT + 6307”(5)) ds
0 0
o pe_q [ 22 1 B
> / 2% M y(t, s)my’ (agp / KV (s, 7)vP* (T)dT + B4 vP* (s)) ds
0 0
o pe_y [ B ! B
> / 2% T y(t, s)my’ (agp mf"fl/ k1 (s, T)vP (T)dT + B4" vP* (s)) ds
0 0

e pe 4 1 gl
= 2%71043‘7 mP* g 1/ / ka(t, s)k1(s, T)vP~ (1)drds
o Jo

P D
p

—|—2PT*7153Tm2

/ ko(t, s)vP~ (s)ds
0
1

Px _ DPx 1 D
= 2%*177127 ! (agp mf"fl/ ks(t, s)vP* (s)ds + (35" / ko (t, s)vP (S)dS)
0 0

1
/ G ng (L, $)VP* (8)ds.
0

Multiply the above inequality by ¢n, ne(t) and integrate over [0, 1] and use (13) and
(14) to obtain

1 1
/ P ()P (Ot > (L, ) / P (£)pn, e (E)dE,
0 0

so that fol VP (1) pns .ne (t)dt = 0, whence vP* (t) = 0 and .#5 C {0}, as required. As a
result of that, we have

vP* #£ (Av)P* + X for allv € 9B,, N P and A > 0.
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Now Lemma 2.4 yields
i(A, B, NP, P)=0. (17)
Let
My :={veP:v=NMv,0< A< 1}

We are going to prove that .#4 is bounded. Indeed, if v € .#4,then vP is concave and

o(t) < (Av)(t) = (/01 ka(t, ) f (s, /01 kl(s,T)v(T)dT,v(s))dsf for all v € ..

Note p*, % > 1. By (H6) and the Jensen integral inequality for convex functions
(Lemma 2.3), we have

p*

p

v (1) <

kg t,s) ,/01 kl(S,T)’U(T)dT,’U(S))dS>

()
< /01 K () (5/01 kl(s,f)v(T)dT,v(s)> ds

1 1
< / ka(t - (a4/ KL (s, 7)0P (T)dT + Bav® (s) —|—c> ds
0

0

*

1 . 1 . .
< / ko(t ! {2%1[(0@/ kY (s, 7)vP (T)dT + BavP () 7 —|—CT]}ds
0
1 1 2y p* 1 .
< ka(t 2727 Ty | Ra(s, VP (T)dr
0 0

(=)

*

1 P Pt B e g 1 . T
/ ka(t, s)mgy? 47 al ml / ki(s,T)vP (T)dr+47 3,7 vP (s)
0 0

N

= 4%71044 m1 B _71/ / ks(t, s)o”" (r)drds

p* p _ p* _ 1
—|—4 » 54 my” 1/ ko(t, s)vP (s)ds + 2% 1.5 m2 1/ ko(t, s)ds
0 0

*

2

1 * *
= / G, ng(t, s)vP* (s)ds + 2%710%7712‘7 ms.
0

Multiply the above inequality by ¢n, ns(t) and integrate over [0, 1] and use (13) and
(14) to obtain
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so that

x
p* 1 p* 1

27 cPrmy  mg

1
VP (£) @y mg(t) <
| Oty «

= N2.

67

Now p*/p > 1 and the Jensen integral inequality for convex functions (Lemma 2.3)

imply
1 % 1 p*
( / vp<t><pn7,ng<t>dt) < [ ek
0 0
p* L *
< Nonmmell 571 / () Py ma (B)dt
0
§ N2H<Pn7ﬂls”p?ila
so that

AN it

1
| o ®pnrns(trit < MY
0
Note vP is concave. By Lemma 2.1, we have

Tl e
~X

Knzng
This proves the boundedness of .#y. Taking R >sup{||v| : v € .44}, we have
v# Av forallv € 9Bg NP and A € [0, 1].

Now Lemma 2.5 implies
(A, BgNP,P)=1.

Note that we may assume R > ro. Combining (17) and (19) gives

i(A,(BR\B,,)NP,P)=1-0=1.

Therefore the operator A has at least one fixed point on (Bg \ B,,) N P. Thus (1) has

at least one positive solution. This completes the proof.

REMARK 3.2. (H3) and (H4) describe the p-superlinear growth of f, as exemplified

by f(t,z,y) := 2% + y9 with ¢g; > p and g2 > p.

REMARK 3.3. (H5) and (H6) describe the p-sublinear growth of f, as exemplified

by f(taxay) ::xqa+yQ4 Wlth0<q3 <D, 0<Q4<p
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