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Abstract7

This article is concerned with the existence of positive solutions of a fourth-8

order p-Laplacian boundary value problem. Based on a priori estimates achieved9

by utilizing Jensen’s integral inequalities for convex and concave functions, we10

use fixed point index theory to establish the existence of positive solutions for the11

above problem.12

1 Introduction13

This article is concerned with the existence of positive solutions for the p-Laplacian14

boundary value problem15











(|u′′|
p−1

u′′)′′ = f(t, u,−u′′),

a1u(0) − b1u
′(0) = c1u(1) + d1u

′(1) = 0,

a2 (−u′′)
p
(0) − b2((−u′′)

p
)′(0) = c2 (−u′′)

p
(1) + d2((−u′′)

p
)′(1) = 0,

(1)16

where p > 0, f ∈ C([0, 1]×R
2, R+), ai, bi, ci, di > 0, and δi = aidi + bici + aici > 0 for17

i = 1, 2.18

Fourth order boundary value problems, including those with the p-Laplacian oper-19

ator, have their origin in beam theory, ice formation, fluids on lungs, brain warping,20

designing special curves on surfaces, etc. In our problem (1), the nonlinearity f in-21

volves the second-order derivative u′′. Such nonlinearity may be encountered in some22

physical models. For example, the equation23

∂u

∂t
=

∂4u

∂x4
− p

∂2u

∂x2
− a(x)u + b(x)u3

24

is known in the studies of phase transitions near a Lifschitz point [16].25

The p-Laplacian boundary value problems arise in non-Newtonian mechanics, non-26

linear elasticity, glaciology, population biology, combustion theory, and nonlinear flow27
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58 Existence of Positive Solutions for p-Laplacian Equation

laws; see [5, 6]. That explains why many authors have extensively studied the exis-28

tence of positive solutions for p-Laplacian boundary value problems, by using topolog-29

ical degree theory, monotone iterative techniques, coincidence degree theory, and the30

Leggett-Williams fixed point theorem or its variants; see [1,2,3,4,8,10,11,12,13,14,15]31

and the references therein.32

In [14], by using the method of upper and lower solutions, Zhang and Liu obtained33

the existence of positive solutions for the fourth-order singular p-Laplacian boundary34

value problem35

(|u′′|
p−1

u′′)′′ = f(t, u(t)) for 0 < t < 1, (2)36

subject to the boundary conditions37

u(0) = u(1) − au(ξ) = u′′(0) = u′′(1) − bu′′(η) = 0, (3)38

where p > 1, 0 < ξ, η < 1, and f ∈ C((0, 1)× (0,∞), (0,∞)) may be singular at t = 039

and/or at t = 1 and u = 0.40

In [15], Zhang and Liu obtained the existence of positive solutions for (2) with the41

boundary conditions42

u(0) −

m−2
∑

i=1

aiu(ξi) = u(1) = u′′(0) −

m−2
∑

i=1

biu(ηi) = u′′(1) = 0, (4)43

where m > 3, ai, bi, ξi, ηi ∈ (0, 1)(i = 1, 2, . . . , m − 2) are nonnegative constants and44

∑m−2
i=1 ai < 1,

∑m−2
i=1 bi < 1, and f ∈ C((0, 1)×R+, R+) may be singular at t = 0 and/or45

at t = 1. By using the monotone iterative method, they established the existence of46

positive solutions of pseudo-C3[0, 1] for the above problem.47

In [8], Guo et al. investigated the existence and multiplicity of positive solutions48

for the fourth-order p-Laplacian boundary value problem49

(|u′′|
p−2

u′′)′′ = λg(t)f(u) for 0 < t < 1, (5)50

where λ is a positive parameter. By using fixed point index theory and the method51

of upper and lower solutions, they obtained the following result: there exists λ∗ < ∞52

such that (5) has at least two positive solutions for λ ∈ (0, λ∗), (5) has at least one53

positive solution for λ = λ∗, and (5) have no positive solution at all for λ > λ∗.54

The presence of the second-order derivative u′′ contributes to the difficulty to obtain55

a priori estimates of positive solutions for some problems associated with (1). To56

facilitate the establishment of such estimates, by using the reduction of order, we57

transform (1) into a boundary value problem for an equivalent second-order integro-58

differential equation (see the next section for more details). More importantly, we59

observe that if p = 1, then (1) reduces to the semilinear fourth-order boundary value60

problem61










u(4) = f(t, u,−u′′),

a1u(0) − b1u
′(0) = c1u(1) + d1u

′(1) = 0,

a2u
′′(0) − b2u

′′′(0) = c2u
′′(1) + d2u

′′′(1) = 0.

(6)62

Motivated by [11, 12, 13], we regard (6) as a perturbation of (1). In fact, we make63

repeated use of the Jensen integral inequalities for convex and concave functions in64
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order to derive a priori estimates of positive solutions for some operator equations65

associated with (1), these estimates based on which we use fixed point index theory to66

establish the existence of positive solutions for the above problem. Our main results67

extend the corresponding ones in [11, 12, 13]. Also, some relations between (1) and (6)68

may be seen from the Jensen inequalities for convex and concave functions.69

This article is organized as follows. In Section 2, we provide some preliminary re-70

sults. Our main results, namely Theorem 3.1 and 3.2, followed by two simple examples,71

are stated and proved in Section 3.72

2 Preliminaries73

Let74

E := C[0, 1], ‖u‖ := max
06t61

|u(t)|, P := {u ∈ E : u(t) > 0 for t ∈ [0, 1]}. (7)75

Clearly (E, ‖ · ‖) is a real Banach space and P is a cone in E. Define Bρ := {u ∈ E :76

‖u‖ < ρ} for all ρ > 0. Substituting v := −u′′ into (1), we have77











−(|v|p−1v)′′(t) = f(t,
∫ 1

0
k1(t, s)v(s)ds, v(t)),

a2v
p(0) − b2(v

p)′(0) = 0,

c2v
p(1) + d2(v

p)′(1) = 0,

(8)78

where79

k1(t, s) :=
1

δ1

{

(b1 + a1s)(c1(1 − t) + d1), 0 6 s 6 t 6 1,

(b1 + a1t)(c1(1 − s) + d1), 0 6 t 6 s 6 1.
80

Moreover, (8) is equivalent to the nonlinear integral equation81

v(t) =

(
∫ 1

0

k2(t, s)f(s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s))ds

)

1

p

, (9)82

where83

k2(t, s) :=
1

δ2

{

(b2 + a2s)(c2(1 − t) + d2), 0 6 s 6 t 6 1,

(b2 + a2t)(c2(1 − s) + d2), 0 6 t 6 s 6 1.
84

Define the operator A : P −→ P by85

(Av)(t) :=

(
∫ 1

0

k2(t, s)f(s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s))ds

)

1

p

. (10)86

Now the condition f ∈ C([0, 1] × R
2
+, R+) implies that A : P → P is a completely87

continuous operator, and the existence of positive solutions for (1) is equivalent to that88

of positive fixed points of A. Let89

k3(t, τ ) :=

∫ 1

0

k2(t, s)k1(s, τ)ds.90
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For any given nonnegative constants α, β, let91

Gα,β(t, s) := αk3(t, s) + βk2(t, s) (11)92

and93

(Lα,βv)(t) :=

∫ 1

0

Gα,β(t, s)v(s)ds. (12)94

Clearly Lα,β : E → E is a completely continuous positive linear operator. If α+β > 0,95

then the spectral radius r(Lα,β) is positive. The Krein-Rutmann theorem then implies96

that there exists ϕα,β ∈ P \ {0} such that r(Lα,β)ϕα,β = L∗

α,βϕα,β, i.e.97

r(Lα,β)ϕα,β(s) =

∫ 1

0

Gα,β(t, s)ϕα,β(t)dt, (13)98

where L∗

α,β : E → E is the dual operator of A. Note that we may normalize ϕα,β so99

that100
∫ 1

0

ϕα,β(t)dt = 1. (14)101

LEMMA 2.1. For any given nonnegative constants α,β with α + β > 0, let102

κα,β :=

∫ 1

2

0

tϕα,β(t)dt +

∫ 1

1

2

(1 − t)ϕα,β(t)dt,103

where ϕα,β is given in (13) and (14). Then for every concave function φ ∈ P , we have104

∫ 1

0

φ(t)ϕα,β(t)dt > κα,β‖φ‖.105

The proof can be carried out as that of Lemma 2.4 in [11]. Thus we omit it.106

LEMMA 2.2 (see [9]). Let a ∈ R+, b ∈ R+. If σ ∈ (0, 1], then107

(a + b)σ
> 2σ−1(aσ + bσ).108

If σ ∈ [1, +∞), then109

(a + b)σ
6 2σ−1(aσ + bσ).110

LEMMA 2.3 (see [9]). Suppose g ∈ C[a, b] with I := g([a, b]) and h ∈ C(I). If h is111

convex on I, then112

h

(

1

b − a

∫ b

a

g(t)dt

)

6
1

b − a

∫ b

a

h(g(t))dt.113

If h is concave on I, then114

h

(

1

b − a

∫ b

a

g(t)dt

)

>
1

b − a

∫ b

a

h(g(t))dt.115
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LEMMA 2.4. Let E and P be defined in (7). Suppose that Ω ⊂ E is a bounded116

open set and that T : Ω ∩K −→ K is a completely continuous operator. If there exist117

u0 ∈ K\{0} and µ > 0 such that118

uµ − (Tu)µ 6= λu0 for all λ > 0 and u ∈ ∂Ω ∩ K,119

then i(T, Ω ∩ K, K) = 0 where i indicates the fixed point index on K.120

PROOF. Note the operator Sλu := ((Tu)µ + λu0)
1/µ : P → P is a completely121

continuous operator for all λ > 0. If i(T, Ω ∩ K, K) = i(S0 , Ω ∩ K, K) 6= 0, then the122

homotopy invariance implies123

i(Sλ, Ω∩ K, K) = i(S0 , Ω∩ K, K) 6= 0124

for all λ > 0, and, in turn, the fixed point equation u = Sλu have at least one solution125

on K∩P for all λ > 0, contradicting the complete continuity of T and the boundedness126

of K. Thus we have i(T, Ω ∩ K, K) = 0, as desired. This completes the proof.127

LEMMA 2.5 (see [7]). Let E be a real Banach space and K be a cone in E. Suppose128

that Ω ⊂ E is a bounded open set, 0 ∈ Ω, and T : Ω ∩ K −→ K is a completely129

continuous operator. If130

u − λTu 6= 0 for all λ ∈ [0, 1] and u ∈ ∂Ω ∩ K,131

then i(T, Ω ∩ K, K) = 1.132

3 Main Results133

Let p∗ := min{1, p}, p∗ := min{1, p}, and mi := maxt,s∈[0,1] ki(t, s) for i = 1, 2, 3. Now134

we list our hypotheses on f and ai, bi, ci, di for i = 1, 2:135

(H1) f ∈ C([0, 1]× R
2, R+).136

(H2) ai, bi, ci, di > 0 and δi := aidi + bici + aici > 0 for i = 1, 2.137

(H3) There are α1, β1 > 0 and c > 0, such that r(Ln1,n2
) > 1 and138

f(t, x, y) > α1x
p + β1y

p − c for all t ∈ [0, 1] and x, y > 0,139

where Ln1,n2
is defined as in (11) and (12),140

n1 := 2
p∗

p
−1α

p∗

p

1 mp∗−1
1 m

p∗

p
−1

2 and n2 := 2
p∗

p
−1β

p∗

p

1 m
p∗

p
−1

2 .141

(H4) There are α2, β2 > 0 and r1 > 0 such that r(Ln3,n4
) < 1 and142

f(t, x, y) 6 α2x
p + β2y

p for all t ∈ [0, 1] and x, y ∈ [0, r1],143

where Ln3,n4
is defined as in (11) and (12),144

n3 := 2
p
∗

p
−1α

p
∗

p

2 mp∗−1
1 m

p
∗

p
−1

2 and n4 := 2
p
∗

p
−1β

p
∗

p

2 m
p
∗

p
−1

2 .145
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(H5) There are α3, β3 > 0 and r2 > 0 such that r(Ln5,n6
) > 1 and146

f(t, x, y) > α3x
p + β3y

p for all t ∈ [0, 1] and x, y ∈ [0, r2],147

where Ln5,n6
is defined as in (11) and (12),148

n5 := 2
p∗

p
−1α

p∗

p

3 mp∗−1
1 m

p∗

p
−1

2 and n6 := 2
p∗

p
−1β

p∗

p

3 m
p∗

p
−1

2 .149

(H6) There are α4, β4 > 0 and c > 0 such that r(Ln7,n8
) < 1 and150

f(t, x, y) 6 α4x
p + β4y

p + c for all t ∈ [0, 1] and x, y > 0,151

where Ln7,n8
is defined as in (11) and (12),152

n7 := 4
p
∗

p
−1α

p
∗

p

4 mp∗−1
1 m

p
∗

p
−1

2 and n8 := 4
p
∗

p
−1β

p
∗

p

4 m
p
∗

p
−1

2 .153

REMARK 3.1. Notice that the expression (10) implies that if v ∈ P \ {0} is a fixed154

point of the operator, then v(t) > 0 holds for all t ∈ (0, 1) with vp ∈ P ∩C2[0, 1]. This,155

together with the substitution v := −u′′, in turn, implies that if u is a positive solution156

of (1), then (−u′′)
p
∈ (P \ {0})∩ C2[0, 1] and hence u ∈ (P \ {0})∩ C4(0, 1).157

THEOREM 3.1. If (H1)-(H4) hold, then (1) has at least one positive solution u ∈158

(P \{0})∩ C4(0, 1).159

PROOF. It suffices to prove that A has at least one fixed point v ∈ P \ {0}. To160

this end, let161

M1 := {v ∈ P : vp∗ = (Av)p∗ + λ, λ > 0}.162

We show that M1 is bounded. Indeed, if v ∈ M1, then vp∗ is concave on [0, 1] and163

there exists λ > 0 such that vp∗ = (Av)p∗ + λ. Thus vp∗(t) > (Av)p∗ (t). Note164

p∗, p∗/p ∈ (0, 1]. By (H3) and the Jensen integral inequality for concave functions165

(Lemma 2.3 ), we have that, for all v ∈ M1,166

vp∗(t) >

(
∫ 1

0

k2(t, s)f(s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s))ds

)

p∗

p

167

>

∫ 1

0

k
p∗

p

2 (t, s)f
p∗

p (s,

∫ 1

0

k1(s, τ)v(τ )dτ ), v(s))ds168

>

∫ 1

0

k2(t, s)m
p∗

p
−1

2

{

[α1

∫ 1

0

kp
1(s, τ)vp(τ )dτ + β1v

p(s)]
p∗

p − c
p∗

p

}

ds169

>

∫ 1

0

k2(t, s)m
p∗

p
−1

2

{

2
p∗

p
−1[α

p∗

p

1

∫ 1

0

kp∗
1 (s, τ)vp∗(τ )dτ + β

p∗

p

1 vp∗(s)]170

−c
p∗

p

}

ds171

>

∫ 1

0

k2(t, s)m
p∗

p
−1

2

{

2
p∗

p
−1[α

p∗

p

1 mp∗−1
1

∫ 1

0

k1(s, τ)vp∗(τ )dτ + β
p∗

p

1 vp∗(s)]172
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−c
p∗

p

}

ds173

= 2
p∗

p
−1α

p∗

p

1 mp∗−1
1 m

p∗

p
−1

2

∫ 1

0

∫ 1

0

k2(t, s)k1(s, τ)vp∗(τ )dτds174

+2
p∗

p
−1β

p∗

p

1 m
p∗

p
−1

2

∫ 1

0

k2(t, s)v
p∗(s)ds − c

p∗

p m
p∗

p
−1

2

∫ 1

0

k2(t, s)ds175

= 2
p∗

p
−1α

p∗

p

1 mp∗−1
1 m

p∗

p
−1

2

∫ 1

0

k3(t, s)v
p∗ (s)ds176

+2
p∗

p
−1β

p∗

p

1 m
p∗

p
−1

2

∫ 1

0

k2(t, s)v
p∗(s)ds − c

p∗

p m
p∗

p
−1

2

∫ 1

0

k2(t, s)ds177

=

∫ 1

0

Gn1,n2
(t, s)vp∗(s)ds − c

p∗

p m
p∗

p
−1

2 m3.178

Multiply the above inequality by ϕn
1
,n

2
(t) and integrate over [0, 1] and use (13) and179

(14) to obtain180

∫ 1

0

vp∗(t)ϕn1,n2
(t)dt > r(Ln1,n2

)

∫ 1

0

vp∗(t)ϕn1,n2
(t)dt − c

p∗

p m
p∗

p
−1

2 m3,181

so that182

∫ 1

0

vp∗(t)ϕn1,n2
(t)dt 6

c
p∗

p m
p∗

p
−1

2 m3

r(Ln1,n2
) − 1

:= N1 for all v ∈ M1.183

Recall that vp∗ is concave on [0, 1]. By Lemma 2.1, we have184

‖vp∗‖ 6

∫ 1

0 vp∗(t)ϕn1,n2
(t)dt

κn1,n2

6
N1

κn1,n2

185

for all v ∈ M1. This proves the boundedness of M1. Taking R > sup{‖v‖ : v ∈ M1},186

we have187

vp∗ 6= (Av)p∗ + λ for v ∈ ∂BR ∩ P and λ > 0.188

Now Lemma 2.4 yields189

i(A, BR ∩ P, P ) = 0. (15)190

Let191

M2 := {v ∈ Br1
∩ P : v = λAv, 0 6 λ 6 1}.192

We claim that M2 = {0}. Indeed, if v ∈ M2, then there exists λ ∈ [0, 1] such that193

v(t) = λAv(t). Thus we have194

v(t) 6 (Av)(t) =

[
∫ 1

0

k2(t, s)f(s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s))ds

]

1

p

for all v ∈ Br1
∩ P.195

Note p∗, p∗/p > 1. By (H4) and the Jensen integral inequality for convex functions196

(Lemma 2.3), we have that, for all v ∈ M2,197

vp∗(t) 6

(
∫ 1

0

k2(t, s)f(s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s))ds

)

p
∗

p

198
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6

∫ 1

0

k
p
∗

p

2 (t, s)f
p
∗

p (s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s))ds199

6

∫ 1

0

k2(t, s)m
p
∗

p
−1

2

(

α2

∫ 1

0

kp
1(s, τ)vp(τ )dτ + β2v

p(s)

)

p
∗

p

ds200

6

∫ 1

0

2
p
∗

p
−1k2(t, s)m

p
∗

p
−1

2

(

α
p
∗

p

2

∫ 1

0

kp∗

1 (s, τ)vp∗ (τ )dτ + β
p
∗

p

2 vp∗ (s)

)

ds201

6

∫ 1

0

2
p
∗

p
−1k2(t, s)m

p
∗

p
−1

2

[

[α
p
∗

p

2 mp∗−1
1

∫ 1

0

k1(s, τ)vp∗ (τ )dτ202

+β
p
∗

p

2 vp∗(s)
]

ds203

6

∫ 1

0

2
p
∗

p
−1k2(t, s)m

p
∗

p
−1

2

[

α
p
∗

p

2 mp∗−1
1

∫ 1

0

k1(s, τ)vp∗(τ )dτ204

+β
p
∗

p

2 vp∗(s)]
]

ds205

= 2
p
∗

p
−1α

p
∗

p

2 mp∗−1
1 m

p
∗

p
−1

2

∫ 1

0

∫ 1

0

k2(t, s)k1(s, τ)vp∗(τ )dτds206

+2
p
∗

p
−1β

p
∗

p

2 m
p
∗

p
−1

2

∫ 1

0

k2(t, s)v
p∗(s)ds207

= 2
p
∗

p
−1α

p
∗

p

2 mp∗−1
1 m

p
∗

p
−1

2

∫ 1

0

k3(t, s)v
p∗(s)ds208

+2
p
∗

p
−1β

p
∗

p

2 m
p
∗

p
−1

2

∫ 1

0

k2(t, s)v
p∗(s)ds209

=

∫ 1

0

Gn3,n4
(t, s)vp∗(s)ds.210

Multiply the above inequality by ϕn
3
,n

4
(t) and integrate over [0, 1] and use (13) and211

(14) to obtain212

∫ 1

0

vp∗ (t)ϕn3,n4
(t)dt 6 r(Ln3,n4

)

∫ 1

0

vp∗(t)ϕn3,n4
(t)dt,213

so that
∫ 1

0
vp∗(t)ϕn3,n4

(t)dt = 0, whence vp∗ (t) ≡ 0 and M2 = {0}, as claimed. A214

consequence of that is215

v 6= λAv for all v ∈ Br1
∩ P and λ ∈ [0, 1].216

Now Lemma 2.5 yields217

i(A, Br1
∩ P, P ) = 1. (16)218

Note that we may assume R > r1. Combining (15) and (16) gives219

i(A, (BR \ Br1
) ∩ P, P ) = 0 − 1 = −1.220

Therefore A has at least one fixed point on (BR \ Br1
) ∩ P , and thus (1) has at least221

one positive solution. This completes the proof.222
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THEOREM 3.2. If (H1), (H2), (H5) and (H6) hold, then (1) has at least one positive223

solution u ∈ (P \{0})∩ C4(0, 1).224

PROOF. It suffices to prove that A has at least one fixed point v ∈ P \ {0}. To225

this end, let226

M3 := {v ∈ Br2
∩ P : vp∗ = (Av)p∗ + λ, λ > 0}.227

We shall now prove that M3 ⊂ {0}. Indeed, if v ∈ M3, then there exists λ > 0 such228

that vp∗ = (Av)p∗ + λ. Thus we have229

vp∗(t) > (Av)p∗(t) =

(
∫ 1

0

k2(t, s)f(s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s))ds

)

p∗

p

for all v ∈ Br2
∩P.230

Note p∗, p∗/p ∈ (0, 1]. By (H5) and the Jensen integral inequality for concave functions231

(Lemma 2.3), we obtain that, for all v ∈ Br2
∩ P,232

vp∗(t) >

(
∫ 1

0

k2(t, s)f(s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s))ds

)

p∗

p

233

>

∫ 1

0

k
p∗

p

2 (t, s)f
p∗

p (s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s))ds234

>

∫ 1

0

k2(t, s)m
p∗

p
−1

2

(

α3

∫ 1

0

kp
1(s, τ)vp(τ )dτ + β3v

p(s)

)

p∗

p

ds235

>

∫ 1

0

2
p∗

p
−1k2(t, s)m

p∗

p
−1

2

(

α
p∗

p

3

∫ 1

0

kp∗
1 (s, τ)vp∗ (τ )dτ + β

p∗

p

3 vp∗(s)

)

ds236

>

∫ 1

0

2
p∗

p
−1k2(t, s)m

p∗

p
−1

2

(

α
p∗

p

3 mp∗−1
1

∫ 1

0

k1(s, τ)vp∗(τ )dτ + β
p∗

p

3 vp∗ (s)

)

ds237

= 2
p∗

p
−1α

p∗

p

3 mp∗−1
1 m

p∗

p
−1

2

∫ 1

0

∫ 1

0

k2(t, s)k1(s, τ)vp∗(τ )dτds238

+2
p∗

p
−1β

p∗

p

3 m
p∗

p
−1

2

∫ 1

0

k2(t, s)v
p∗ (s)ds239

= 2
p∗

p
−1m

p∗

p
−1

2

(

α
p∗

p

3 mp∗−1
1

∫ 1

0

k3(t, s)v
p∗(s)ds + β

p∗

p

3

∫ 1

0

k2(t, s)v
p∗(s)ds

)

240

=

∫ 1

0

Gn5,n6
(t, s)vp∗(s)ds.241

Multiply the above inequality by ϕn5,n6
(t) and integrate over [0, 1] and use (13) and242

(14) to obtain243

∫ 1

0

vp∗ (t)ϕn
5
,n

6
(t)dt > r(Ln

5
,n

6
)

∫ 1

0

vp∗(t)ϕn
5
,n

6
(t)dt,244

so that
∫ 1

0 vp∗(t)ϕn5,n6
(t)dt = 0, whence vp∗ (t) ≡ 0 and M3 ⊂ {0}, as required. As a245

result of that, we have246

vp∗ 6= (Av)p∗ + λ for all v ∈ ∂Br2
∩ P and λ > 0.247
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Now Lemma 2.4 yields248

i(A, Br2
∩ P, P ) = 0. (17)249

Let250

M4 := {v ∈ P : v = λAv, 0 6 λ 6 1}.251

We are going to prove that M4 is bounded. Indeed, if v ∈ M4,then vp is concave and252

v(t) 6 (Av)(t) =

(
∫ 1

0

k2(t, s)f(s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s))ds

)

1

p

for all v ∈ M4.253

Note p∗, p∗

p > 1. By (H6) and the Jensen integral inequality for convex functions254

(Lemma 2.3), we have255

vp∗(t) 6

(
∫ 1

0

k2(t, s)f(s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s))ds

)

p
∗

p

256

6

∫ 1

0

k
p
∗

p

2 (t, s)f
p
∗

p

(

s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s)

)

ds257

6

∫ 1

0

k2(t, s)m
p
∗

p
−1

2

(

α4

∫ 1

0

kp
1(s, τ)vp(τ )dτ + β4v

p(s) + c

)

p
∗

p

ds258

6

∫ 1

0

k2(t, s)m
p
∗

p
−1

2

{

2
p
∗

p
−1[(α4

∫ 1

0

kp
1(s, τ)vp(τ )dτ + β4v

p(s))
p
∗

p + c
p
∗

p ]

}

ds259

6

∫ 1

0

k2(t, s)m
p
∗

p
−1

2

{

2
p
∗

p
−1[2

p
∗

p
−1α

p
∗

p

4

∫ 1

0

k1(s, τ)vp∗(τ )dτ260

+2
p
∗

p
−1β

p
∗

p

4 vp∗ (s) + c
p
∗

p ]

)

ds261

6

∫ 1

0

k2(t, s)m
p
∗

p
−1

2

(

4
p
∗

p
−1α

p
∗

p

4 mp∗−1
1

∫ 1

0

k1(s, τ)vp∗ (τ )dτ + 4
p
∗

p
−1β

p
∗

p

4 vp∗ (s)262

+2
p
∗

p
−1c

p
∗

p

)

ds263

= 4
p
∗

p
−1α

p
∗

p

4 mp∗−1
1 m

p
∗

p
−1

2

∫ 1

0

∫ 1

0

k3(t, s)v
p∗(τ )dτds264

+4
p
∗

p
−1β

p
∗

p

4 m
p
∗

p
−1

2

∫ 1

0

k2(t, s)v
p∗ (s)ds + 2

p
∗

p
−1c

p
∗

p m
p
∗

p
−1

2

∫ 1

0

k2(t, s)ds265

=

∫ 1

0

Gn
7
,n

8
(t, s)vp∗(s)ds + 2

p
∗

p
−1c

p
∗

p m
p
∗

p
−1

2 m3.266

Multiply the above inequality by ϕn7,n8
(t) and integrate over [0, 1] and use (13) and267

(14) to obtain268

∫ 1

0

vp∗(t)ϕn
7
,n

8
(t) 6 r(Ln

7
,n

8
)

∫ 1

0

vp∗(t)ϕn
7
,n

8
(t) + 2

p
∗

p
−1c

p
∗

p m
p
∗

p
−1

2 m3,269
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so that270

∫ 1

0

vp∗(t)ϕn7,n8
(t) 6

2
p
∗

p
−1c

p
∗

p m
p
∗

p
−1

2 m3

1 − r(Ln7,n8
)

:= N2.271

Now p∗/p > 1 and the Jensen integral inequality for convex functions (Lemma 2.3)272

imply273

(
∫ 1

0

vp(t)ϕn7,n8
(t)dt

)

p
∗

p

6

∫ 1

0

vp(t)ϕ
p
∗

p

n7,n8
(t)dt274

6 ‖ϕn7,n8
‖

p
∗

p
−1

∫ 1

0

vp∗(t)ϕn7,n8
(t)dt275

6 N2‖ϕn7,n8
‖

p
∗

p
−1, (18)276

so that277
∫ 1

0

vp(t)ϕn7,n8
(t)dt 6 Np∗

2 ‖ϕn7,n8
‖1−p∗.278

Note vp is concave. By Lemma 2.1, we have279

‖vp‖ 6
Np∗

2 ‖ϕn7,n8
‖1−p∗

κn7,n8

.280

This proves the boundedness of M4. Taking R >sup{‖v‖ : v ∈ M4}, we have281

v 6= λAv for all v ∈ ∂BR ∩ P and λ ∈ [0, 1].282

Now Lemma 2.5 implies283

i(A, BR ∩ P, P ) = 1. (19)284

Note that we may assume R > r2. Combining (17) and (19) gives285

i(A, (BR \ Br2
) ∩ P, P ) = 1 − 0 = 1.286

Therefore the operator A has at least one fixed point on (BR \Br2
)∩ P . Thus (1) has287

at least one positive solution. This completes the proof.288

REMARK 3.2. (H3) and (H4) describe the p-superlinear growth of f , as exemplified289

by f(t, x, y) := xq1 + yq2 with q1 > p and q2 > p.290

REMARK 3.3. (H5) and (H6) describe the p-sublinear growth of f , as exemplified291

by f(t, x, y) := xq3 + yq4 with 0 < q3 < p, 0 < q4 < p.292
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