

THE CONDITION FOR GENERALIZING INVERTIBLE
SUBSPACES IN CLIFFORD ALGEBRAS

Nguyen Canh Luong (Hanoi, Vietnam)

Abstract. Let \mathcal{A} be a universal Clifford algebra induced by m -dimensional real linear space with basis $\{e_1, e_2, \dots, e_m\}$. The necessary and sufficient condition for the subspaces of form $L_1 = \text{lin}\{e_0, e_1, \dots, e_m, e_{m+1}, \dots, e_{m+s}\}$ to be invertible is $m \equiv 2 \pmod{4}$, $s=1$ and $e_{m+1} = e_{12\dots m}$ (see [2]). In this paper we improve this assertion for the subspaces of the form $L = \text{lin}\{e_0, e_{A_1}, \dots, e_{A_m}, e_{A_{m+1}}, \dots, e_{A_{m+s}}\}$, where $A_i \subseteq \{1, 2, \dots, m\}$ ($i=1, 2, \dots, m+s$).

1. Introduction

Let V_m be an m -dimensional ($m \geq 1$) real linear space with basis $\{e_1, e_2, \dots, e_m\}$. Consider the 2^m -dimensional real space \mathcal{A} with basis

$$E = \{e_\emptyset, e_{\{1\}}, \dots, e_{\{m\}}, e_{\{1,2\}}, \dots, e_{\{m-1,m\}}, \dots, e_{\{1,2,\dots,m\}}\},$$

where $e_{\{i\}} := e_i$ ($i = 1, 2, \dots, m$).

In the following, for each $K = \{k_1, k_2, \dots, k_t\} \subseteq \{1, 2, \dots, m\}$ we write $e_K = e_{k_1 k_2 \dots k_t}$ with $e_\emptyset = e_0$, and so

$$E = \{e_0, e_1, \dots, e_m, e_{12}, \dots, e_{m-1m}, \dots, e_{12\dots m}\}.$$

The product of two elements $e_A, e_B \in E$ is given by

$$(1) \quad e_A e_B = (-1)^{\#(A \cap B)} (-1)^{p(A, B)} e_{A \Delta B}; \quad A, B \subset \{1, 2, \dots, m\},$$

where

$$\begin{cases} p(A, B) = \sum_{j \in B} p(A, j), \\ p(A, j) = \#\{i \in A : i > j\}, \\ A \Delta B = (A \setminus B) \cup (B \setminus A) \end{cases}$$

and $\#A$ denotes the number of elements of A .

Each element $a = \sum_A a_A e_A \in \mathcal{A}$ is called a Clifford number. The product of two Clifford numbers $a = \sum_A a_A e_A$; $b = \sum_B b_B e_B$ is defined by the formula

$$ab = \sum_A \sum_B a_A b_B e_A e_B.$$

It is easy to check that in this way \mathcal{A} is turned into a linear associative non-commutative algebra over \mathbf{R} . It is called the Clifford algebra over V_m .

It follows at once from the multiplication rule (1) that e_\emptyset is identity element, which is denoted by e_0 and in particular

$$e_i e_j + e_j e_i = 0 \text{ for } i \neq j; \quad e_j^2 = -1 \quad (i, j = 1, 2, \dots, m)$$

and

$$e_{k_1 k_2 \dots k_t} = e_{k_1} e_{k_2} \dots e_{k_t}; \quad 1 \leq k_1 < k_2 < \dots < k_t \leq m.$$

The involution for basic vectors is given by

$$\bar{e}_{k_1 k_2 \dots k_t} = (-1)^{\frac{t(t+1)}{2}} e_{k_1 k_2 \dots k_t}.$$

For any $a = \sum_A a_A e_A \in \mathcal{A}$, we write $\bar{a} = \sum_A a_A \bar{e}_A$. For any Clifford number $a = \sum_A a_A e_A$, we write $|a| = \left(\sum_A a_A^2 \right)^{\frac{1}{2}}$.

2. Result and Proof

We use the following definitions.

- (i) An element $a \in \mathcal{A}$ is said to be invertible if there exists an element a^{-1} such that $aa^{-1} = a^{-1}a = e_0$; a^{-1} is said to be the inverse of a .
- (ii) A subspace $X \subset \mathcal{A}$ is said to be invertible if every non-zero element in X is invertible in \mathcal{A} .

(iii) $L(u_1, u_2, \dots, u_n) = \text{lin} \{u_1, u_2, \dots, u_n\}$, $u_i \in \mathcal{A}$ ($i = 1, 2, \dots, n$).

It is well-known (see [1]) that for any special Clifford number of the form $a = \sum_{i=0}^m a_i e_i \neq 0$ we have $a^{-1} = \frac{\bar{a}}{|a|^2}$. So $L(e_0, e_1, \dots, e_m)$ is invertible, and if $m \equiv 2 \pmod{4}$ (see [2]), then every $a = \sum_{i=0}^{m+1} a_i e_i \neq 0$, where $e_{m+1} = e_{12\dots m}$ is invertible and $a^{-1} = \frac{\bar{a}}{|a|^2}$. So $L(e_0, e_1, \dots, e_m, e_{m+1})$ is invertible.

We shall need the following lemmas.

Lemma 1. (see Lemma 1 [3]) *If $L(e_{A_1}, e_{A_2}, \dots, e_{A_k})$, where $e_{A_i} \in E, e_{A_i} \neq e_{A_j}$ for $i \neq j, i, j \in \{1, 2, \dots, k\}$, is invertible if and only if $L(e_{A_1} \bar{e}_{A_k}, e_{A_2} \bar{e}_{A_k}, \dots, e_{A_k} \bar{e}_{A_k})$ is invertible.*

By Lemma 1 we shall study subspaces of \mathcal{A} in the form $L(e_0, e_{A_1}, \dots, e_{A_l})$.

Lemma 2. (see Lemma 3 [3]) *$L(e_0, e_{A_1}, \dots, e_{A_l})$, $e_{A_i} \in E, e_{A_i} \neq e_{A_j}$ for $i \neq j$, is invertible if and only if*

$$e_{A_i} \bar{e}_{A_j} + e_{A_j} \bar{e}_{A_i} = 0 \text{ for } i \neq j, \quad i, j \in \{0, 1, 2, \dots, m\}, \text{ where } e_{A_0} = e_0.$$

Lemma 3. (see Theorem [3]) *If $L(e_0, e_{A_1}, e_{A_2}, \dots, e_{A_l})$, $e_{A_i} \in E, e_{A_i} \neq e_{A_j}$ for $i \neq j, i, j \in \{1, 2, \dots, l\}$ is invertible, then*

$$(i) \quad l \leq m + 1.$$

$$(ii) \quad \text{If } l = m + 1, \text{ then}$$

$$\text{either } e_{A_l} = e_{A_1} e_{A_2} \dots e_{A_{l-1}} \quad \text{or} \quad e_{A_l} = -e_{A_1} e_{A_2} \dots e_{A_{l-1}}.$$

The purpose of this paper is to prove the following.

Theorem. *$L(e_0, e_{A_1}, \dots, e_{A_m}, e_{A_{m+1}}, \dots, e_{A_{m+s}})$ is invertible if and only if the following conditions simultaneously hold:*

- (1) $e_{A_i} \bar{e}_{A_j} + e_{A_j} \bar{e}_{A_i} = 0$ for $i \neq j, i, j \in \{0, 1, 2, \dots, m\}$, where $e_{A_0} = e_0$,
- (2) $m \equiv 2 \pmod{4}$,
- (3) $s = 1$,
- (4) Either $e_{A_{m+1}} = e_{A_1} e_{A_2} \dots e_{A_m}$ or $e_{A_{m+1}} = -e_{A_1} e_{A_2} \dots e_{A_m}$.

Proof. First we prove the sufficiency. From $e_{A_i} \bar{e}_{A_j} + e_{A_j} \bar{e}_{A_i} = 0$ for $i \neq j, i, j \in \{0, 1, \dots, m\}$ we have

$$\bar{e}_{A_i} \bar{e}_{A_j} + \bar{e}_{A_j} \bar{e}_{A_i} = 0 \text{ and } e_{A_i} + \bar{e}_{A_i} = 0 \text{ for } i \neq j, \quad i, j \in \{1, \dots, m\}.$$

We shall prove that $e_{A_k} \bar{e}_{A_{m+1}} + e_{A_{m+1}} \bar{e}_{A_k} = 0$ for $k \in \{0, 1, \dots, m\}$. For $k = 0$, by $\bar{ab} = \bar{b}\bar{a}$ and by $m \equiv 2 \pmod{4}$, we get that

$$\begin{aligned} e_0 \bar{e}_{A_{m+1}} + e_{A_{m+1}} \bar{e}_0 &= \overline{e_{A_1} e_{A_2} \dots e_{A_m}} + e_{A_1} e_{A_2} \dots e_{A_m} \\ &= \bar{e}_{A_m} \bar{e}_{A_{m-1}} \dots \bar{e}_{A_1} + e_{A_1} e_{A_2} \dots e_{A_m} \\ &= (-1)^m e_{A_m} e_{A_{m-1}} \dots e_{A_1} + e_{A_1} e_{A_2} \dots e_{A_m} \end{aligned}$$

$$\begin{aligned}
&= (-1)^m (-1)^{\frac{m(m-1)}{2}} e_{A_1} e_{A_2} \dots e_{A_m} + e_{A_1} e_{A_2} \dots e_{A_m} \\
&= -e_{A_1} e_{A_2} \dots e_{A_m} + e_{A_1} e_{A_2} \dots e_{A_m} = 0.
\end{aligned}$$

For $k \in \{1, 2, \dots, m\}$ we have

$$\begin{aligned}
e_{A_k} \bar{e}_{A_{m+1}} + e_{A_{m+1}} \bar{e}_{A_k} &= e_{A_k} \bar{e}_{A_m} \dots \bar{e}_{A_k} \dots \bar{e}_{A_1} + e_{A_1} \dots e_{A_k} \dots e_{A_m} \bar{e}_{A_k} \\
&= (-1)^{m-k} \bar{e}_{A_m} \dots e_{A_k} \bar{e}_{A_k} \dots \bar{e}_{A_1} + (-1)^{m-k} e_{A_1} \dots e_{A_k} \bar{e}_{A_k} \dots e_{A_m} \\
&= (-1)^{m-k} [(-1)^{m-1} e_{A_m} \dots e_{A_{k+1}} e_{A_{k-1}} \dots e_{A_1} + e_{A_1} \dots e_{A_{k-1}} e_{A_{k+1}} \dots e_{A_m}] \\
&= (-1)^{m-k} [-(-1)^{\frac{(m-1)(m-2)}{2}} e_{A_1} \dots e_{A_{k-1}} e_{A_{k+1}} \dots e_{A_m} \\
&\quad + e_{A_1} \dots e_{A_{k-1}} e_{A_{k+1}} \dots e_{A_m}] = 0.
\end{aligned}$$

Take $0 \neq a = a_0 e_0 + \sum_{i=1}^{m+1} a_i e_{A_i} \in L(e_0, e_{A_1}, \dots, e_{A_m}, e_{A_{m+1}})$.

Let $a^{-1} = \frac{1}{|a|^2} \left(a_0 e_0 + \sum_{i=1}^{m+1} a_i \bar{e}_{A_i} \right)$. Then

$$\begin{aligned}
a \cdot a^{-1} &= \frac{1}{|a|^2} \left(a_0 e_0 + \sum_{i=1}^{m+1} a_i e_{A_i} \right) \left(a_0 e_0 + \sum_{i=1}^{m+1} a_j \bar{e}_{A_j} \right) \\
&= \frac{1}{|a|^2} \left[a_0^2 e_0 + a_0 \left(\sum_{i=1}^{m+1} a_i e_{A_i} + \sum_{j=1}^{m+1} a_j \bar{e}_{A_j} \right) + \sum_{i=1}^{m+1} a_i^2 e_{A_i} \bar{e}_{A_i} \right. \\
&\quad \left. + \sum_{i < j} a_i a_j (e_{A_i} \bar{e}_{A_j} + e_{A_j} \bar{e}_{A_i}) \right] = \frac{1}{|a|^2} \left(\sum_{i=0}^{m+1} a_i^2 \right) e_0 = e_0.
\end{aligned}$$

Similarly, one can check the equality $a^{-1} \cdot a = e_0$.

Now we prove the necessity. By Lemma 2 we have $e_{A_i} \bar{e}_{A_j} + e_{A_j} \bar{e}_{A_i} = 0$ for $i \neq j$; $i, j \in \{0, 1, \dots, m\}$ and by Lemma 3 we get that $s = 1$ and

either $e_{A_{m+1}} = e_{A_1} e_{A_2} \dots e_{A_m}$ or $e_{A_{m+1}} = -e_{A_1} e_{A_2} \dots e_{A_m}$.

We shall prove that $m \equiv 2 \pmod{4}$. From $e_{A_i} \bar{e}_{A_j} + e_{A_j} \bar{e}_{A_i} = 0$ for $i \neq j$; $i, j \in \{0, 1, \dots, m\}$ one gets

$e_{A_i} + \bar{e}_{A_i} = 0$, $i \in \{1, 2, \dots, m\}$. Hence either $\#A_i = 4p_i + 1$ or $\#A_i = 4p_i + 2$ ($p_i \in \mathbb{N}$), $i \in \{1, 2, \dots, m\}$. So $e_{A_i}e_{A_i} = -e_0$ ($i = 1, 2, \dots, m$).

Let $m \equiv 0 \pmod{4}$ or $m \equiv 3 \pmod{4}$. Choosing $a = e_0 + e_{A_{m+1}}$ and $b = e_0 - e_{A_{m+1}}$ we find

$$\begin{aligned} ab &= e_0 + e_{A_{m+1}} - e_{A_{m+1}} - e_{A_{m+1}}e_{A_{m+1}} = e_0 - e_{A_1} \dots e_{A_m} \cdot e_{A_1} \dots e_{A_m} \\ &= e_0 - [(-1)^m (-1)^{\frac{m(m-1)}{2}} e_0] = e_0 - (-1)^{\frac{m(m+1)}{2}} e_0 = e_0 - e_0 = 0. \end{aligned}$$

Hence the non-zero numbers a and b are not invertible.

Let $m \equiv 1 \pmod{4}$. Choosing $a = e_{A_1} + e_{A_{m+1}}$ and $b = e_{A_1} - e_{A_{m+1}}$ we get

$$\begin{aligned} ab &= (e_{A_1} + e_{A_{m+1}})(e_{A_1} - e_{A_{m+1}}) \\ &= e_{A_1}e_{A_1} - e_{A_1}e_{A_{m+1}} + e_{A_{m+1}}e_{A_1} - e_{A_{m+1}}e_{A_{m+1}} \\ &= -e_0 - e_{A_1}e_{A_1}e_{A_2} \dots e_{A_m} + e_{A_1}e_{A_2} \dots e_{A_m}e_{A_1} - (-1)^{\frac{m(m+1)}{2}} e_0 \\ &= e_{A_2} \dots e_{A_m} + (-1)^{m-1} e_{A_1}e_{A_1}e_{A_2} \dots e_{A_m} = e_{A_2} \dots e_{A_m} - e_{A_2} \dots e_{A_m} = 0. \end{aligned}$$

Hence a and b are not invertible. So $m \equiv 2 \pmod{4}$. The theorem is proved.

References

- [1] F. BRACKX, R. DELANGHE AND F. SOMMEN, *Clifford Analysis*, Pitman Advanced Publishing Program, Boston-London-Melbourne, 1982.
- [2] N. C. LUONG AND N. V. MAU, *On Invertibility of Linear Subspaces Generating Clifford Algebras*, Vietnam Journal of Mathematics, 25:2(1997) 133-140.
- [3] NGUYEN CANH LUONG, *Remark on the Maximal Dimension of Invertible Subspaces in the Clifford Algebras*, Proceeding of the Fifth Vietnamese Conference, 145-150.

Nguyen Canh Luong

Department of Mathematics
University of Technology of Hanoi
Hanoi, F105-Nha C14, 1 Dai Co Viet
Vietnam
e-mail: ncluong@hn.vnn.vn