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FAST ALGORITHM FOR SOLVING SUPERELLIPTIC EQUATIONS
OF CERTAIN TYPES

Laszlé Szalay (Sopron, Hungary)

Abstract. The purpose of this paper is to give a simple, elementary algorithm for finding

all integer solutions of the diophantine equation

2

y?=z tas, 1zt

+...+a1z+ao,

where the coefficients as;—1,...,a0 are integers and k>1 is a natural number.
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1. Introduction

Let F(X) be a monic polynomial of even degree with integer coeflicients.
Suppose that F(X) is not a perfect square. We consider the diophantine equation

(1) y' = F()

in integers x and y.

The present paper provides a fast and elementary algorithm for solving
equation (1). The method is a generalization of a result of D. Pouraxis [4],
who treated the case deg(F'(X)) = 4. (Here and in the sequel deg(F'(X)) denotes
the degree of the polynomial F'(X).) For other results concerning superelliptic

equations see, for example, C. L. SIEGEL [5], A. BAKER [1], Y. BUGEAUD [2] or
D. W. MassER [3].

2. The algorithm

There is given the non-square polynomial

(2) FX) =X fag 1 X 4o b X +ag, (k>1)
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over the ring of rational integers. The following procedure determines all integer
solutions (z,y) of the diophantine equation

(3) v’ = F(x).

Step 1. Find polynomials B(X) € Q[X] and C'(X) € Q[X] such that
(4) F(X) = B*X) +C(X)

with the assumption deg(C(X)) < k.

Step 2. If C(X) = 0 then output “F(X) is perfect square” and terminate the
algorithm.

Step 3. Find the least natural number « for which 2aB(X) and «2C(X) are
polynomials with integer coeflicients.

Step 4. Set

(5) Pi(X) = 2aB(X) — 1 + a*C(X)
and

(6) Py(X) = 2aB(X) + 1 - o?C(X).
Step 5. Let

(7) H={aeR: Pia) =0or Ps(a) = 0}.

Step 6. If H # () then let m = [min(H)], M = |max(H)| and for each mteger
element # of the interval [m, M] compute F'(x). If F'(z) is a square of an integer y
then output the solution (x, +y).

Step 7. Determine the integer solutions z of the equation C'(x) = 0, output
(z, B(x)) and (z,—B(z)), and terminate algorithm.

Summarizing the method, to reach our goal first we need a special decompo-
sition of the polynomial F(X), then we have to determine the real roots of two
polynomials. After then the integer elements of a quite short interval must be
checked. Finally, we have to compute the integer solutions of a polynomial with
rational coefficients.
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3. Examples

Using the steps of the algorithm, we solve three numerical examples.
Example 1. y? = 2% 4+ 27 + 2% 4 3z — 5,
BX)=X*+1x*4+ix2+LXx -3

128
_ 7 3, 5052, 3077 y _ 81945
CX) = Bs X T 5N+ oea 16384 °
a=128 =27,

Pi(X) = 256.X* + 1024X3 + 16128 X2 + 49248X — 81956,
Py(X) = 256.X* — 768X — 16192X? — 49216X + 81936,
[m, M] = [-4,10], C'(#) = 0 has no integer solution.

All integer solutions are (z,y) = (=2, £11), (1, £1).

Example 2. y? = z* — 223 + 222 + 72 + 3,
Pi(X) = 16X? — 528X — 167,
P(X) = 16 X2 + 496X + 183,
[m, M] = [-30,33], C(x) = 0 has no integer solution.
All integer solutions are (x,y) = (=1, £2), (1, £5).

Example 3. y? = z? — bz — 11,
B(X)=X—-%C(X)=-%2 a=2,
Pi(X) = 4X — 80, Py(X) = 4X + 60,
[, M] = [~15,20].
All integer solutions are (z,y) = (=5, £17), (—4, £5), (9, £5), (20, £17)

(C(X) # 0is a constant polynomial, so it has no (integer) root).

Remark. The equation of Example 3 can easily be solved by using another simple
elementary method. (The equation y* = 22 — br — 11 is equivalent to (2y — 2z +
5)(2y + 22 — 5) = —69, and the decomposition the rational integer —69 into prime
factors provides the solutions.) Here we only would like to demonstrate that if k =1
then the algorithm can be applied, too.

4. Proof of rightness of the algorithm

Going through on the steps of the described algorithm we show that the
procedure is correct. As earlier, let

(8) F(X) = X% $ag 1 X7 4 a1 X + ap,

where k is an integer greater than zero.
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4.1 First we prove that the decomposition F'(X) = B?(X) + C(X) in Step 1
of the algorithm uniquely exists if we assume that the leading coefficient of B(X)
18 positive. We have to show that there is a polynomial

9) B(X) = b3 XP 4 bp 1 X7 -+ 01X + by € QIX]

(by > 0), such that the first & + 1 coefficients coincide in F(X) and in B%(X).
Consequently, the degree of the polynomial

(10) C(X) = F(X) - B*(X)

is less than k.

The proof depends on the fact that the system of the following £ 41 equations

bi =1,
2b b1 = az -1,
(11) by bp_s + b7 _; = az_2,
205 bo + 2bg_101 + - - - = ay
uniquely solvable in the rational variables by > 0,b;_1, ..., bg, where the coefficients

d2k—1, - - ., ap of the polynomial F(X) are fixed integers.

Observe that in the i'" equation of (11) (1 < i < k+ 1) there are exactly &
variables and only one of them (bgy1-;) does not occur in the first ¢ — 1 equations
(i > 1). Consequently, this “new” linear variable can directly expressed from the

i'? equation. Hence we have the unique solution

by =1 (> 0),
b _ a2k —1 _ a2k —1
LT o 2
o bi_i _ ask—z a3
(12) k=2 = 2by, T2 8

b _ g = (2bp_abi4--)
o 2by B

of the system (11), which proves the unique existence of the decomposition F'(X) =
B2?(X) + C(X). We note that the equations of (11) come from the coincidence of
the first k& + 1 coefficients of F/(X) and the square

(13) BX) =) ibk—jbkﬂ'—z’ X#71 4 Bi(X) = Bo(X) + Bi(X)
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with some polynomial B;1(X), where deg(B1(X)) < k. From (13) it follows that

Bo(X) = (b3) X% + (2byby—1) X271 4 (2bj bz + b7_1) X724

(14) .
+(2bkbo + 2bp_1b1 + -+ ) X7,

which provides the system (11).

4.2 In the next step we check that the polynomial F(X) is perfect square
or not. If F(X) = B?(X) then the equation has infinitely many solutions and the
algorithm is terminated. In the sequel, we can assume that C'(X) # 0.

4.3 Clearly, infinitely many natural number oy exist for which 207 B(X) and
a?C(X) are polynomials with integer coefficients. Let « be the least among them.
Since C(X) = F(X) — B%(X), together with (12) it follows that o = 2°, where
the natural number G depends, of course, on the degree %k and the coefficients
d2k—1, .., a0 of the polynomial F'(X). For instance, it is easy to see that if k =1
then 8 <1, if £ =2 then § <3 and if £ = 3 then 7 < 4.

4.4 The polynomials P;(X) = 2aB(X) — 1 + @?C(X) and P2(X) =
20B(X) + 1 — a?C(X) provided by Step 4 of the algorithm possess the following
properties. They have integer coefficients, deg(Py (X)) = deg(P2(X)) = k because
of deg(2aB(X)) = k and deg(a?C(X) — 1) < k, moreover their leading coefficent
2cv is positive.

4.5 It follows from the first part of Step 6 of the algorithm that it is sufficient
to determine approximately the real roots of the polynomial P;(X) and Py(X).
There are many numerical methods which give (rational) numbers very close to
the exact roots, and several mathematical program package, for example MAPLE,

MATHEMATICA,..., are able to provide the approximations of the roots and establish
the set H.

4.6 In Step 6 we are checking for each integer x € [m, M| that F(z) is square
or not (it can be done by computer, too). The length of the interval [m, M] depends
on the coefficients of F'(X). The examples in Section 3 show that [m, M] may be
quite small.

4.7 Now we have arrived at the main part of the proof of the rightness of the
algorithm. We have to show that if an integer « ¢ [m, M] and F'(x) is square then
C(z)=0.

Suppose that = ¢ [m, M] and F(z) = y? for some z,y € Z. Since the leading
coeflicient of P1(X) and P»(X) is positive, z & [m, M] implies that Pi(z) > 0 and
Py(x) > 0, or In case of odd k& Pi(z) < 0 and P(z) < 0 can also be occurred.
Assume now that Pi(z) > 0 and Pa(z) > 0, ie.

(15) 20B(x) — 1+ a?C(z) > 0
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and

(16) 20 B(z) +1—a?C(z) > 0.

Hence

(17) —2aB(x) +1 < a®C(z) < 2aB(z) + 1.

Now add anywhere a?B%(x) we have

(18) (aB(z) —1)? < a® (B¥(z) + C(z)) < (aB(z) +1)%,
which together with B%(z) + C(z) = F(x) = y? provides

(19) (aB(z) —1)® < o®y? < (aB(z) +1)%.

Since aB(x) £ 1, o > 0 and y are integers it follows that B(x) > 0, moreover
(aB(x) — 1)2, a?y? and (aB(z) + 1)2 are three consecutive squares, hence

(20) B(z) = y*.

But it means that C'(z) = 0, so the integer # is a root of the polynomial C(X).

In the other case, when k is an odd number, Pi(z) < 0 and P3(z) < 0 we gain
similar argument in similar manner:

(21) (aB(z) +1)® < o®y? < (aB(z) —1)%,
which implies that B(z) < 0 and B*(x) = y?, ie. C(z) = 0 for the integer x.
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