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ON POLYNOMIAL VALUES OF THE SUM AND THE PRODUCT
OF THE TERMS OF LINEAR RECURRENCES

Kdlmén Liptai (Eger, Hungary)

Abstract. Let G® :{ a }:;0 (i=1,2,...,m) linear recursive sequences and let F(z)=dr?+

dpxp+dp_1xp_1+~~+d07 where d and d;’s are rational integers, be a polynomial. In this paper

we showed that for the equations Z Gg:’l) =F(z) and H Gg:’l) =F(z) where z;-s are non-negative
1=1 =1
integers, with some restriction, there are no solutionsin z;-s and z if ¢>> o, where ¢ is an effectively

computable positive constant.

AMS Classification Number: 11B37

1. Introduction

Let m > 2 be an mteger and define the linear recurrences GY = {G(xi)}oo
(t=1,2,...,m) of order k; by the recursion
(1) GO =aVG +ADG b+ AVGY (> k> 2),

where the mitial values G() and the coefficients A§-|)-1 (G =0,1,... ki — 1) are
rational integers. Suppose that

A (|

+ ‘G(f)

) 2o

for any recurrences and denote the distinct roots of the characteristic polynomial

g(z)( )_u A(Z) k_l_"'_Agjl)
of the sequence G@) by a(i) (22')’ cey ozgi) (t; > 2). It is known that there exist uni-
quely determined polynomials p ( ) € Q(al ,az), .. (Z))[ 1G =12....4)

of degree less than the multiplicity mg») of roots oz;) such that for z > 0

@ 60 = @) (o) + @) (o) D) (o)
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Using the terminology of F. Métyas [9], we say that G is the dominant
sequence among the sequences G@) (t=12,....,m) i m(ll) = 1, the polynomial

p(ll) (z) = a is a non-zero constant and, using the notation a(ll) = a,
(3) jal=[afP] > [af| 2 > o) | and Ja] > [af|

for 2<i<mand 1<j<t;. (Since Agcll) € Z\ {0}, therefore || > 1.) In this case

xr

@ G = 00" 90w (o8) 44D @) (o)

If ‘a(li) (f) = 1 then we denote

(j = 2,...,1;) In a sequence GY and m

> ‘ay)

p(li)(x) by a;, in the case i = 1 by a.

In the following we assume that
(5) F(z) = de? + dpa® + dp_12P7 1+ -+ + do,

is a polynomial with rational integer coeflicients, where d # 0, ¢ > 2 and ¢ > p.

In the paper we use the following notations:

(6) Exl,xz,...,xm = Z G(xZ,)
i=1

and

(7) le,xz,...,xm = HGgl)a
i=1

where ;-8 are non-negative integers.

The Diophantine equation
(8) Gy = F()

with positive mteger variables n and x was investigated by several authors. It is
known that if G is a nondegenerate second order linear recurrence, with some
restrictions, and F(z) = dz? then the equation (8) have finitely many integer
solutions in variables n > 1 and ¢ > 2.

For general linear recurrences we know a similar result (see [11]). A more
general result was proved by I. Nemes and A. Pethd [10], furthermore by P. Kiss
[4].

Using some other conditions, B. Brindza, K. Liptai and L. Szalay [2] proved
that the equation

G(xll) G(x'22) — w!
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implies that ¢ is bounded above, while L. Szalay [12] made the following gene-
ralization of this problem. Let d # 0 fixed mteger and s a product of powers of

given primes. Then, under some conditions, the equation dG(xll) G(xzz) .. .G(ﬁn) = sw!
in positive integers w > 1,q,x1,..., 2, implies that ¢ is bounded above by a
constant.

The author in [8] showed that for the equation G%l)Gg) = F(z), with some
restriction, there are no solutions m n, m and x if ¢ > qo, where qg is an effectively
computable positive constant.

With some restrictions, P. Kiss and F. Matyas [7] proved an additive re-
sult in this theme, namely, if X, ., .. = sw! for positive integers w >
1,21, %2, ..., 2m,q and there is a dominant sequence among the sequences G,
then ¢ is bounded above.

P. Kiss mvestigated the difference between perfect powers and products or
sums of terms of linear recurrences. Such a result is proved in [3] for the sequence

GM which has the form of (4). Namely, under some restrictions, ‘swq — G(xl)‘ > e

for all integers w > 1,z,q and s, if z and ¢ > ny, where ¢ and ny are effectively

computable positive numbers. Using some conditions, P. Kiss and F. Matyas [6]
m . .

generalized this result substituting G(xl) by T] G(le)’ where the sequences G*) have
=1

1=

the form of (4).

F. Métyds [8] proved a similar result in additive case.

2. Results and proofs

Using the notations mentioned above, we shall prove the following theorems.

Theorem 1. Let G (i = 1,2,...,m; m > 2) be linear recursive sequences of
integers defined by (1). Suppose that GW s the dominant recurrence among the

sequences G) and o ¢ Z. Let K > 1 and 0 < 6; < 1 be real constants, F(x) and
Y\ o, o are defined by (5) and (6) with the condition p < §1¢q. If

1 > K max (z;)
2<i<m

then the equation
(9) Eﬁ?l,fzymyfm = F(l‘),

in positive integers x > 2 &1 > 3,...,Zm,q Inplies that ¢ < q1, where ¢q1 Is an
effectively computable number depending on K, é1, F(x), m and the sequences elON

Theorem 2. Let G (i = 1,2,...,m; m > 2) be linear recursive sequences of
integers defined by (1). Suppose that |oz(12)| > |a§l)| for 1 <i<mand?2<j<t,,
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Q)

moreover «; -8 are not integers. Let 0 < v < 1 and 0 < 63 < 1 be real constants,

F(z) and Gy, oy, o, are defined by (5) and (7) with the condition p < b62q. If

2; > ymax(x1,...,4,) for i = 1,...,m then the equation
(10) gxlyx2y~~yxm = F(l‘),
in positive integers & > 2,xy > ®3,...,%;,q implies that ¢ < ¢z, where ¢5 is an

effectively computable number depending on v, 62, F(x), m and the sequences elON
Remark. P. Kiss in [5] proved similar results with other conditions.
In what follows we need the following auxiliary results.

Lemma 1. Let wy,wa,...,wy (w; # 0 or 1) be algebraic numbers with heights at
most My, Ms, ..., M, > 4, respectively. If by, bs, ... b, are non-zero integers with
max(|b1|, |b2], ..., |bn-1]) < B and |b,| < B’, B’ > 3, furthermore

A =|bjlogwy + balogws+ -+ bylogw,| # 0,

where the logarithms are assumed to have their principal values, then there exists
an effectively computable positive constant C, depending only on n, My, ..., M, _1
and the degree of the field Q(wy, .. .wy) such that

A > exp (—C'log B'log M,, — B/B').

Lemma 1. is a result of A. Baker (see Theorem 1. in [1] with é = 1/B’).

For the sake of brevity we mtroduce the following abbreviations. For non-
negative integers xy, g, ..., T,y let

@y (o) h mot
1) Egozmu, B SF S ol o

a a’1
ji=2 i=2 j=1

and ¢ = ¢1 + 2. Using (2), (4) and (6)

t1 o1 m 1 ) .
S = 00 30 n) (o) "+ D 0w (o)
ji=2

i=2 j=1

Ti

and by (11) we have
(12) Y1 oo, o = 0t (1461 +2) = aa® (1 +¢).

Let




On polynomial values of the sum and the product ... 13

So (5) can be written in the form
(14) F(z) = dei(1 + 3).

The following three lemmas are due to F. Matyds [8], where ny, na, n3 means
effectively computable constants.

Lemma 2. Let GO be the dominant sequence among the recurrences G) (1<
i < m) defined by (1). Then there are effectively computable positive constants c;

and ny depending only on the sequence GU) such that

—€1%1

|€1|<6

for any ny < x1.

Lemma 3. Let G be the dominant sequence among the recurrences G (1<i<
m) defined by (1), 1l < K € R and #1 > K Hax (2;). Then there are effectively

computable positive constants co and ns depe_nding only on K and the sequences

G such that

—C€2%1

|€2| < e
for any ns < x1.

Lemma 4. Suppose that the conditions of Lemma 2 and Lemma 3 hold. Then
there exist effectively computable positive constants cz, cq, n3 depending only on
K and the sequences G such that

3T | | €41
e <Ny za,am| < €

for any mteger x; > ns.
The following lemma is due to P. Kiss and F. Métyds [6].

Lemma 5. Let v be a real number with 0 <y < 1 and let G, . ., be an integer
defined by (7), where 1, ..., xn are positive integers satisfying the condition z; >
ymax(x1,...,2:) and |oz(12)| > |a§l)| for 1 < i< m and 2 < j < t;. Then there
are effectively computable positive constants ¢z and ns, depending only on the
sequences G) and v, such that

(15) gxl,...,xm = (H aiafl) (1 —|—€4),

i=1

where

|€4| < e—C5~n1ax(x1 ey m)

for any max(zy, ..., Tm) > ng.
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Q)
1

Remark. In general o

o

is named the dominant root of the i-th sequence, if ‘oz(li) ‘ >

for 2 <5 <t;.
Proof of Theorem 1. In the proof cg,cr,... denote effectively computable
constants, which depend on K, &, F(x) and the sequences G(*). Suppose that (9)
holds with the conditions given in the Theorem 1. and z; is sufficiently large. Using
(9), (14) and Lemma 4. we have
(16) |de?(1 + e3)| = |F(2)] = | Xy wa 2 | < €770
Taking the logarithms of the both side we get

[log |d| + qlog = + log |1 + 3]| < cex1
that is
(17) qlog z < erq.

Now, using (11) and (13), the equation (9) can be written in the form

aa®?

dx?

=|1+esll+e™".

(18)

We distinguish two cases. First we suppose that
ac™ = dx?.

Let o/ # o be any conjugate of o and let ¢ be an automorphism of Q with
(o) = o'. Moreover,

¢ (a) (@)™ = ¢ (dat).

so(aa) - <%/) R

whence x; is bounded, which implies that ¢ is bounded. Now we can suppose that
aa’l £ 1, Put

dzrd

Thus

aa®?

b= dx?

log = |log |a| + 1 log |a| — qlog & — log d

and employ Lemma 1. with My = », B = ¢ and B = x1. We have

(19) L1 > exp(—cslog qlog x — %)
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Using (9), (11), (12), (13), (14) and (17) we have
cor? < dx?(l+e3) = aa®™ (1 4+ e1+¢2) < eppuf,

that is
cuuz! <o <cpxi.

Using (13), the previous inequalities and the condition p < 614 we have

1 Cls(q—P) 1 013(](1—51)
(20) |€3| < (;) < <—) < eXp(—chl).

X

Recalling that |log(1 + z)| < z and |log(1 — #)| < 2z for 0 < z < % and using (20),
Lemma 2. and Lemma 3. we find that

log |1 +¢e3] |1 + €|_1‘ < exp(—ci521)

Using (17), (18), (19) and (20) we have the following inequalities

T cre T
c15x1 < cglog qlog x + 1 cglog qg + e C16%1
q q q

This mmplies
¢ lo
Lo g q.
C16 q

The previous inequality can be satisfied by only finitely many ¢ and this completes
the proof.

Proof of Theorem 2. Similarly the previous proof, c;-s denote effectively com-
putable positive constants, which depend on v,8;, Fi(x) and the sequences el0N
Suppose that (10) holds with the conditions given in Theorem 2. Let #1, ..., z; be
positive integers and let o = max(x1, ..., #;). We suppose that «; is the dominant
root of the sequence which belongs to z¢. Using Lemma 5. we have

(21) ef17To - gxl,...,xm — F(l‘) < ef18%0

if g > ng4. So by (10) and (21) we get

(22) |dz?(1 + e3)| = [F(2)] = |Go1 00,0, | < €770

Taking the logarithms of the both side we get

[log |d| + qlog = + log |1 + &3]| < c1870
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that is
(23) q 10g r < C19%g.
The equation (10) can be written in the form

a;og’

i

o

(24) =(1+4e3)(l+es)t

dx?

We distinguish two cases. First we suppose that

m
H a;of" = daf.
i=1

Let o) # a, be any conjugate of a, and let ¢ be an automorphism of Q with

(o) = o'. Moreover,
¢(H%#)=¢Mﬂ)

i=1
that is
m m
[Taai =¢ (H azaf’)
i=1 i=1
Since o dominant root, p(e;) < oy i = 1,2,...,m we have

bl

o, o Zﬁ 2]
)<

whence xg is bounded, which implies that ¢ is bounded. Now we can suppose that

¢
IT aief* # dxf?. Put
i=1

Zlog |ai|—|—2xilog |e;| — log d — qlog

Ly = |log —a ||=
i=1 i=1

and employ Lemma 1. with Ms1o = 2, B’ = q and B = zg. We have

(25) Ly > exp(—ca0 log qlog » — %)
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Using (15) and Lemma 5. we have

epr? < dri(l+4e3)= H a;0f (1 4 e4) < eaga?

m
i=1

that is
af < eqzf.
Using (13), the previous inequality and the condition p < §3¢ we have

1 sz(q—p) 1 022(](1—52)
(26) |€3| < (;) < <—) < eXp(—ng,l‘o).

X

Recalling that |log(1 + )] < # and |log(1 — x)| < 2z for 0 <2 < % and using (26)
and Lemma 5. we find that

(27)

log |1 4+ e3] |1 + €4|_1‘ < exp(—caa o).
Using (23), (24), (25), and (27) we have the following inequalities

x C1o@ x lo
caa g < €20 log qlog x + ?0 < ¢90 log q% + ?0 < C25%0 fq.

This mmplies
1 lo
L g q.
C25 q

The previous inequality can be satisfied by only finitely many ¢ and this completes
the proof.
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