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RESULTS CONCERNING PRODUCTS AND SUMS OF THE
TERMS OF LINEAR RECURRENCES

Péter Kiss (Eger, Hungary)

Abstract. Many papers have investigated perfect powers and polynomial values as terms
of linear recursive sequences of rational integers. Many results show, under some restrictions, that
if a term of a sequence is a perfect power or a polynomial value, then the exponent of the powers
and the degree of the polynomials are bounded above. In this paper we show and prove some

similar results where the terms are substituted by products and sums of the terms of sequences.

AMS Classification Number: 11B37

1. Introduction

For a given positive integer ¢ > 1 we define linear recursive sequences G() =
{G%)}ZOIO of order t; > 2 ({ = 1,2,...,t) by the recursion formulae

G0 =APG) 4+ a060 4+ a6

where A(li), cey Agi) and the mitial values Gg), cey Ggi)_l are fixed rational integers

such that Aﬁ? # 0 and the initial terms are not all zero for 1 < ¢ < ¢. The
polynomial

g (@) = at = APVt - A

is called the characteristic polynomial of the sequence G) and we denote its distinct

roots by oz(li), oz(zi), ce agl) and suppose that

0> o> - > o).

Denote the multiplicity of oz(li), ce agl) by m(li), ce mgl), respectively. Then,

as it is well-known, the terms of the sequences can be expressed as

(1) Gg) = Pl(i)(n)(a(li)) + Pz(i)(n)(a(;)) NI plgi) (n)(agjl))
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for any n > 0, where P]»(i) are polynomials of degree my) — 1 and the coefficients
of P]»(i) are algebraic numbers from the number field Q(oz(li), ce agl)). It m(li) =1
and |oz(12)| > |a§l)| (j =2,...,k;) for some ¢, then oz(ll) will be denote by «;. In this

case || > 1, since |A§i)| > 1, and by (1) we have

@) G = aal + PV (m)(as”) " + -+ PO (m)(af))
where a; € Q(ay, oz(zi), cey agl)) and we suppose that a; # 0. If ¢t = 1 then we omit
(1) in (2) and we write (,, instead of G%l).

In the following we need some notations. Let py, ..., p, be given distinct prime

numbers. In the results and theorems S will denote the set of integers defined by
S={tp;* p3? - prrie; >0, 1<i<r}.

Furthermore cg,c1,...,ng,n1,... will denote positive effectively computable cons-
tans depending only on ¢, the parameters of the sequences, the primes py,...,p,
and the constans which are given in some of the mentioned results and theorems
(6,7 and K). We note that the constans can be exactly determined similary as in
the papers [4] and [8].

Perfect powers and polynomial values among the terms of linear recurrences
have been mvestigated for many years. For second order linear recurrences many
particular results are known concerning perfect squares and higher powers in the
sequences (see e.g. Cohn [2], Wylie [17], Mignotte and Pethd [9,11,12]). A general
result was obtained by Shorey and Stewart [14] and Pethd [13]: Any non degenerate
second order linear recursive sequence contains only finitely many perfect powers.

For general linear recurrences, which satisfy (2), Shorey and Stewart [14]
proved that if G, # aa” and G, = dw! for positive mtegers w > 1 ¢ > 1 and a fixed
integer d # 0, then ¢ < ng. In [3] we improved this result substituting d by integers
s € S, furthermore we showed, under some conditions, that |sw? — G| > e®” for
all integers s, w and = with s € S and ,¢q > nj. Similar results were obtain by
Shorey and Stewart [15].

2. Results

If we replace G, by the sums or products of the terms of linear recurrences G@)
we can obtain similar results as the above ones. E.g. Brindza, Liptai and Szalay [1]
proved, under some conditions, that the equation

GHGR = we
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can be satisfied only if ¢ is bounded above. This result was extended by Szalay
[16]. Now we present some other more general results. In the results we shall use
the above notations and the following ones:

Gg,l) G(xz) .. Gg) =1,

t

and
G+ 6%+ 6 =%, .,
where 1, ..., z; are positive integers.

Theorem 1. (Szalay [16]). Let G (i = 1,...,t) be linear recursive sequences
defined in (2) and let 0 < § <1 be a real number. If I, ., # Il_ a;af" and

Hxl,...,x = sw!

t
with w>1, s€ S and x; > ¢ -max(xq,...,2;) for 1 < j <t, then ¢ < ns.

Theorem 2. (Kiss and Matyés [4]). Let G® (i = 1,...,t) be linear recursive
sequences defined in (2) and let 0 < 6 < 1 be a fixed number. Then there is an
effectively computable positive number ¢y such that if sw? # II!_ a;af", then

Cc1-maxix PN
|5wq_Hx1,...,xt|>el (@1,.,21)

for any positive integer s, w, q, ©1,..., ¥; satisfying the conditions s € S, w >
1, #; > 6 -max(xy,...,2¢) and min (¢, max(zy,...,2¢)) > na.

Theorem 3. (Kiss and Matyas [5]). Under the conditions of Theorem 2 concerning
the sequences G and integers x4, ..., x;, we have

|5_Hx1 l‘t| > ecznlax(xl,...,xt)
e

for any s € S and max(xy,..., %) > ng.

Theorem 4. (Kiss and Matyés [6]). Let GO and GO (i = 2,...,t) be linear
recurrences defined by (2) and (1), respectively, and let K > 1 be a real number.
Suppose that |oq| > |a§l)| fori=2,...tandj=1,... k. If

|Ex1,~~~,17t| 7£ |a1afl|

and

Exl,...,x = sw!

t

for positive integers w > 1, q,x1,..., 24 and s € S such that

1 > K -max(za,. .., 4),
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then ¢ < ns.

Theorem 5. (Matydas [8]). Under the conditions of Theorem 4 for the sequences
G and integers x1, ..., x; we have

s = By, o] > e

for any s € S and min(x1, ¢) > ne.

Theorem 6. (Kiss and Matyas [5]). Under the conditions of Theorem 4 for the
sequences G) and integers xq,...,x; we have

|5 - z:f1,~~~yft| > e

for any s € S and x1 > nr.

Corollary 1. Under the conditions implied by Theorem 2 and Theorem 4, Theorem
3 and Theorem 6 imply that the relations

Hxl,...,xt €S and Exl,...,xt €S

hold only for finitely many positive integers x1, ..., x;.

If we replace sw? in Theorem 1, 2, 4 and 5 by a polynomial, we can obtain
similar results. Nemes and Peth§ [10] furthermore Kiss [7] proved, that if G is a
linear recurrence defined by (2) and F'(y) is a polynomial satisfying some conditions,
then the equation G, = F(y) implies that the degree of F(y) is bounded above.
Now we give some generalizations of this result.

Theorem 7. Let G®) (i = 1,...,t) be linear recursive sequences defined by (2)
and let 0 < § < 1 be a fixed positive real number. Further let

(3) Fy) = by 4+ bpy® +bp 1y 4+ 4 b

be a polynomial of integer coefficients with b # 0 and k < vyq, where 0 < v < 1. If
¢

v < cg and by? # [] aief", then
=1

K3

L

for any positive integers y, ¢, xi,..., x; satisfying the conditions y > 1, z; >
§ - max(zy,..., %), and min (¢, max(xy,..., ) > ns.
Theorem 8. Let G() (¢ = 1,...,t) be linear recurrences and x1,...x; positive

integers which satisfy the conditions of Theorem 4. Let F'(y) be a polynomial given
in Theorem 7. Then
[F(Y) = By, o > e
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for any positive integers y > 1, ®1,...,2; with min(q, #1) > ne.

Corollary 2. From Theorem 7 and 8 it follows, that if the sequences G®), the
integers w1,...,%: and the polynomial F(y) satisfy the conditions of Theorem 7
and Theorem 8, then the equations

and
Exl,...,xt — F(y)

imply the mmequalities ¢ < nyg and q < ny1, respectively.

3. Proofs

The proofs of the Theorems 1-6 can be found in the papers mentioned in
the theorems. The proofs are based upon Baker-type estimations of linear forms
of logarithms of algebraic numbers, using the explicit form of the terms of the
sequences.

Proof of Theorem 7. Let G) and F(y) be linear recurrences given in the theorem
and let y,q,21,..., 24 be positive integers such that y,¢ > 1, ¥ < 7y¢ and z; >
§ -max(xy,...,x¢) for i = 1,...,¢ Denote by z the maximum values of z1, ..., 2,
Le.

r=max(x1,..., L)

Suppose that
(4) [F(y) = ey o] < €7

for some ¢ > 0. Then by (2) and (3), using that 6z < #; < # and k < y¢

cr

(5)

<e

by? (1 +e1) — (H aiaf’) (14 ¢2)

i=1

follows, where
lex] < e™®% and |ea]| < e7®"

if ¢,z > ni1z. By (5), using that »; > 6z, we obtain the imequalities

—C11 %
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if ¢ < e19. From these it follows that

(6) l-e<|——| <145,

where 0 < £ < ¢12 - max(|e1], |e2], 6711 7). By (6) we get the inequality

i
[by?| < (1 +¢) Haiaf’ < gf13®
i=1
and so
(1) q-logy < cuaz.

Using (7), by Theorem 2 we have

1F(y) =Ty o 2 [lby" =Ty o | = ldiy® + -+ bol| >

|60151‘ _ y016k| — |60151‘ _ ec1ek'1‘)gy| >

|ecl5x _ ecle'yq~logy| > |ecl5x _ ec17'yx| > ef18®

if e15 > c177, Le. if v < e15/err. It contradicts to (4) if ¢ < ¢1g, which proves the
theorem with ¢5 = ¢15, ¢6 = c15/¢17 and ng = max(niz, ni3), where nqz is implied
by Theorem 2.

Proof of Theorem 8. The theorem can be proved similary as Theorem 7 using
the result of Theorem 5.
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