function [x, error, iter, flag] = cg(A, x, b, M, max_it, tol) % -- Iterative template routine -- % Univ. of Tennessee and Oak Ridge National Laboratory % October 1, 1993 % Details of this algorithm are described in "Templates for the % Solution of Linear Systems: Building Blocks for Iterative % Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra, % Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publications, % 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps). % % [x, error, iter, flag] = cg(A, x, b, M, max_it, tol) % % cg.m solves the symmetric positive definite linear system Ax=b % using the Conjugate Gradient method with preconditioning. % % input A REAL symmetric positive definite matrix % x REAL initial guess vector % b REAL right hand side vector % M REAL preconditioner matrix % max_it INTEGER maximum number of iterations % tol REAL error tolerance % % output x REAL solution vector % error REAL error norm % iter INTEGER number of iterations performed % flag INTEGER: 0 = solution found to tolerance % 1 = no convergence given max_it % % Updated August 2006; rbarrett@ornl.gov. (See ChangeLog for details.) % % ============================================================================= % --------------- % Initializations % --------------- dim = 0; flag = 0; iter = 0; alpha = 0.0; beta = 0.0; bnrm2 = 0.0; error = 0.0; rho = 0.0; rho_1 = 0.0; [dim,dim] = size(A); p = zeros(dim,1); q = zeros(dim,1); r = zeros(dim,1); z = zeros(dim,1); % ----------------------------- % Quick check of approximation. % ----------------------------- bnrm2 = norm( b ); if ( bnrm2 == 0.0 ), bnrm2 = 1.0; end r = b - A*x; error = norm( r ) / bnrm2; if ( error < tol ) return, end % ---------------- % Begin iteration. % ---------------- for iter = 1:max_it z = M \ r; rho = (r'*z); % ------------------------- % Compute direction vector. % ------------------------- if ( iter > 1 ), beta = rho / rho_1; p = z + beta*p; else p = z; end q = A*p; alpha = rho / (p'*q ); % --------------------- % Update approximation. % --------------------- x = x + alpha * p; r = r - alpha*q; % ------------------ % Check convergence. % ------------------ error = norm( r ) / bnrm2; if ( error <= tol ), break, end rho_1 = rho; end % ------------------------ % Final convergence check. % ------------------------ if ( error > tol ) flag = 1; end % -------- % End cg.m % -------- .