C------------------------------------------------------------- ************ C SAXPY C ************ SUBROUTINE SAXPY(N,SA,SX,INCX,SY,INCY) C C CONSTANT TIMES A VECTOR PLUS A VECTOR. C USES UNROLLED LOOP FOR INCREMENTS EQUAL TO ONE. C JACK DONGARRA, LINPACK, 3/11/78. C REAL SX(1),SY(1),SA INTEGER I,INCX,INCY,IX,IY,M,MP1,N C IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN IF (SA .EQ. 0.0) RETURN IF (INCX .EQ. 1 .AND. INCY .EQ. 1) GO TO 20 C C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS C NOT EQUAL TO 1 C IX = 1 IY = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 IF (INCY .LE. 0) IY = (-N+1)*INCY + 1 DO 10 I = 1,N SY(IY) = SY(IY) + SA*SX(IX) IX = IX + INCX IY = IY + INCY 10 CONTINUE RETURN C C CODE FOR BOTH INCREMENTS EQUAL TO 1 C C C CLEAN-UP LOOP C 20 M = MOD(N,4) IF (M .EQ. 0) GO TO 40 DO 30 I = 1,M SY(I) = SY(I) + SA*SX(I) 30 CONTINUE IF (N .LT. 4) RETURN 40 MP1 = M + 1 DO 50 I = MP1,N,4 SY(I) = SY(I) + SA*SX(I) SY(I+1) = SY(I+1) + SA*SX(I+1) SY(I+2) = SY(I+2) + SA*SX(I+2) SY(I+3) = SY(I+3) + SA*SX(I+3) 50 CONTINUE RETURN END C------------------------------------------------------------- ************ C SCOPY C ************ SUBROUTINE SCOPY(N,SX,INCX,SY,INCY) C C COPIES A VECTOR, X, TO A VECTOR, Y. C USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO 1. C JACK DONGARRA, LINPACK, 3/11/78. C REAL SX(1),SY(1) INTEGER I,INCX,INCY,IX,IY,M,MP1,N C IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN IF (INCX .EQ. 1 .AND. INCY .EQ. 1) GO TO 20 C C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS C NOT EQUAL TO 1 C IX = 1 IY = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 IF (INCY .LE. 0) IY = (-N+1)*INCY + 1 DO 10 I = 1,N SY(IY) = SX(IX) IX = IX + INCX IY = IY + INCY 10 CONTINUE RETURN C C CODE FOR BOTH INCREMENTS EQUAL TO 1 C C C CLEAN-UP LOOP C 20 M = MOD(N,7) IF (M .EQ. 0) GO TO 40 DO 30 I = 1,M SY(I) = SX(I) 30 CONTINUE IF (N .LT. 7) RETURN 40 MP1 = M + 1 DO 50 I = MP1,N,7 SY(I) = SX(I) SY(I+1) = SX(I+1) SY(I+2) = SX(I+2) SY(I+3) = SX(I+3) SY(I+4) = SX(I+4) SY(I+5) = SX(I+5) SY(I+6) = SX(I+6) 50 CONTINUE RETURN END C------------------------------------------------------------- ************ C SDOT C ************ REAL FUNCTION SDOT(N,SX,INCX,SY,INCY) C C FORMS THE DOT PRODUCT OF TWO VECTORS. C USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE. C JACK DONGARRA, LINPACK, 3/11/78. C REAL SX(1),SY(1),STEMP INTEGER I,INCX,INCY,IX,IY,M,MP1,N C STEMP = 0.0E0 SDOT = 0.0E0 IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN IF (INCX .EQ. 1 .AND. INCY .EQ. 1) GO TO 20 C C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS C NOT EQUAL TO 1 C IX = 1 IY = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 IF (INCY .LE. 0) IY = (-N+1)*INCY + 1 DO 10 I = 1,N STEMP = STEMP + SX(IX)*SY(IY) IX = IX + INCX IY = IY + INCY 10 CONTINUE SDOT = STEMP RETURN C C CODE FOR BOTH INCREMENTS EQUAL TO 1 C C C CLEAN-UP LOOP C 20 M = MOD(N,5) IF (M .EQ. 0) GO TO 40 DO 30 I = 1,M STEMP = STEMP + SX(I)*SY(I) 30 CONTINUE IF (N .LT. 5) GO TO 60 40 MP1 = M + 1 DO 50 I = MP1,N,5 STEMP = STEMP + SX(I)*SY(I) + SX(I+1)*SY(I+1) + * SX(I+2)*SY(I+2) + SX(I+3)*SY(I+3) + SX(I+4)*SY(I+4) 50 CONTINUE 60 SDOT = STEMP RETURN END C------------------------------------------------------------- ************ C SMACH C ************ REAL FUNCTION SMACH(JOB) INTEGER JOB C C SMACH COMPUTES MACHINE PARAMETERS OF FLOATING POINT C ARITHMETIC FOR USE IN TESTING ONLY. NOT REQUIRED BY C LINPACK PROPER. C C IF TROUBLE WITH AUTOMATIC COMPUTATION OF THESE QUANTITIES, C THEY CAN BE SET BY DIRECT ASSIGNMENT STATEMENTS. C ASSUME THE COMPUTER HAS C C B = BASE OF ARITHMETIC C T = NUMBER OF BASE B DIGITS C L = SMALLEST POSSIBLE EXPONENT C U = LARGEST POSSIBLE EXPONENT C C THEN C C EPS = B**(1-T) C TINY = 100.0*B**(-L+T) C HUGE = 0.01*B**(U-T) C C DMACH SAME AS SMACH EXCEPT T, L, U APPLY TO C DOUBLE PRECISION. C C CMACH SAME AS SMACH EXCEPT IF COMPLEX DIVISION C IS DONE BY C C 1/(X+I*Y) = (X-I*Y)/(X**2+Y**2) C C THEN C C TINY = SQRT(TINY) C HUGE = SQRT(HUGE) C C C JOB IS 1, 2 OR 3 FOR EPSILON, TINY AND HUGE, RESPECTIVELY. C C REAL EPS,TINY,HUGE,S C EPS = 1.0 10 EPS = EPS/2.0 S = 1.0 + EPS IF (S .GT. 1.0) GO TO 10 EPS = 2.0*EPS SMACH = EPS IF (JOB .EQ. 1) RETURN C SMACH = 0.0 S = 1.0 20 TINY = S S = S/16.0 IF (S*100. .NE. 0.0) GO TO 20 TINY = (TINY/EPS)*100.0 HUGE = 1.0/TINY C IF (JOB .EQ. 1) SMACH = EPS IF (JOB .EQ. 2) SMACH = TINY IF (JOB .EQ. 3) SMACH = HUGE RETURN END C------------------------------------------------------------- ************ C SNRM2 C ************ REAL FUNCTION SNRM2(N,SX,INCX) INTEGER NEXT REAL SX(1), CUTLO, CUTHI, HITEST, SUM, XMAX, ZERO, ONE DATA ZERO, ONE /0.0E0, 1.0E0/ C C EUCLIDEAN NORM OF THE N-VECTOR STORED IN SX() WITH STORAGE C INCREMENT INCX . C IF N .LE. 0 RETURN WITH RESULT = 0. C IF N .GE. 1 THEN INCX MUST BE .GE. 1 C C C.L.LAWSON, 1978 JAN 08 C C FOUR PHASE METHOD USING TWO BUILT-IN CONSTANTS THAT ARE C HOPEFULLY APPLICABLE TO ALL MACHINES. C CUTLO = MAXIMUM OF SQRT(U/EPS) OVER ALL KNOWN MACHINES. C CUTHI = MINIMUM OF SQRT(V) OVER ALL KNOWN MACHINES. C WHERE C EPS = SMALLEST NO. SUCH THAT EPS + 1. .GT. 1. C U = SMALLEST POSITIVE NO. (UNDERFLOW LIMIT) C V = LARGEST NO. (OVERFLOW LIMIT) C C BRIEF OUTLINE OF ALGORITHM.. C C PHASE 1 SCANS ZERO COMPONENTS. C MOVE TO PHASE 2 WHEN A COMPONENT IS NONZERO AND .LE. CUTLO C MOVE TO PHASE 3 WHEN A COMPONENT IS .GT. CUTLO C MOVE TO PHASE 4 WHEN A COMPONENT IS .GE. CUTHI/M C WHERE M = N FOR X() REAL AND M = 2*N FOR COMPLEX. C C VALUES FOR CUTLO AND CUTHI.. C FROM THE ENVIRONMENTAL PARAMETERS LISTED IN THE IMSL CONVERTER C DOCUMENT THE LIMITING VALUES ARE AS FOLLOWS.. C CUTLO, S.P. U/EPS = 2**(-102) FOR HONEYWELL. CLOSE SECONDS ARE C UNIVAC AND DEC AT 2**(-103) C THUS CUTLO = 2**(-51) = 4.44089E-16 C CUTHI, S.P. V = 2**127 FOR UNIVAC, HONEYWELL, AND DEC. C THUS CUTHI = 2**(63.5) = 1.30438E19 C CUTLO, D.P. U/EPS = 2**(-67) FOR HONEYWELL AND DEC. C THUS CUTLO = 2**(-33.5) = 8.23181D-11 C CUTHI, D.P. SAME AS S.P. CUTHI = 1.30438D19 C DATA CUTLO, CUTHI / 8.232D-11, 1.304D19 / C DATA CUTLO, CUTHI / 4.441E-16, 1.304E19 / DATA CUTLO, CUTHI / 4.441E-16, 1.304E19 / C IF(N .GT. 0) GO TO 10 SNRM2 = ZERO GO TO 300 C 10 ASSIGN 30 TO NEXT SUM = ZERO NN = N * INCX C BEGIN MAIN LOOP I = 1 20 GO TO NEXT,(30, 50, 70, 110) 30 IF (ABS(SX(I)) .GT. CUTLO) GO TO 85 ASSIGN 50 TO NEXT XMAX = ZERO C C PHASE 1. SUM IS ZERO C 50 IF (SX(I) .EQ. ZERO) GO TO 200 IF (ABS(SX(I)) .GT. CUTLO) GO TO 85 C C PREPARE FOR PHASE 2. ASSIGN 70 TO NEXT GO TO 105 C C PREPARE FOR PHASE 4. C 100 I = J ASSIGN 110 TO NEXT SUM = (SUM / SX(I)) / SX(I) 105 XMAX = ABS(SX(I)) GO TO 115 C C PHASE 2. SUM IS SMALL. C SCALE TO AVOID DESTRUCTIVE UNDERFLOW. C 70 IF( ABS(SX(I)) .GT. CUTLO ) GO TO 75 C C COMMON CODE FOR PHASES 2 AND 4. C IN PHASE 4 SUM IS LARGE. SCALE TO AVOID OVERFLOW. C 110 IF( ABS(SX(I)) .LE. XMAX ) GO TO 115 SUM = ONE + SUM * (XMAX / SX(I))**2 XMAX = ABS(SX(I)) GO TO 200 C 115 SUM = SUM + (SX(I)/XMAX)**2 GO TO 200 C C C PREPARE FOR PHASE 3. C 75 SUM = (SUM * XMAX) * XMAX C C C FOR REAL OR D.P. SET HITEST = CUTHI/N C FOR COMPLEX SET HITEST = CUTHI/(2*N) C 85 HITEST = CUTHI/FLOAT( N ) C C PHASE 3. SUM IS MID-RANGE. NO SCALING. C DO 95 J =I,NN,INCX IF(ABS(SX(J)) .GE. HITEST) GO TO 100 95 SUM = SUM + SX(J)**2 SNRM2 = SQRT( SUM ) GO TO 300 C 200 CONTINUE I = I + INCX IF ( I .LE. NN ) GO TO 20 C C END OF MAIN LOOP. C C COMPUTE SQUARE ROOT AND ADJUST FOR SCALING. C SNRM2 = XMAX * SQRT(SUM) 300 CONTINUE RETURN END C------------------------------------------------------------- ************ C SROT C ************ SUBROUTINE SROT (N,SX,INCX,SY,INCY,C,S) C C APPLIES A PLANE ROTATION. C JACK DONGARRA, LINPACK, 3/11/78. C REAL SX(1),SY(1),STEMP,C,S INTEGER I,INCX,INCY,IX,IY,N C IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN IF (INCX .EQ. 1 .AND. INCY .EQ. 1) GO TO 20 C C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS NOT EQUAL C TO 1 C IX = 1 IY = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 IF (INCY .LE. 0) IY = (-N+1)*INCY + 1 DO 10 I = 1,N STEMP = C*SX(IX) + S*SY(IY) SY(IY) = C*SY(IY) - S*SX(IX) SX(IX) = STEMP IX = IX + INCX IY = IY + INCY 10 CONTINUE RETURN C C CODE FOR BOTH INCREMENTS EQUAL TO 1 C 20 DO 30 I = 1,N STEMP = C*SX(I) + S*SY(I) SY(I) = C*SY(I) - S*SX(I) SX(I) = STEMP 30 CONTINUE RETURN END C------------------------------------------------------------- ************ C SROTG C ************ SUBROUTINE SROTG(SA,SB,C,S) C C CONSTRUCT GIVENS PLANE ROTATION. C JACK DONGARRA, LINPACK, 3/11/78. C REAL SA,SB,C,S,ROE,SCALE,R,Z C ROE = SB IF( ABS(SA) .GT. ABS(SB) ) ROE = SA SCALE = ABS(SA) + ABS(SB) IF( SCALE .NE. 0.0 ) GO TO 10 C = 1.0 S = 0.0 R = 0.0 GO TO 20 10 R = SCALE*SQRT((SA/SCALE)**2 + (SB/SCALE)**2) R = SIGN(1.0,ROE)*R C = SA/R S = SB/R 20 Z = 1.0 IF( ABS(SA) .GT. ABS(SB) ) Z = S IF( ABS(SB) .GE. ABS(SA) .AND. C .NE. 0.0 ) Z = 1.0/C SA = R SB = Z RETURN END C------------------------------------------------------------- ************ C SSCAL C ************ SUBROUTINE SSCAL(N,SA,SX,INCX) C C SCALES A VECTOR BY A CONSTANT. C USES UNROLLED LOOPS FOR INCREMENT EQUAL TO 1. C JACK DONGARRA, LINPACK, 3/11/78. C REAL SA,SX(1) INTEGER I,INCX,M,MP1,N,IX C IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN IF (INCX .EQ. 1) GO TO 20 C C CODE FOR INCREMENT NOT EQUAL TO 1 C IX = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 DO 10 I = 1,N SX(IX) = SA*SX(IX) IX = IX + INCX 10 CONTINUE RETURN C C CODE FOR INCREMENT EQUAL TO 1 C C C CLEAN-UP LOOP C 20 M = MOD(N,5) IF (M .EQ. 0) GO TO 40 DO 30 I = 1,M SX(I) = SA*SX(I) 30 CONTINUE IF (N .LT. 5) RETURN 40 MP1 = M + 1 DO 50 I = MP1,N,5 SX(I) = SA*SX(I) SX(I+1) = SA*SX(I+1) SX(I+2) = SA*SX(I+2) SX(I+3) = SA*SX(I+3) SX(I+4) = SA*SX(I+4) 50 CONTINUE RETURN END C------------------------------------------------------------- ************ C SSWAP C ************ SUBROUTINE SSWAP (N,SX,INCX,SY,INCY) C C INTERCHANGES TWO VECTORS. C USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO 1. C JACK DONGARRA, LINPACK, 3/11/78. C REAL SX(1),SY(1),STEMP INTEGER I,INCX,INCY,IX,IY,M,MP1,N C IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN IF (INCX .EQ. 1 .AND. INCY .EQ. 1) GO TO 20 C C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS NOT EQUAL C TO 1 C IX = 1 IY = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 IF (INCY .LE. 0) IY = (-N+1)*INCY + 1 DO 10 I = 1,N STEMP = SX(IX) SX(IX) = SY(IY) SY(IY) = STEMP IX = IX + INCX IY = IY + INCY 10 CONTINUE RETURN C C CODE FOR BOTH INCREMENTS EQUAL TO 1 C C C CLEAN-UP LOOP C 20 M = MOD(N,3) IF( M .EQ. 0 ) GO TO 40 DO 30 I = 1,M STEMP = SX(I) SX(I) = SY(I) SY(I) = STEMP 30 CONTINUE IF( N .LT. 3 ) RETURN 40 MP1 = M + 1 DO 50 I = MP1,N,3 STEMP = SX(I) SX(I) = SY(I) SY(I) = STEMP STEMP = SX(I+1) SX(I+1) = SY(I+1) SY(I+1) = STEMP STEMP = SX(I+2) SX(I+2) = SY(I+2) SY(I+2) = STEMP 50 CONTINUE RETURN END C------------------------------------------------------------- ************ C CAXPY C ************ SUBROUTINE CAXPY(N,CA,CX,INCX,CY,INCY) C C CONSTANT TIMES A VECTOR PLUS A VECTOR. C JACK DONGARRA, LINPACK, 3/11/78. C COMPLEX CX(1),CY(1),CA INTEGER I,INCX,INCY,IX,IY,N C IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN IF (ABS(REAL(CA)) + ABS(AIMAG(CA)) .EQ. 0.0) RETURN IF (INCX .EQ. 1 .AND. INCY .EQ. 1) GO TO 20 C C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS C NOT EQUAL TO 1 C IX = 1 IY = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 IF (INCY .LE. 0) IY = (-N+1)*INCY + 1 DO 10 I = 1,N CY(IY) = CY(IY) + CA*CX(IX) IX = IX + INCX IY = IY + INCY 10 CONTINUE RETURN C C CODE FOR BOTH INCREMENTS EQUAL TO 1 C 20 DO 30 I = 1,N CY(I) = CY(I) + CA*CX(I) 30 CONTINUE RETURN END C------------------------------------------------------------- ************ C CCOPY C ************ SUBROUTINE CCOPY(N,CX,INCX,CY,INCY) C C COPIES A VECTOR, X, TO A VECTOR, Y. C JACK DONGARRA, LINPACK, 3/11/78. C COMPLEX CX(1),CY(1) INTEGER I,INCX,INCY,IX,IY,N C IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN IF (INCX .EQ. 1 .AND. INCY .EQ. 1) GO TO 20 C C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS C NOT EQUAL TO 1 C IX = 1 IY = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 IF (INCY .LE. 0) IY = (-N+1)*INCY + 1 DO 10 I = 1,N CY(IY) = CX(IX) IX = IX + INCX IY = IY + INCY 10 CONTINUE RETURN C C CODE FOR BOTH INCREMENTS EQUAL TO 1 C 20 DO 30 I = 1,N CY(I) = CX(I) 30 CONTINUE RETURN END C------------------------------------------------------------- ************ C CDOTC C ************ COMPLEX FUNCTION CDOTC(N,CX,INCX,CY,INCY) C C FORMS THE DOT PRODUCT OF TWO VECTORS, CONJUGATING THE FIRST C VECTOR. C JACK DONGARRA, LINPACK, 3/11/78. C COMPLEX CX(1),CY(1),CTEMP INTEGER I,INCX,INCY,IX,IY,N C CTEMP = (0.0,0.0) CDOTC = (0.0,0.0) IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN IF (INCX .EQ. 1 .AND. INCY .EQ. 1) GO TO 20 C C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS C NOT EQUAL TO 1 C IX = 1 IY = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 IF (INCY .LE. 0) IY = (-N+1)*INCY + 1 DO 10 I = 1,N CTEMP = CTEMP + CONJG(CX(IX))*CY(IY) IX = IX + INCX IY = IY + INCY 10 CONTINUE CDOTC = CTEMP RETURN C C CODE FOR BOTH INCREMENTS EQUAL TO 1 C 20 DO 30 I = 1,N CTEMP = CTEMP + CONJG(CX(I))*CY(I) 30 CONTINUE CDOTC = CTEMP RETURN END C------------------------------------------------------------- ************ C CDOTU C ************ COMPLEX FUNCTION CDOTU(N,CX,INCX,CY,INCY) C C FORMS THE DOT PRODUCT OF TWO VECTORS. C JACK DONGARRA, LINPACK, 3/11/78. C COMPLEX CX(1),CY(1),CTEMP INTEGER I,INCX,INCY,IX,IY,N C CTEMP = (0.0,0.0) CDOTU = (0.0,0.0) IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN IF (INCX .EQ. 1 .AND. INCY .EQ. 1) GO TO 20 C C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS C NOT EQUAL TO 1 C IX = 1 IY = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 IF (INCY .LE. 0) IY = (-N+1)*INCY + 1 DO 10 I = 1,N CTEMP = CTEMP + CX(IX)*CY(IY) IX = IX + INCX IY = IY + INCY 10 CONTINUE CDOTU = CTEMP RETURN C C CODE FOR BOTH INCREMENTS EQUAL TO 1 C 20 DO 30 I = 1,N CTEMP = CTEMP + CX(I)*CY(I) 30 CONTINUE CDOTU = CTEMP RETURN END C------------------------------------------------------------- ************ C CMACH C ************ REAL FUNCTION CMACH(JOB) INTEGER JOB C C SMACH COMPUTES MACHINE PARAMETERS OF FLOATING POINT C ARITHMETIC FOR USE IN TESTING ONLY. NOT REQUIRED BY C LINPACK PROPER. C C IF TROUBLE WITH AUTOMATIC COMPUTATION OF THESE QUANTITIES, C THEY CAN BE SET BY DIRECT ASSIGNMENT STATEMENTS. C ASSUME THE COMPUTER HAS C C B = BASE OF ARITHMETIC C T = NUMBER OF BASE B DIGITS C L = SMALLEST POSSIBLE EXPONENT C U = LARGEST POSSIBLE EXPONENT C C THEN C C EPS = B**(1-T) C TINY = 100.0*B**(-L+T) C HUGE = 0.01*B**(U-T) C C DMACH SAME AS SMACH EXCEPT T, L, U APPLY TO C DOUBLE PRECISION. C C CMACH SAME AS SMACH EXCEPT IF COMPLEX DIVISION C IS DONE BY C C 1/(X+I*Y) = (X-I*Y)/(X**2+Y**2) C C THEN C C TINY = SQRT(TINY) C HUGE = SQRT(HUGE) C C C JOB IS 1, 2 OR 3 FOR EPSILON, TINY AND HUGE, RESPECTIVELY. C C REAL EPS,TINY,HUGE,S C EPS = 1.0 10 EPS = EPS/2.0 S = 1.0 + EPS IF (S .GT. 1.0) GO TO 10 EPS = 2.0*EPS CMACH =EPS IF( JOB .EQ. 1) RETURN CMACH = 0.0 S = 1.0 20 TINY = S S = S/16.0 IF (S*1.0 .NE. 0.0) GO TO 20 TINY = (TINY/EPS)*100. S = REAL((1.0,0.0)/CMPLX(TINY,0.0)) IF (S .NE. 1.0/TINY) TINY = SQRT(TINY) HUGE = 1.0/TINY IF (JOB .EQ. 1) CMACH = EPS IF (JOB .EQ. 2) CMACH = TINY IF (JOB .EQ. 3) CMACH = HUGE RETURN END C------------------------------------------------------------- ************ C CROT C ************ SUBROUTINE CROT(N,CX,INCX,CY,INCY,CC,CS) C C APPLIES A PLANE ROTATION. C JACK DONGARRA, LINPACK, 3/11/78. C COMPLEX CX(1),CY(1),CTEMP,CC,CS INTEGER I,INCX,INCY,IX,IY,N C IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN IF (INCX .EQ. 1 .AND. INCY .EQ. 1) GO TO 20 C C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS NOT EQUAL C TO 1 C IX = 1 IY = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 IF (INCY .LE. 0) IY = (-N+1)*INCY + 1 DO 10 I = 1,N CTEMP = CC*CX(IX) + CS*CY(IY) CY(IY) = CC*CY(IY) - CONJG(CS)*CX(IX) CX(IX) = CTEMP IX = IX + INCX IY = IY + INCY 10 CONTINUE RETURN C C CODE FOR BOTH INCREMENTS EQUAL TO 1 C 20 DO 30 I = 1,N CTEMP = CC*CX(I) + CS*CY(I) CY(I) = CC*CY(I) - CONJG(CS)*CX(I) CX(I) = CTEMP 30 CONTINUE RETURN END C------------------------------------------------------------- ************ C CROTG C ************ SUBROUTINE CROTG(CA,CB,C,S) C COMPLEX CA,CB,S REAL C REAL NORM,SCALE COMPLEX ALPHA IF (ABS(CA) .NE. 0.) GO TO 10 C = 0. S = (1.,0.) CA = CB GO TO 20 10 CONTINUE SCALE = ABS(CA) + ABS(CB) NORM = SCALE * SQRT((ABS(CA/SCALE))**2 + (ABS(CB/SCALE))**2) ALPHA = CA /ABS(CA) C = ABS(CA) / NORM S = ALPHA * CONJG(CB) / NORM CA = ALPHA * NORM 20 CONTINUE RETURN END C------------------------------------------------------------- ************ C CSCAL C ************ SUBROUTINE CSCAL(N,CA,CX,INCX) C C SCALES A VECTOR BY A CONSTANT. C JACK DONGARRA, LINPACK, 3/11/78. C COMPLEX CA,CX(1) INTEGER I,INCX,N,IX C IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN IF (INCX .EQ. 1) GO TO 20 C C CODE FOR INCREMENT NOT EQUAL TO 1. C IX = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 DO 10 I = 1,N CX(IX) = CA*CX(IX) IX = IX + INCX 10 CONTINUE RETURN C C CODE FOR INCREMENT EQUAL TO 1. C 20 DO 30 I = 1,N CX(I) = CA*CX(I) 30 CONTINUE RETURN END C------------------------------------------------------------- ************ C CSSCAL C ************ SUBROUTINE CSSCAL(N,SA,CX,INCX) C C SCALES A COMPLEX VECTOR BY A REAL CONSTANT. C JACK DONGARRA, LINPACK, 3/11/78. C COMPLEX CX(1) REAL SA INTEGER I,INCX,N,IX C IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN IF (INCX .EQ. 1) GO TO 20 C C CODE FOR INCREMENT NOT EQUAL TO 1. C IX = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 DO 10 I = 1,N CX(IX) = CMPLX(SA*REAL(CX(IX)),SA*AIMAG(CX(IX))) IX = IX + INCX 10 CONTINUE RETURN C C CODE FOR INCREMENT EQUAL TO 1. C 20 DO 30 I = 1,N CX(I) = CMPLX(SA*REAL(CX(I)),SA*AIMAG(CX(I))) 30 CONTINUE RETURN END C------------------------------------------------------------- ************ C CSUM C ************ COMPLEX FUNCTION CSUM(N,CX,INCX) C C TAKES THE SUM OF THE VALUES OF A VECTOR. C USES UNROLLED LOOPS FOR INCREMENT EQUAL TO ONE. C JACK DONGARRA, LINPACK, 3/11/78. C COMPLEX CX(1),CTEMP INTEGER I,INCX,M,MP1,N,IX C CSUM = (0.0,0.0) CTEMP = (0.0,0.0) IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN IF (INCX .EQ. 1) GO TO 20 C C CODE FOR INCREMENT NOT EQUAL TO 1 C IX = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 DO 10 I = 1,N CTEMP = CTEMP + CX(IX) IX = IX + INCX 10 CONTINUE CSUM = CTEMP RETURN C C CODE FOR INCREMENT EQUAL TO 1 C C CLEAN-UP LOOP C 20 M = MOD(N,6) IF (M .EQ. 0) GO TO 40 DO 30 I = 1,M CTEMP = CTEMP + CX(I) 30 CONTINUE IF (N .LT. 6) GO TO 60 40 MP1 = M + 1 DO 50 I = MP1,N,6 CTEMP = CTEMP + CX(I) + CX(I+1) + CX(I+2) + CX(I+3) * + CX(I+4) + CX(I+5) 50 CONTINUE 60 CSUM = CTEMP RETURN END C------------------------------------------------------------- ************ C CSWAP C ************ SUBROUTINE CSWAP(N,CX,INCX,CY,INCY) C C INTERCHANGES TWO VECTORS. C JACK DONGARRA, LINPACK, 3/11/78. C COMPLEX CX(1),CY(1),CTEMP INTEGER I,INCX,INCY,IX,IY,N C IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN IF (INCX .EQ. 1 .AND. INCY .EQ. 1) GO TO 20 C C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS C NOT EQUAL TO 1. C IX = 1 IY = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 IF (INCY .LE. 0) IY = (-N+1)*INCY + 1 DO 10 I = 1,N CTEMP = CX(IX) CX(IX) = CY(IY) CY(IY) = CTEMP IX = IX + INCX IY = IY + INCY 10 CONTINUE RETURN C C CODE FOR BOTH INCREMENTS EQUAL TO 1. C 20 DO 30 I = 1,N CTEMP = CX(I) CX(I) = CY(I) CY(I) = CTEMP 30 CONTINUE RETURN END C------------------------------------------------------------- ************ C ICAMAX C ************ INTEGER FUNCTION ICAMAX(N,CX,INCX) C C FINDS THE INDEX OF ELEMENT HAVING MAX. ABSOLUTE VALUE. C JACK DONGARRA, LINPACK, 3/11/78. C COMPLEX CX(1) REAL SMAX INTEGER I,INCX,IX,N COMPLEX ZDUM REAL CABS1 CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM)) C ICAMAX = 0 IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN ICAMAX = 1 IF (N .EQ. 1) RETURN IF (INCX .EQ. 1) GO TO 20 C C CODE FOR INCREMENT NOT EQUAL TO 1 C IX = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 SMAX = CABS1(CX(IX)) IX = IX + INCX DO 10 I = 2,N IF (CABS1(CX(IX)) .LE. SMAX) GO TO 5 ICAMAX = I SMAX = CABS1(CX(IX)) 5 IX = IX + INCX 10 CONTINUE RETURN C C CODE FOR INCREMENT EQUAL TO 1 C 20 SMAX = CABS1(CX(1)) DO 30 I = 2,N IF(CABS1(CX(I)).LE.SMAX) GO TO 30 ICAMAX = I SMAX = CABS1(CX(I)) 30 CONTINUE RETURN END C------------------------------------------------------------- ************ C ISAMAX C ************ INTEGER FUNCTION ISAMAX(N,SX,INCX) C C FINDS THE INDEX OF ELEMENT HAVING MAX. ABSOLUTE VALUE. C JACK DONGARRA, LINPACK, 3/11/78. C REAL SX(1),SMAX INTEGER I,INCX,IX,N C ISAMAX = 0 IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN ISAMAX = 1 IF (N .EQ. 1) RETURN IF (INCX .EQ. 1) GO TO 20 C C CODE FOR INCREMENT NOT EQUAL TO 1 C IX = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 SMAX = ABS(SX(IX)) IX = IX + INCX DO 10 I = 2,N IF (ABS(SX(IX)) .LE. SMAX) GO TO 5 ISAMAX = I SMAX = ABS(SX(IX)) 5 IX = IX + INCX 10 CONTINUE RETURN C C CODE FOR INCREMENT EQUAL TO 1 C 20 SMAX = ABS(SX(1)) DO 30 I = 2,N IF (ABS(SX(I)) .LE. SMAX) GO TO 30 ISAMAX = I SMAX = ABS(SX(I)) 30 CONTINUE RETURN END C------------------------------------------------------------- ************ C ISAMIN C ************ INTEGER FUNCTION ISAMIN(N,SX,INCX) C C FINDS THE INDEX OF ELEMENT HAVING MIN. ABSOLUTE VALUE. C JACK DONGARRA, LINPACK, 3/11/78. C REAL SX(1),SMIN INTEGER I,INCX,IX,N C ISAMIN = 0 IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN ISAMIN = 1 IF (N .EQ. 1) RETURN IF (INCX .EQ. 1) GO TO 20 C C CODE FOR INCREMENT NOT EQUAL TO 1 C IX = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 SMIN = ABS(SX(IX)) IX = IX + INCX DO 10 I = 2,N IF (ABS(SX(IX)) .GE. SMIN) GO TO 5 ISAMIN = I SMIN = ABS(SX(IX)) 5 IX = IX + INCX 10 CONTINUE RETURN C C CODE FOR INCREMENT EQUAL TO 1 C 20 SMIN = ABS(SX(1)) DO 30 I = 2,N IF (ABS(SX(I)) .GE. SMIN) GO TO 30 ISAMIN = I SMIN = ABS(SX(I)) 30 CONTINUE RETURN END C------------------------------------------------------------- ************ C ISMAX C ************ INTEGER FUNCTION ISMAX(N,SX,INCX) C C FINDS THE INDEX OF ELEMENT WITH MAX. VALUE. C JACK DONGARRA, LINPACK, 3/11/78. C INTEGER I,INCX,IX,N REAL SX(1),SMAX C ISMAX = 0 IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN ISMAX = 1 IF (N .EQ. 1) RETURN IF (INCX .EQ. 1) GO TO 20 C C CODE FOR INCREMENT NOT EQUAL TO 1 C IX = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 SMAX = SX(IX) IX = IX + INCX DO 10 I = 2,N IF (SX(IX) .LE. SMAX) GO TO 5 ISMAX = I SMAX = SX(IX) 5 IX = IX + INCX 10 CONTINUE RETURN C C CODE FOR INCREMENT EQUAL TO 1 C 20 SMAX = SX(1) DO 30 I = 2,N,1 IF (SX(I) .LE. SMAX) GO TO 30 ISMAX = I SMAX = SX(I) 30 CONTINUE RETURN END C------------------------------------------------------------- ************ C ISMIN C ************ INTEGER FUNCTION ISMIN(N,SX,INCX) C C FINDS THE INDEX OF ELEMENT WITH MIN. VALUE. C JACK DONGARRA, LINPACK, 3/11/78. C INTEGER I,INCX,IX,N REAL SX(1),SMIN C ISMIN = 0 IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN ISMIN = 1 IF (N .EQ. 1) RETURN IF (INCX .EQ. 1) GO TO 20 C C CODE FOR INCREMENT NOT EQUAL TO 1 C IX = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 SMIN = SX(IX) IX = IX + INCX DO 10 I = 2,N,1 IF (SX(IX) .GE. SMIN) GO TO 5 ISMIN = I SMIN = SX(IX) 5 IX = IX + INCX 10 CONTINUE RETURN C C CODE FOR INCREMENT EQUAL TO 1 C 20 SMIN = SX(1) DO 30 I = 2,N,1 IF (SX(I) .GE. SMIN) GO TO 30 ISMIN = I SMIN = SX(I) 30 CONTINUE RETURN END C------------------------------------------------------------- ************ C SASUM C ************ REAL FUNCTION SASUM(N,SX,INCX) C C TAKES THE SUM OF THE ABSOLUTE VALUES. C USES UNROLLED LOOPS FOR INCREMENT EQUAL TO ONE. C JACK DONGARRA, LINPACK, 3/11/78. C REAL SX(1),STEMP INTEGER I,INCX,M,MP1,N,IX C SASUM = 0.0E0 STEMP = 0.0E0 IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN IF (INCX .EQ. 1) GO TO 20 C C CODE FOR INCREMENT NOT EQUAL TO 1 C IX = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 DO 10 I = 1,N STEMP = STEMP + ABS(SX(IX)) IX = IX + INCX 10 CONTINUE SASUM = STEMP RETURN C C CODE FOR INCREMENT EQUAL TO 1 C C CLEAN-UP LOOP C 20 M = MOD(N,6) IF (M .EQ. 0) GO TO 40 DO 30 I = 1,M STEMP = STEMP + ABS(SX(I)) 30 CONTINUE IF (N .LT. 6) GO TO 60 40 MP1 = M + 1 DO 50 I = MP1,N,6 STEMP = STEMP + ABS(SX(I)) + ABS(SX(I+1)) + ABS(SX(I+2)) * + ABS(SX(I+3)) + ABS(SX(I+4)) + ABS(SX(I+5)) 50 CONTINUE 60 SASUM = STEMP RETURN END C------------------------------------------------------------- ************ C SCASUM C ************ REAL FUNCTION SCASUM(N,CX,INCX) C C TAKES THE SUM OF THE ABSOLUTE VALUES OF A COMPLEX VECTOR AND C RETURNS A SINGLE PRECISION RESULT. C JACK DONGARRA, LINPACK, 3/11/78. C COMPLEX CX(1) REAL STEMP INTEGER I,INCX,N,IX C SCASUM = 0.0E0 STEMP = 0.0E0 IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN IF(INCX.EQ.1)GO TO 20 C C CODE FOR INCREMENT NOT EQUAL TO 1 C IX = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 DO 10 I = 1,N STEMP = STEMP + ABS(REAL(CX(IX))) + ABS(AIMAG(CX(IX))) IX = IX + INCX 10 CONTINUE SCASUM = STEMP RETURN C C CODE FOR INCREMENT EQUAL TO 1 C 20 DO 30 I = 1,N STEMP = STEMP + ABS(REAL(CX(I))) + ABS(AIMAG(CX(I))) 30 CONTINUE SCASUM = STEMP RETURN END C------------------------------------------------------------- ************ C SCNRM2 C ************ REAL FUNCTION SCNRM2(N,CX,INCX) C LOGICAL IMAG, SCALE INTEGER NEXT REAL CUTLO, CUTHI, HITEST, SUM, XMAX, ABSX, ZERO, ONE COMPLEX CX(1) DATA ZERO, ONE /0.0E0, 1.0E0/ C C UNITARY NORM OF THE COMPLEX N-VECTOR STORED IN CX() WITH STORAGE C INCREMENT INCX . C IF N .LE. 0 RETURN WITH RESULT = 0. C IF N .GE. 1 THEN INCX MUST BE .GE. 1 C C C.L.LAWSON , 1978 JAN 08 C C FOUR PHASE METHOD USING TWO BUILT-IN CONSTANTS THAT ARE C HOPEFULLY APPLICABLE TO ALL MACHINES. C CUTLO = MAXIMUM OF SQRT(U/EPS) OVER ALL KNOWN MACHINES. C CUTHI = MINIMUM OF SQRT(V) OVER ALL KNOWN MACHINES. C WHERE C EPS = SMALLEST NO. SUCH THAT EPS + 1. .GT. 1. C U = SMALLEST POSITIVE NO. (UNDERFLOW LIMIT) C V = LARGEST NO. (OVERFLOW LIMIT) C C BRIEF OUTLINE OF ALGORITHM.. C C PHASE 1 SCANS ZERO COMPONENTS. C MOVE TO PHASE 2 WHEN A COMPONENT IS NONZERO AND .LE. CUTLO C MOVE TO PHASE 3 WHEN A COMPONENT IS .GT. CUTLO C MOVE TO PHASE 4 WHEN A COMPONENT IS .GE. CUTHI/M C WHERE M = N FOR X() REAL AND M = 2*N FOR COMPLEX. C C VALUES FOR CUTLO AND CUTHI.. C FROM THE ENVIRONMENTAL PARAMETERS LISTED IN THE IMSL CONVERTER C DOCUMENT THE LIMITING VALUES ARE AS FOLLOWS.. C CUTLO, S.P. U/EPS = 2**(-102) FOR HONEYWELL. CLOSE SECONDS ARE C UNIVAC AND DEC AT 2**(-103) C THUS CUTLO = 2**(-51) = 4.44089E-16 C CUTHI, S.P. V = 2**127 FOR UNIVAC, HONEYWELL, AND DEC. C THUS CUTHI = 2**(63.5) = 1.30438E19 C CUTLO, D.P. U/EPS = 2**(-67) FOR HONEYWELL AND DEC. C THUS CUTLO = 2**(-33.5) = 8.23181D-11 C CUTHI, D.P. SAME AS S.P. CUTHI = 1.30438D19 C DATA CUTLO, CUTHI / 8.232D-11, 1.304D19 / C DATA CUTLO, CUTHI / 4.441E-16, 1.304E19 / DATA CUTLO, CUTHI / 4.441E-16, 1.304E19 / C IF(N .GT. 0) GO TO 10 SCNRM2 = ZERO GO TO 300 C 10 ASSIGN 30 TO NEXT SUM = ZERO NN = N * INCX C BEGIN MAIN LOOP DO 210 I=1,NN,INCX ABSX = ABS(REAL(CX(I))) IMAG = .FALSE. GO TO NEXT,(30, 50, 70, 90, 110) 30 IF( ABSX .GT. CUTLO) GO TO 85 ASSIGN 50 TO NEXT SCALE = .FALSE. C C PHASE 1. SUM IS ZERO C 50 IF( ABSX .EQ. ZERO) GO TO 200 IF( ABSX .GT. CUTLO) GO TO 85 C C PREPARE FOR PHASE 2. ASSIGN 70 TO NEXT GO TO 105 C C PREPARE FOR PHASE 4. C 100 ASSIGN 110 TO NEXT SUM = (SUM / ABSX) / ABSX 105 SCALE = .TRUE. XMAX = ABSX GO TO 115 C C PHASE 2. SUM IS SMALL. C SCALE TO AVOID DESTRUCTIVE UNDERFLOW. C 70 IF( ABSX .GT. CUTLO ) GO TO 75 C C COMMON CODE FOR PHASES 2 AND 4. C IN PHASE 4 SUM IS LARGE. SCALE TO AVOID OVERFLOW. C 110 IF( ABSX .LE. XMAX ) GO TO 115 SUM = ONE + SUM * (XMAX / ABSX)**2 XMAX = ABSX GO TO 200 C 115 SUM = SUM + (ABSX/XMAX)**2 GO TO 200 C C C PREPARE FOR PHASE 3. C 75 SUM = (SUM * XMAX) * XMAX C 85 ASSIGN 90 TO NEXT SCALE = .FALSE. C C FOR REAL OR D.P. SET HITEST = CUTHI/N C FOR COMPLEX SET HITEST = CUTHI/(2*N) C HITEST = CUTHI/FLOAT( N ) C C PHASE 3. SUM IS MID-RANGE. NO SCALING. C 90 IF(ABSX .GE. HITEST) GO TO 100 SUM = SUM + ABSX**2 200 CONTINUE C CONTROL SELECTION OF REAL AND IMAGINARY PARTS. C IF(IMAG) GO TO 210 ABSX = ABS(AIMAG(CX(I))) IMAG = .TRUE. GO TO NEXT,( 50, 70, 90, 110 ) C 210 CONTINUE C C END OF MAIN LOOP. C COMPUTE SQUARE ROOT AND ADJUST FOR SCALING. C SCNRM2 = SQRT(SUM) IF(SCALE) SCNRM2 = SCNRM2 * XMAX 300 CONTINUE RETURN END C------------------------------------------------------------- ************ C SPAXPY C ************ SUBROUTINE SPAXPY(N,SA,SX,SY,INDEX) REAL SA,SX(1),SY(1) INTEGER I,N,INDEX(1) DO 10 I = 1,N 10 SY(INDEX(I)) = SA * SX(I) + SY(INDEX(I)) RETURN END C------------------------------------------------------------- ************ C SPDOT C ************ REAL FUNCTION SPDOT(N,SY,INDEX,SX) C REAL SX(1),SY(1),SUM INTEGER I,N,INDEX(1) C SUM = 0.0E0 DO 10 I = 1,N 10 SUM = SUM + SY(INDEX(I)) * SX(I) SPDOT = SUM RETURN END C------------------------------------------------------------- ************ C SSUM C ************ REAL FUNCTION SSUM(N,SX,INCX) C C TAKES THE SUM OF THE VALUES OF A VECTOR. C USES UNROLLED LOOPS FOR INCREMENT EQUAL TO ONE. C JACK DONGARRA, LINPACK, 3/11/78. C REAL SX(1),STEMP INTEGER I,INCX,M,MP1,N,IX C SSUM = 0.0E0 STEMP = 0.0E0 IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN IF (INCX .EQ. 1) GO TO 20 C C CODE FOR INCREMENT NOT EQUAL TO 1 C IX = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 DO 10 I = 1,N STEMP = STEMP + SX(IX) IX = IX + INCX 10 CONTINUE SSUM = STEMP RETURN C C CODE FOR INCREMENT EQUAL TO 1 C C CLEAN-UP LOOP C 20 M = MOD(N,6) IF (M .EQ. 0) GO TO 40 DO 30 I = 1,M STEMP = STEMP + SX(I) 30 CONTINUE IF (N .LT. 6) GO TO 60 40 MP1 = M + 1 DO 50 I = MP1,N,6 STEMP = STEMP + SX(I) + SX(I+1) + SX(I+2) + SX(I+3) * + SX(I+4) + SX(I+5) 50 CONTINUE 60 SSUM = STEMP RETURN END C------------------------------------------------------------- ************ C SROTMG C ************ SUBROUTINE SROTMG(D1,D2,B1,B2,PARAM) C C This subroutine computes a modified Givens plane rotation matrix. C Martin J. McBride, 7/10/85. C General Electric CRD, Information System Operation. C REAL D1,D2,B1,B2,PARAM(5) REAL H(2,2),U,M,TEMP INTEGER I C M = 4096.0 C Case 4: If D2 or B2 are equal to 0, then PARAM(1) = 2 is the only C change. IF (D2*B2 .EQ. 0.0) THEN PARAM(1) = -2.0 RETURN ENDIF C If D1 is less than 0, then PARAM(1) = -1 and PARAM(2) to PARAM(5) C are set to 0. IF (D1 .LT. 0.0) THEN D1 = 0.0 D2 = 0.0 B1 = 0.0 PARAM(1) = -1.0 DO 5 I = 2,5 PARAM(I) = 0.0 5 CONTINUE RETURN ENDIF IF (ABS(D1*B1*B1) .GT. ABS(D2*B2*B2)) THEN C Case 1: D1 and D2 are updated by a factor of 1/U, where U is the C determinant of matrix H. H(1,1) = 1.0 H(1,2) = (D2*B2)/(D1*B1) H(2,1) = -B2/B1 H(2,2) = 1.0 PARAM(1) = 0.0 PARAM(3) = H(2,1) PARAM(4) = H(1,2) U = 1.0 + (D2*B2*B2)/(D1*B1*B1) D1 = D1/U D2 = D2/U B1 = B1*U IF (D1 .EQ. 0.0 .OR. D2 .EQ. 0.0) RETURN IF (ABS(D1) .LT. M**(-2) .OR. ABS(D1) .GT. M**2) THEN CALL SROTMGW(D1,1,B1,H,PARAM,M) ENDIF IF (ABS(D2) .LT. M**(-2) .OR. ABS(D2) .GT. M**2) THEN CALL SROTMGW(D2,2,B1,H,PARAM,M) ENDIF ELSE C If D2 is less than 0, then PARAM(1) = -1 and PARAM(2) to PARAM(5) C are set to 0. IF (D2 .LT. 0.0) THEN D1 = 0.0 D2 = 0.0 B1 = 0.0 PARAM(1) = -1.0 DO 15 I = 2,5 PARAM(I) = 0.0 15 CONTINUE RETURN ENDIF C Case 2: D1 and D2 are updated by a factor of 1/U, where U is the C determinant of matrix H, and then are interchanged. H(1,1) = (D1*B1)/(D2*B2) H(1,2) = 1.0 H(2,1) = -1.0 H(2,2) = B1/B2 PARAM(1) = 1.0 PARAM(2) = H(1,1) PARAM(5) = H(2,2) U = 1.0 + (D1*B1*B1)/(D2*B2*B2) TEMP = D1/U D1 = D2/U D2 = TEMP B1 = B2*U IF (D1 .EQ. 0.0 .OR. D2 .EQ. 0.0) RETURN IF (ABS(D1) .LT. 1.0/(M*M) .OR. ABS(D1) .GT. M*M) THEN CALL SROTMGW(D1,1,B1,H,PARAM,M) ENDIF IF (ABS(D2) .LT. 1.0/(M*M) .OR. ABS(D2) .GT. M*M) THEN CALL SROTMGW(D2,2,B1,H,PARAM,M) ENDIF ENDIF RETURN END SUBROUTINE SROTMGW(DI,I,B1,H,PARAM,M) REAL DI,B1,PARAM(5),H(2,2),M INTEGER I C Case 3: D1 or D2 is updated until it is within a given window, C m**-2 <= abs(D(i)) <= m**2 where m=4096. 10 IF (ABS(DI) .LT. 1.0/(M*M)) THEN DI = DI*M*M IF (I .EQ. 1) B1 = B1/M H(I,1) = H(I,1)/M H(I,2) = H(I,2)/M ELSE IF (ABS(DI) .GT. M*M) THEN DI = DI*1.0/(M*M) IF (I .EQ. 1) B1 = B1*M H(I,1) = H(I,1)*M H(I,2) = H(I,2)*M ENDIF IF (ABS(DI) .LT. 1.0/(M*M) .OR. ABS(DI) .GT. M*M) GO TO 10 PARAM(1) = -1.0 PARAM(2) = H(1,1) PARAM(3) = H(2,1) PARAM(4) = H(1,2) PARAM(5) = H(2,2) RETURN END C------------------------------------------------------------- ************ C SROTM C ************ SUBROUTINE SROTM(N,SX,INCX,SY,INCY,PARAM) C C This subroutine applies the modified Givens plane rotation matrix. C Martin J. McBride, 7/11/85. C General Electric CRD, Information System Operation. C INTEGER N,INCX,INCY,IX,IY,I REAL SX(1),SY(1),PARAM(1),H(2,2) IF (N .LT. 0) STOP IF (N .EQ. 0) RETURN IF (PARAM(1) .EQ. -2.0) RETURN C Conditions for setting up matrix H for multiplication. IF (PARAM(1) .EQ. 1.0) THEN H(1,1) = PARAM(2) H(2,1) = -1.0 H(1,2) = 1.0 H(2,2) = PARAM(5) ELSE IF (PARAM(1) .EQ. 0.0) THEN H(1,1) = 1.0 H(2,1) = PARAM(3) H(1,2) = PARAM(4) H(2,2) = 1.0 ELSE IF (PARAM(1) .EQ. -1.0) THEN H(1,1) = PARAM(2) H(2,1) = PARAM(3) H(1,2) = PARAM(4) H(2,2) = PARAM(5) ELSE PRINT* PRINT*,' SROTM called with incorrect parameter key' PRINT* RETURN ENDIF IF (INCX .EQ. 1 .AND. INCY .EQ. 1) GO TO 20 C C Code for unequal increments of vectors X and Y or C equal increments not equal to 1. C IX = 1 IY = 1 IF (INCX .LE. 0) IX = (-N+1)*INCX + 1 IF (INCY .LE. 0) IY = (-N+1)*INCY + 1 DO 10 I = 1,N X = SX(IX) Y = SY(IY) SX(IX) = X*H(1,1) + Y*H(1,2) SY(IY) = X*H(2,1) + Y*H(2,2) IX = IX + INCX IY = IY + INCY 10 CONTINUE RETURN C C Code for equal increments of vectors X and Y. C 20 DO 30 I = 1,N X = SX(I) Y = SY(I) SX(I) = X*H(1,1) + Y*H(1,2) SY(I) = X*H(2,1) + Y*H(2,2) 30 CONTINUE RETURN END .