SUBROUTINE F7DHB(B, D, G, IRT, IV, LIV, LV, P, V, X) C C *** COMPUTE FINITE-DIFFERENCE HESSIAN, STORE IT IN V STARTING C *** AT V(IV(FDH)) = V(-IV(H)). HONOR SIMPLE BOUNDS IN B. C C *** IF IV(COVREQ) .GE. 0 THEN F7DHB USES GRADIENT DIFFERENCES, C *** OTHERWISE FUNCTION DIFFERENCES. STORAGE IN V IS AS IN G7LIT. C C IRT VALUES... C 1 = COMPUTE FUNCTION VALUE, I.E., V(F). C 2 = COMPUTE G. C 3 = DONE. C C C *** PARAMETER DECLARATIONS *** C INTEGER IRT, LIV, LV, P INTEGER IV(LIV) REAL B(2,P), D(P), G(P), V(LV), X(P) C C *** LOCAL VARIABLES *** C LOGICAL OFFSID INTEGER GSAVE1, HES, HMI, HPI, HPM, I, K, KIND, L, M, MM1, MM1O2, 1 NEWM1, PP1O2, STPI, STPM, STP0 REAL DEL, DEL0, T, XM, XM1 REAL HALF, HLIM, ONE, TWO, ZERO C C *** EXTERNAL SUBROUTINES *** C EXTERNAL V7CPY, V7SCP C C V7CPY.... COPY ONE VECTOR TO ANOTHER. C V7SCP... COPY SCALAR TO ALL COMPONENTS OF A VECTOR. C C *** SUBSCRIPTS FOR IV AND V *** C INTEGER COVREQ, DELTA, DELTA0, DLTFDC, F, FDH, FX, H, KAGQT, MODE, 1 NFGCAL, SAVEI, SWITCH, TOOBIG, W, XMSAVE C C/6 C DATA HALF/0.5E+0/, HLIM/0.1E+0/, ONE/1.E+0/, TWO/2.E+0/, C 1 ZERO/0.E+0/ C/7 PARAMETER (HALF=0.5E+0, HLIM=0.1E+0, ONE=1.E+0, TWO=2.E+0, 1 ZERO=0.E+0) C/ C C/6 C DATA COVREQ/15/, DELTA/52/, DELTA0/44/, DLTFDC/42/, F/10/, C 1 FDH/74/, FX/53/, H/56/, KAGQT/33/, MODE/35/, NFGCAL/7/, C 2 SAVEI/63/, SWITCH/12/, TOOBIG/2/, W/65/, XMSAVE/51/ C/7 PARAMETER (COVREQ=15, DELTA=52, DELTA0=44, DLTFDC=42, F=10, 1 FDH=74, FX=53, H=56, KAGQT=33, MODE=35, NFGCAL=7, 2 SAVEI=63, SWITCH=12, TOOBIG=2, W=65, XMSAVE=51) C/ C C+++++++++++++++++++++++++++++++ BODY ++++++++++++++++++++++++++++++++ C IRT = 4 KIND = IV(COVREQ) M = IV(MODE) IF (M .GT. 0) GO TO 10 HES = IABS(IV(H)) IV(H) = -HES IV(FDH) = 0 IV(KAGQT) = -1 V(FX) = V(F) C *** SUPPLY ZEROS IN CASE B(1,I) = B(2,I) FOR SOME I *** CALL V7SCP(P*(P+1)/2, V(HES), ZERO) 10 IF (M .GT. P) GO TO 999 IF (KIND .LT. 0) GO TO 120 C C *** COMPUTE FINITE-DIFFERENCE HESSIAN USING BOTH FUNCTION AND C *** GRADIENT VALUES. C GSAVE1 = IV(W) + P IF (M .GT. 0) GO TO 20 C *** FIRST CALL ON F7DHB. SET GSAVE = G, TAKE FIRST STEP *** CALL V7CPY(P, V(GSAVE1), G) IV(SWITCH) = IV(NFGCAL) GO TO 80 C 20 DEL = V(DELTA) X(M) = V(XMSAVE) IF (IV(TOOBIG) .EQ. 0) GO TO 30 C C *** HANDLE OVERSIZE V(DELTA) *** C DEL0 = V(DELTA0) * AMAX1(ONE/D(M), ABS(X(M))) DEL = HALF * DEL IF ( ABS(DEL/DEL0) .LE. HLIM) GO TO 140 C 30 HES = -IV(H) C C *** SET G = (G - GSAVE)/DEL *** C DEL = ONE / DEL DO 40 I = 1, P G(I) = DEL * (G(I) - V(GSAVE1)) GSAVE1 = GSAVE1 + 1 40 CONTINUE C C *** ADD G AS NEW COL. TO FINITE-DIFF. HESSIAN MATRIX *** C K = HES + M*(M-1)/2 L = K + M - 2 IF (M .EQ. 1) GO TO 60 C C *** SET H(I,M) = 0.5 * (H(I,M) + G(I)) FOR I = 1 TO M-1 *** C MM1 = M - 1 DO 50 I = 1, MM1 IF (B(1,I) .LT. B(2,I)) V(K) = HALF * (V(K) + G(I)) K = K + 1 50 CONTINUE C C *** ADD H(I,M) = G(I) FOR I = M TO P *** C 60 L = L + 1 DO 70 I = M, P IF (B(1,I) .LT. B(2,I)) V(L) = G(I) L = L + I 70 CONTINUE C 80 M = M + 1 IV(MODE) = M IF (M .GT. P) GO TO 340 IF (B(1,M) .GE. B(2,M)) GO TO 80 C C *** CHOOSE NEXT FINITE-DIFFERENCE STEP, RETURN TO GET G THERE *** C DEL = V(DELTA0) * AMAX1(ONE/D(M), ABS(X(M))) XM = X(M) IF (XM .LT. ZERO) GO TO 90 XM1 = XM + DEL IF (XM1 .LE. B(2,M)) GO TO 110 XM1 = XM - DEL IF (XM1 .GE. B(1,M)) GO TO 100 GO TO 280 90 XM1 = XM - DEL IF (XM1 .GE. B(1,M)) GO TO 100 XM1 = XM + DEL IF (XM1 .LE. B(2,M)) GO TO 110 GO TO 280 C 100 DEL = -DEL 110 V(XMSAVE) = XM X(M) = XM1 V(DELTA) = DEL IRT = 2 GO TO 999 C C *** COMPUTE FINITE-DIFFERENCE HESSIAN USING FUNCTION VALUES ONLY. C 120 STP0 = IV(W) + P - 1 MM1 = M - 1 MM1O2 = M*MM1/2 HES = -IV(H) IF (M .GT. 0) GO TO 130 C *** FIRST CALL ON F7DHB. *** IV(SAVEI) = 0 GO TO 240 C 130 IF (IV(TOOBIG) .EQ. 0) GO TO 150 C *** PUNT IN THE EVENT OF AN OVERSIZE STEP *** 140 IV(FDH) = -2 GO TO 350 150 I = IV(SAVEI) IF (I .GT. 0) GO TO 190 C C *** SAVE F(X + STP(M)*E(M)) IN H(P,M) *** C PP1O2 = P * (P-1) / 2 HPM = HES + PP1O2 + MM1 V(HPM) = V(F) C C *** START COMPUTING ROW M OF THE FINITE-DIFFERENCE HESSIAN H. *** C NEWM1 = 1 GO TO 260 160 HMI = HES + MM1O2 IF (MM1 .EQ. 0) GO TO 180 HPI = HES + PP1O2 DO 170 I = 1, MM1 T = ZERO IF (B(1,I) .LT. B(2,I)) T = V(FX) - (V(F) + V(HPI)) V(HMI) = T HMI = HMI + 1 HPI = HPI + 1 170 CONTINUE 180 V(HMI) = V(F) - TWO*V(FX) IF (OFFSID) V(HMI) = V(FX) - TWO*V(F) C C *** COMPUTE FUNCTION VALUES NEEDED TO COMPLETE ROW M OF H. *** C I = 0 GO TO 200 C 190 X(I) = V(DELTA) C C *** FINISH COMPUTING H(M,I) *** C STPI = STP0 + I HMI = HES + MM1O2 + I - 1 STPM = STP0 + M V(HMI) = (V(HMI) + V(F)) / (V(STPI)*V(STPM)) 200 I = I + 1 IF (I .GT. M) GO TO 230 IF (B(1,I) .LT. B(2,I)) GO TO 210 GO TO 200 C 210 IV(SAVEI) = I STPI = STP0 + I V(DELTA) = X(I) X(I) = X(I) + V(STPI) IRT = 1 IF (I .LT. M) GO TO 999 NEWM1 = 2 GO TO 260 220 X(M) = V(XMSAVE) - DEL IF (OFFSID) X(M) = V(XMSAVE) + TWO*DEL GO TO 999 C 230 IV(SAVEI) = 0 X(M) = V(XMSAVE) C 240 M = M + 1 IV(MODE) = M IF (M .GT. P) GO TO 330 IF (B(1,M) .LT. B(2,M)) GO TO 250 GO TO 240 C C *** PREPARE TO COMPUTE ROW M OF THE FINITE-DIFFERENCE HESSIAN H. C *** COMPUTE M-TH STEP SIZE STP(M), THEN RETURN TO OBTAIN C *** F(X + STP(M)*E(M)), WHERE E(M) = M-TH STD. UNIT VECTOR. C 250 V(XMSAVE) = X(M) NEWM1 = 3 260 XM = V(XMSAVE) DEL = V(DLTFDC) * AMAX1(ONE/D(M), ABS(XM)) XM1 = XM + DEL OFFSID = .FALSE. IF (XM1 .LE. B(2,M)) GO TO 270 OFFSID = .TRUE. XM1 = XM - DEL IF (XM - TWO*DEL .GE. B(1,M)) GO TO 300 GO TO 280 270 IF (XM-DEL .GE. B(1,M)) GO TO 290 OFFSID = .TRUE. IF (XM + TWO*DEL .LE. B(2,M)) GO TO 310 C 280 IV(FDH) = -2 GO TO 350 C 290 IF (XM .GE. ZERO) GO TO 310 XM1 = XM - DEL 300 DEL = -DEL 310 GO TO (160, 220, 320), NEWM1 320 X(M) = XM1 STPM = STP0 + M V(STPM) = DEL IRT = 1 GO TO 999 C C *** HANDLE SPECIAL CASE OF B(1,P) = B(2,P) -- CLEAR SCRATCH VALUES C *** FROM LAST ROW OF FDH... C 330 IF (B(1,P) .LT. B(2,P)) GO TO 340 I = HES + P*(P-1)/2 CALL V7SCP(P, V(I), ZERO) C C *** RESTORE V(F), ETC. *** C 340 IV(FDH) = HES 350 V(F) = V(FX) IRT = 3 IF (KIND .LT. 0) GO TO 999 IV(NFGCAL) = IV(SWITCH) GSAVE1 = IV(W) + P CALL V7CPY(P, G, V(GSAVE1)) GO TO 999 C 999 RETURN C *** LAST LINE OF F7DHB FOLLOWS *** END .